Skip to main content
. 2021 Jan 18;28(20):25442–25459. doi: 10.1007/s11356-020-12122-y

Table 5.

Estimated stochastic frontiers and technical (In)efficiency effects (dependent variable—healthcare expenditure)

Variable Cobb-Douglas Translog
Coefficient t statistics Coefficient t statistics
Frontier model
  Constant 4.195*** (166.57) 0.901 (0.40)
  ln(Patient) 0.951*** (359.16) 1.454*** (3.84)
  Comp air pollutants index 0.000664*** (6.40) 0.00119 (0.97)
  T 0.000091*** (17.48) 0.00042 (0.89)
  12lnPatient2 − 0.0371 (− 1.14)
  12Comp2 − 0.000022*** (− 4.11)
  1/2 T2 0.0000015*** (18.74)
  ln(Patient)*(Comp) 0.0000627 (0.48)
  ln(Patient)*T − 0.0000883* (− 2.24)
  (Comp)*T 0.0000001 (0.41)
  D1 Spring 0.0208*** (5.77) 0.00167 (0.23)
  D2 Summer 0.0351*** (10.29) 0.0174*** (3.43)
  D3 Autumn 0.0416*** (10.19) 0.0264*** (6.89)
Policy factors of inefficiency
  Constant − 1.544 (− 1.24)
  ln(Patient) 0.455*** (6.02)
  Ln(CARS) − 0.157* (− 2.40)
  Ln(INDU) 0.00927 (1.73)
  ELDER − 0.299 (− 1.12)
  T 0.00447*** (4.02)
Non-policy factors of inefficiency
  TEMP − 0.0242* (− 2.31)
  WIND 0.0518* (2.21)
  RAIN − 0.0145 (− 1.39)
  Adj R2 0.9825 0.9913
  Observations 2400 2400

t statistics in parentheses

*p < 0.05

**p < 0.01

***p < 0.001