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Prenatal exposures to mixtures 
of endocrine disrupting chemicals 
and children’s weight trajectory 
up to age 5.5 in the SELMA study
Katherine Svensson1, Eva Tanner2, Chris Gennings2, Christian Lindh3, Hannu Kiviranta4, 
Sverre Wikström5 & Carl‑Gustaf Bornehag1,2*

Exposure to endocrine disrupting chemicals (EDCs) may impact early growth, although information 
is limited on exposure to combination of multiple EDCs. We aimed to evaluate the effect of prenatal 
exposure to EDC mixtures on birthweight z-scores and childhood weight trajectories. Twenty-six 
proven and suspected EDCs, were analyzed in prenatal urine and blood samples from 1118 mothers 
participating in the Swedish Environmental Longitudinal Mother and child Asthma and allergy 
(SELMA) study. Two growth parameters were estimated from each child’s weight trajectory from birth 
to 5.5 years of age: infant growth spurt rate and age at infant peak growth velocity (PGV). Weighted 
quantile sum (WQS) regression was used to estimate the mixture effect and identify chemicals 
of concern. A one-unit increase in the EDC mixture WQS index, was associated with decreased 
birthweight z-scores of 0.11 (95% CI − 0.16, − 0.06), slower infant growth spurt rate of 0.01 (95% CI − 
0.03, − 0.01, on the log10 scale), and delayed age at infant PGV of 0.15 months (95% CI 0.07, 0.24) after 
adjusting for potential confounders. Stratified analysis by sex, showed that delayed age at infant PGV 
was mostly observed in girls with 0.51 months (95% CI 0.26, 0.76). Identified chemicals of concern 
included perfluorinated alkyl substances (PFAS), Triclosan, phthalates, non-phthalate plasticizers, 
bisphenols, polycyclic aromatic hydrocarbons, pesticides and PCBs. Prenatal exposure to EDC 
mixtures was associated with lower birthweight and altered infant weight gain trajectories.
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3-PBA	� 3-Phenoxybenzoic acid
PCB	� Polychlorinated biphenyl
PFAS	� Perfluoroalkyl substance
PFDA	� Perfluorodecanoic acid
PFNA	� Perfluorononanoic acid
PFOA	� Perfluorooctanoic acid
PFOS	� Perfluorooctane sulfonate
PFUnDA	� Perfluoroundecanoic acid

Optimal fetal and infant growth are important to promote child development and prevent disease outcomes later 
in life1–3. It has been suggested that periods of faster weight gain in early infancy may be related to obesity in chil-
dren and adults4,5. While early catch-up growth may improve neurodevelopment among low-birth-weight infants 
or infants born small-for-gestational age (SGA) it may come with a risk for future cardiovascular disease6,7. Fetal 
and infant growth is influenced by genetic, environmental, and social-behavioral factors8. The hypothesis of 
developmental origins of health and disease (DOHaD) indicates that environmental stressors during pregnancy 
may lead to later health effects both in childhood and adulthood9. Barker first showed evidence of the DOHaD 
hypothesis with his research linking poor maternal nutrition to lower birth weight and metabolic diseases later 
in life10. Thus, besides well-known factors, such as parental height or breastfeeding8,11, environmental factors 
may influence early growth and development of disease.

Of special concern are those chemicals with suspected or proven endocrine disrupting properties (EDCs) 
(e.g., phthalates, perfluorinated alkyl substances (PFAS), and polychlorinated biphenyls (PCBs)) which have 
been associated with adverse health effects impacting the metabolism (e.g., diabetes, insulin resistance), neu-
rodevelopment (e.g., IQ), respiratory (e.g., asthma) and reproductive (e.g., early puberty) health12,13. EDCs are 
found in many daily used products (e.g., personal care products, pesticides, antibacterials)12, and even though 
some are rapidly metabolized in the human body, continuous exposure may lead to pseudo-persistence13,14. 
Other EDCs are persistent and remain in the environment for decades even after being banned from use, such 
as dichlorodiphenyltrichloroethane (DDT), PCBs, and perfluorooctane sulfonate (PFOS) which can still be 
found in wildlife, soil, and water sources12,15. Developing fetuses are considered especially vulnerable as EDCs 
may pass through the placenta12,16, and exposure to EDCs during sensitive periods of development may result 
in permanent damage with long-term health effects17.

In regards to children’s growth, prenatal exposure to PFASs and PCBs has been associated with lower 
birthweight18–20, as well as lower weight during the first year of life21. In the same way there is evidence that 
suggest prenatal exposure to certain phthalates and phenols may result in lower birthweight22–25. In addition, 
polycyclic aromatic hydrocarbons (PAHs) have also been associated with smaller birth size and lower weight 
during the first two years of life26. Diversely, prenatal exposure to organochlorine pesticides (e.g., DDT and 
hexachlorobenzene (HCB)) have been associated with faster growth rate in the first year of life27,28. Results 
from two studies suggest that in a mixture of different classes of EDCs, PFAS, organophosphate pesticides, and 
lead had the strongest association with lower birthweight29, and organochlorine pesticides with increased BMI 
z-scores in childhood30. Some of these studies have also shown sex-specific effects in birthweight and growth in 
early childhood18,19,21,31. Even though humans are exposed to many chemicals at the same time in complicated 
mixtures of EDCs, there is limited knowledge on how prenatal exposures to EDCs, especially their concurrent 
and combined mixture effect, may impact pre- and postnatal growth.

The mentioned studies have evaluated growth parameters (e.g. birthweight, BMI) at a few specific time points 
or change in BMI z-scores between two moments in time. This provides information on the change in growth 
parameters between two time points but says very little about how growth changes over longer periods of time. 
A modelling approach of children’s weight measured over time would provide a more detailed tool to assess 
exposure effects on weight trajectories and characteristics of growth (e.g. latency). Therefore, studies evaluating 
if exposure to EDC mixtures may alter children’s weight gain over time is warranted. Previous results from the 
SELMA study, using single-chemical analysis, has shown associations between PFOA and lower birthweight19 and 
altered weight trajectory32. In this study, we evaluated the effect of prenatal exposure to a mixture of 26 proven 
and suspect EDCs on children’s birthweight and weight trajectory parameters from birth until 5.5 years of age 
using data from 1118 women and their children participating in the Swedish Environmental Longitudinal, Mother 
and child, Asthma and allergy (SELMA) study. We also examined potential sex differences in the relationship 
between prenatal EDCs exposure and weight trajectories.

Results
Women in our sample had a mean age of 31 ± 5 years and BMI of 25 ± 4 kg, and children’s mean birthweight 
was 3.6 ± 0.5 kg (Table 1). The infant growth spurt rate was 0.37 ± 0.2 kg/month and age at infant PGV was 
3.42 ± 1.7 months, with boys having a faster growth spurt rate (0.38 ± 0.2 kg/month) and earlier infant age at 
PGV (3.22 ± 1.5 months) than girls (0.35 ± 0.2 kg/month and 3.63 ± 1.8 months, respectively) (p < 0.001). The 
urinary phthalate metabolites MEP, MBP and ΣDEHP had the highest geometric mean (GM) at 67.5, 67.4 and 
63.8 ng/mL, respectively (Table 2). In serum, PFOS had the highest GM at 5.5 ng/mL followed by PFOA at 1.6 
ng/mL, and in plasma the GM of the ΣPCBs was 0.4 ng/mL. The concentrations of the 26 compounds did not 
differ by sex (p-value > 0.05). 

The WQS regression models showed that one-unit increase in the EDC mixture WQS indices in deciles (range 
0–9), were associated with lower birthweight z-scores (Beta = − 0.11; 95% CI − 0.16, − 0.06), slower infant growth 
spurt rate (Beta = − 0.01; 95% CI − 0.03, − 0.01, on the log10 scale), and later age at infant PGV (Beta = 0.15; 95% 
CI: 0.07, 0.24) (Table 3). A one-unit increase in WQS index is associated with a decrease in growth rate with 
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0.01 units on the log scale. In this study population it would represent a slower growth rate of 0.87 kg/month for 
children with high WQS index (90th percentile) as compared to 0.93 kg/month for children with low WQS index 
(10th percentile). The stratified WQS model with interaction term included, showed significant differences in 
the WQS index estimate by sex for age at infant PGV, with later age for girls (Beta = 0.51; 95% CI: 0.26, 0.76), but 
not for boys (Beta = − 0.04; 95% CI: − 0.30, 0.22) (p-value for interaction = 0.002). This would represent a two 
week delay for girls in age at infant PGV. There were no significant differences by sex for birthweight z-scores 
or infant growth rate.

Metabolites with WQS estimated weights higher than 3.8% (i.e., higher than equal weighting) were considered 
chemicals of concern (Table 4). The chemicals of concern for lower birthweight z-score were PFOA, Triclosan, 
HCB, 2OHPH, MCiNP, BPS, PFDA, and MBP, accounting for 74% of the WQS index. The chemicals of concern 
for a slower infant growth spurt rate were DPP, PFOA, Triclosan, ΣPCBs, MOiNCH, BPF, PFDA, MEP, and 
3-PBA, accounting for 79% of the WQS index. For later age at infant PGV, the chemicals of concern were PFOA, 
BPA, MOiNCH, MEP, ΣPCBs, DPP, Triclosan, and MBzP, accounting for 79% of the WQS index. Results showed 
significant variations in the WQS weights between boys and girls for each growth parameter. Noticeably, PFOA 
had higher weights among girls, whereas, Triclosan had higher weights among boys.

Sensitivity analyses using single-chemical linear regression models, confirmed that PFOA was associated with 
lower birthweight z-scores, slower infant growth spurt rate, and later age at PGV (Beta = − 0.349; Beta = − 0.067; 
Beta = 0.695; respectively) (p-value < 0.05) (Table S2). Also, BPS, PFDA, and HCB were associated with lower 
birthweight z-scores. However, the other chemicals did not reach significance in the single-chemical model 
approach.

Discussion
Prenatal exposure to a one-unit increase in the EDCs WQS-index, was associated with a decrease of 0.11 birth-
weight z-scores which is similar to the magnitude of effect as maternal smoking during pregnancy has on 
birthweight z-scores33. The chemicals of concern for lower birthweight z-scores were PFOA, Triclosan, HCB, 
2OHPH, MCiNP, BPS, PFDA, and MBP. In addition to lower birthweight, our results suggest that exposure to 
a mixture of EDCs is associated with a slower rate of weight gain and delayed timing of PGV which would shift 
the infant growth curve towards the right. The chemicals of concern for slower infant growth spurt rate and later 
age at infant PGV were PFOA, PFDA, Triclosan, ΣPCBs, BPA, BPF, MOiNCH, DPP, MEP, MBzP, and 3-PBA.

Table 1.   Sociodemographic characteristics of the study population and children’s growth parameters, n = 1118. 
PGV = Peak growth velocity. * P-value from Student t-test for continuous variables and Chi-square test for 
categorical variables.

Overall
(n = 1,118)

Boys
(n = 584)

Girls
(n = 534) P-value*

Continuous variables Mean (SD) Mean (SD) Mean (SD)

Maternal age (years) 30.9 (4.7) 30.9 (4.5) 30.9 (4.8) 0.842

Maternal BMI (kg/m2) 24.7 (4.3) 24.6 (4.2) 24.7 (4.3) 0.836

Infant’s gestational age at birth 
(weeks) 39.5 (1.7) 39.4 (1.8) 39.5 (1.5) 0.310

Growth parameters
Mean (SD),
[Min–Max]

Mean (SD),
[Min–Max]

Mean (SD),
[Min–Max]

Birthweight (kg) 3.610 (0.543), [1.449–5.695] 3.653 (0.558), [1.449–5.480] 3.564 (0.523), [1.865–5.695] 0.006

Birthweight z-scores − 0.08 (1.03),
[− 3.99, 4.48]

− 0.13 (1.08),
[− 3.99, 4.48]

− 0.02 (0.98),
[− 2.70, 3.49] 0.061

Infant growth spurt rate (kg/
months)

0.37 (0.17),
[0.09–1.07]

0.38 (0.18),
[0.10–1.07]

0.35 (0.17),
[0.09–0.98]  < 0.001

Infant Age at PGV (months) 3.42 (1.65),
[0.09–8.85]

3.22 (1.51),
[0.13–8.25]

3.63 (1.76),
[0.09–8.85]  < 0.001

Categorical variables n (%) n (%) n (%)

Maternal Education

Primary school or high school 402 (36.0) 207 (35.4) 195 (36.5)

College or higher 716 (64.0) 377 (64.6) 339 (63.5) 0.756

Smoking

Non-smoker 1,056 (94.5) 554 (94.9) 502 (94.0)

Smoker 62 (5.5) 30 (5.1) 32 (6.0) 0.622

Parity

Nulliparous 544 (48.7) 279 (47.8) 265 (49.6)

Multiparous 574 (51.3) 305 (52.2) 269 (50.4) 0.576

Breastfeeding until 3 months

No 115 (12.3) 59 (12.1) 56 (12.6)

Yes 817 (87.7) 430 (87.9) 387 (87.4) 0.867
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Table 2.   Concentrations of 26 compounds (ng/mL) in prenatal urine (not creatine adjusted) and blood 
samples, overall and by sex, n = 1,118. Abbreviations: GM = Geometric mean, GSD = Geometric standard 
deviation, LOD = limit of detection, LOQ = limit of quantification. Notes: Values < LOD retained the 
machine read value for urine and serum compounds, values < LOQ were substituted with LOQ/ 2 for plasma 
compounds. Further description of each analyte can be found in supplementary table S1. a  LOD reported 
for all urine and serum compounds, LOQ reported for plasma compounds. b  Molar sum of metabolites: 
mono-2-ethylhexyl, mono(2-ethyl-5-hydroxyhexyl), mono(2-ethyl-5-oxohexyl), and mono(2-ethyl-5-
carboxypentyl) phthalates. c  Molar sum of metabolites: mono(hydroxyisononyl), mono(oxoisononyl), and 
mono(carboxyisooctyl) phthalates. d  Sum of DDT and its metabolite dichlorodiphenyldichloroethylene. e  
Sum of PCB congeners 74, 99, 118, 138, 153, 156, 170, 180, 183, 187. *P-value from Student t-test comparing 
metabolite concentrations on the log-scale by sex.

Components of the EDC mixture
Overall
(n = 1,118)

Boys
(n = 584)

Girls
(n = 534)

P-value*Matrix Chemical Type
Parent compound
(if applicable) Analyte LOD/LOQa % ≥ LOD GM (GSD) GM (GSD) GM (GSD)

Urine

Phthalates

DEP MEP 0.010 100 67.5 (2.9) 69.1 (2.8) 65.7 (3.1) 0.432

DBP MBP 0.100 100 67.4 (2.2) 69.4 (2.2) 65.4 (2.2) 0.211

BBzP MBzP 0.040 100 15.6 (2.9) 15.7 (2.8) 15.5 (3.0) 0.812

DEHP ΣDEHPb – 63.8 (2.4) 62.4 (2.3) 65.4 (2.5) 0.360

DINP ΣDINPc – 25.6 (3.0) 25.3 (3.0) 26.0 (3.0) 0.688

DiDP/DPHP
MHiDP 0.031 100 1.23 (2.8) 1.25 (2.7) 1.20 (2.8) 0.600

MCiNP 0.031 99.9 0.66 (2.4) 0.68 (2.4) 0.65 (2.5) 0.305

Plasticizer
DiNCH MOiNCH 0.023 99.0 0.30 (4.0) 0.31 (4.1) 0.30 (4.0) 0.887

TTP DPP 0.042 100 1.38 (2.6) 1.44 (2.6) 1.32 (2.5) 0.115

Antibacterial Triclosan 0.100 92.4 1.34 (10.1) 1.36 (10.5) 1.31 (9.7) 0.762

Bisphenols

BPA 0.050 100 1.48 (2.4) 1.51 (2.3) 1.47 (2.4) 0.636

BPF 0.024 90.3 0.15 (5.2) 0.16 (5.1) 0.15 (5.3) 0.535

BPS 0.009 97.5 0.07 (2.9) 0.07 (2.8) 0.06 (3.0) 0.079

PAH 2OHPH 0.003 100 0.20 (2.3) 0.20 (2.3) 0.21 (2.3) 0.582

Pesticide
Chlorpyrifos TCP 0.035 100 1.30 (2.5) 1.30 (2.5) 1.29 (2.6) 0.880

Pyrethroids 3-PBA 0.017 99.0 0.16 (2.8) 0.16 (2.7) 0.16 (2.8) 0.964

Serum PFAS

PFOA 0.020 100 1.63 (1.7) 1.65 (1.7) 1.61 (1.8) 0.451

PFOS 0.060 100 5.49 (1.7) 5.56 (1.7) 5.42 (1.7) 0.406

PFNA 0.010 100 0.55 (1.7) 0.54 (1.7) 0.55 (1.7) 0.769

PFDA 0.020 100 0.26 (1.6) 0.26 (1.6) 0.26 (1.6) 0.897

PFUnDA 0.020 99.7 0.22 (1.9) 0.22 (1.9) 0.22 (1.8) 0.751

PFHxS 0.030 100 1.31 (1.8) 1.32 (1.8) 1.29 (1.8) 0.530

Plasma
Organo-chlorine 
pesticide

HCB 0.005 100 0.05 (1.4) 0.05 (1.4) 0.04 (1.4) 0.347

Trans-Nonachlor 0.005 77.5 0.01 (1.8) 0.01 (1.8) 0.01 (1.8) 0.989

DDT ΣDDT/DDEd – 0.20 (2.0) 0.21 (2.0) 0.20 (2.0) 0.166

PCB ΣPCBe – 0.36 (1.7) 0.37 (1.7) 0.36 (1.7) 0.500

Table 3.   Adjusted associations† from the WQS linear regression between prenatal EDC mixture and 
children´s growth characteristics, overall and by sex, n = 1,118. Abbreviations: PGV = Peak growth velocity. 
† Adjusted for maternal age, BMI, education, smoking, parity, child’s sex and gestational age at birth. Models 
with birthweight z-scores as outcome were not adjusted for sex or gestational age. Stratified models were not 
adjusted for sex. ‡ Results are derived from the stratified WQS model allowing for sex-specific weights and 
including the interaction term WQS*sex (p-valueint).

Overall
(n = 1,118)

Boys‡

(n = 584)
Girls‡

(n = 534)

p-valueint

WQS index estimate (95% 
CI), p-value

WQS index estimate
(95% CI), p-value

WQS index estimate
(95% CI), p-value

Birthweight z-scores − 0.11 (− 0.16, − 0.06), < 0.001 − 0.22 (− 0.37, − 0.07), 0.004 − 0.29 (− 0.44, − 0.14), < 0.001 0.526

Log10 of infant growth spurt 
rate (kg/months) − 0.01 (− 0.03, − 0.004), 0.007 − 0.08 (− 0.11, − 0.05), < 0.001 − 0.05 (− 0.08, − 0.01), 0.005 0.103

Infant age at PGV (months) 0.15 (0.07, 0.24), < 0.001 − 0.04 (− 0.30, 0.22), 0.760 0.51 (0.26, 0.76), < 0.001 0.002



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11036  | https://doi.org/10.1038/s41598-021-89846-5

www.nature.com/scientificreports/

Exposure to these chemicals is not unique to pregnant women in Sweden but similar concentrations of 
phthalates, phenols, and PFASs, have also been found among women in the general population from the US, 
Mexico and Europe34–37. These studies show that most chemicals are detectable in 90–100% of the women, indi-
cating common exposure. Among phthalate and phenols, the urinary concentrations of the DEHP metabolites 
and BPA in the SELMA study are similar to those reported among women in the US, Mexico and Spain, except 
for MECPP which was lower36–38. Whereas, the reported concentrations of MBzP are higher, and MEP lower 
in the SELMA study as compared to women in the Netherlands, Spain and Mexico. PFASs concentrations are 
similar to those reported among women in Denmark but lower than women in the US34,35. PFOS and PFOA are 
the compounds with the highest concentrations among the PFASs analyzed in these studies as in the SELMA 
study. These concentrations, even though they may vary slightly across populations, are indicative of common 
exposure among pregnant and nonpregnant women. Consequently, the health effects from exposure to EDC 
mixtures may be a global matter.

The only previous study that analyzed EDC mixture and birthweight, identified inverse associations between 
birthweight and PFASs and organophosphate pesticides in a mixture of 53 compounds29. Our result overlaps 
with this mixture analysis in the sense that PFASs are the chemicals driving the association with highest WQS 
weights in the EDC mixture. In addition to the study on mixture, previous single-component analyses have also 
found prenatal exposure to PFOA, PFDA, and other PFAS compounds (PFOS, PFNA and PFUnDA) associated 
with lower birthweight z-score or small-for-gestational age (SGA) birth19–21,29,39–42. In terms of Triclosan, there is 
some evidence from a meta-analysis and two cohorts reporting associations with lower birthweight22–24. However, 
contrasting results of no association have also been found43,44. Sex-specific effects have been found with smaller 
birth size among boys31, which is in line with our study showing higher WQS weight for Triclosan in boys.

Table 4.   Overall† and sex-specific weights‡ in the WQS linear regression analysis between prenatal EDC 
mixture analysis and children’s growth characteristics, overall and by sex, n = 1,118. † Adjusted for maternal 
BMI, education, smoking, parity, child’s sex and gestational age at birth. Models with birthweight z-scores as 
outcome were not adjusted for sex or gestational age. Stratified models were not adjusted for sex. ‡  Weights 
represent the percentage attributable to each component of WQS index, and the sex-specific weights is that 
percentage calculated within each group (boys or girls). Chemicals with weights > 3.85% are marked in bold.

Components of the EDC mixture
Birthweight
z-scores Infant growth spurt rate Age at infant PGV

Matrix
Chemical 
Class

Parent 
compound

Analyte

Overall Boys Girls Overall Boys Girls Overall Males Females

(if 
applicable)

Weights 
(%)

Sex-specific 
weights 
(%)

Sex-specific 
weights 
(%)

Weights 
(%)

Sex-specific 
weights 
(%)

Sex-specific 
weights 
(%)

Weights 
(%)

Sex-specific 
weights 
(%)

Sex-specific 
weights (%)

Urine

Phthalates

DEP MEP 2.9 3.2 3.3 4.3 3.4 6.6 7.5 3.3 10.9

DBP MBP 6.1 1.1 9.0 0.1 3.4 0.1 1.0 1.6 0.4

BBzP MBzP 2.0 1.9 7.0 2.0 3.8 0.7 4.7 4.0 3.1

DEHP SumDEHP 2.0 0.8 3.5 3.1 1.6 1.9 1.0 2.2 < 0.1

DINP SumDINP  < 0.1 0.9  < 0.1 3.5 3.0 9.6 1.3 0.9 0.8

DiDP/DPHP
MHiDP 0.6 1.1  < 0.1 0.1 1.6 0.8  < 0.1 3.1 0.7

MCiNP 9.0 4.6 9.9 0.2 7.4 4.3 1.6 8.0 7.9

Plasticizer
DiNCH MOiNCH 3.8 10.7 0.6 7.5 4.1 9.5 10.9 5.3 7.8

TTP DPP 0.9 2.6 0.4 15.7 8.9 6.7 5.7 3.3 2.0

Antibacterial Triclosan 11.6 16.7 4.0 13.9 8.0 5.8 4.9 3.2 7.2

Bisphenols

BPA 0.8 1.9 0.9 1.2 3.3 1.7 11.4 3.9 9.1

BPF 0.1 2.0 0.2 5.5 3.5 3.5 2.5 2.9 1.3

BPS 7.7 9.2 2.4 0.5 3.8 0.6 2.9 3.3 2.1

PAH 2OHPH 10.4 7.8 7.4 2.1 4.1 4.8 1.7 8.1 6.5

Pesticide
Chlorpyrifos TCP 0.6 5.9  < 0.1 3.0 5.4 2.5 3.2 5.1 1.2

Pyrethroids 3-PBA 1.5 1.3 7.4 4.1 4.1 10.2 2.9 5.9 7.0

Serum PFAS

PFOA 12.6 5.8 11.2 14.1 3.0 16.1 27.7 6.0 22.7

PFOS 2.1 1.1 5.5 0.3 2.6 0.7  < 0.1 2.6  < 0.1

PFNA 2.1 1.0 4.8 1.5 2.4 2.8 1.1 2.8 4.2

PFDA 6.2 4.9 5.7 5.2 1.5 6.5 0.1 6.1 0.3

PFUnDA 0.6 1.3 0.6 0.9 3.2 0.5  < 0.1 3.2 0.4

PFHxS 1.0 1.7 1.0  < 0.1 3.3 0.2 0.8 3.7 0.7

Plasma

Organo-
chlorine 
pesticide

DDT

HCB 11.2 8.2 6.9 2.0 4.2 0.4 0.2 1.0 0.3

Trans-Nona-
chlor 1.0 1.7 1.0  < 0.1 2.4 0.4 0.3 3.7 0.7

DDT/DDE 3.5 1.3 7.2 0.9 2.7 0.7 0.3 1.5 0.1

PCB SumPCB  < 0.1 1.6 0.2 8.4 5.4 2.5 6.4 5.4 2.7
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There is less evidence for the other chemicals of concern associated with lower birthweight z-scores. HCB has 
been associated with a higher risk of SGA for girls39. Similarly, prenatal exposure to PAHs has been associated 
with smaller birth size and lower weight during the first two years of life26. A study in the US found an associa-
tion between BPS and lower birthweight z-scores but a non-significant trend in the association with MCiNP25.

In regards to postnatal growth, our results are in line with Barker and the DOHaD hypothesis which sug-
gests that environmental factors during pregnancy can influence children’s early growth trajectory9,10. Exposure 
to EDC mixtures, beside influencing the growth trajectory, may also interfere with other metabolic processes. 
Hence, it would be important to further evaluate long-term health effects from a slower infant weight gain in 
relation to exposure of EDC mixtures.

Only one previous study has evaluated prenatal exposure to a mixture of 27 EDCs and found associations 
between organochlorine pesticides (i.e. DDE, HCB and PCBs) and increased weight at 7 years of age30.

Previous single-compound analyses from the SELMA study showed that exposure to PFOA was associated 
with lower birthweight19 and weight trajectory32 only among girls. Our mixtures approach confirmed PFOA 
was a chemical of concern for the parameters of children’s weight trajectory. In comparison with other studies, 
evaluating children’s weight at specific time points, we can observe the following associations with PFAS’s. Our 
longitudinal approach on children’s weight may not be directly comparable but these studies are still informative 
on the relationship between PFASs and children’s growth. A study in Korea found a relationship specifically with 
PFNA and lower weight at 2 years of age46, Similarly, a study in Denmark found an association between PFOA and 
decreased weight and body mass index at 5 and 12 months, however, only among boys21. Differing results have 
been found in a Swedish study showing a positive trend between PFOA and BMI z-scores at 4–5 years of age40. 
Besides epidemiological studies, there is emerging evidence that PFOA may interact with sex hormone function, 
serum levels and receptor functions47–49. This may provide some explanation for the associations with growth.

Less information is available on the other chemicals of concern we found for weight trajectory. In regards to 
PCBs, two studies in the US and Sweden showed that prenatal exposure to PCBs, mainly through contaminated 
fish or farm products, was related to lower weight of children at 4 and 7 years of age50,51. In contrast, other studies 
have found associations with PCBs and increased weight or body mass index at 3 and 7 years of age30,52. Prenatal 
exposure to BPA has been associated with decreased BMI, body fat, and overweight/obesity among prepubertal 
girls53. In regards to Triclosan, the opposite have been found with higher weight z-scores at 2 years of age44. 
DINCH is a non-phthalate plasticizer used as a replacement for high-molecular phthalates and detected in 99% 
of the samples collected in the SELMA study54. There is limited information on the effect of prenatal exposure 
to DINCH and children’s postnatal growth. In one study, exposure to DINCH induced preadypocytes to accu-
mulate lipids and differentiate into mature adipocytes by activating peroxisome proliferator activated receptor 
(PPAR)-alpha pathway, similar to other phthalates55,56. In contrast, another study reported no obesogenic effect 
associated with prenatal exposure to DINCH on body weight and other cardiometabolic markers (e.g. lipids) in 
rat pups57. DINCH has also shown to cause cytotoxicity in kidney cells and DNA damage to liver cells, indicating 
that it is hazardous to human cells58. Hence, exposure to DINCH has been associated with negative effects on 
human cells but there is not a clear consensus of the effect on growth and obesity.

This study has strengths worth highlighting. The data was collected in a large ongoing longitudinal study 
which have followed mother-infant pairs from early pregnancy. Most previous studies evaluating prenatal expo-
sure to EDCs and children’s growth have looked at specific time points in early infancy, whereas we were able to 
consider the shape of the curve for children’s weight trajectory. This adds valuable information on the effect of 
EDCs on children’s weight gain over time. Some advantages of our modelling approach for estimating growth, 
as compared to other more complex models59–62, is a simple computational approach with the ability to derive 
further growth metrics (e.g. growth acceleration, peak growth velocity), and the estimation of individual growth 
metrics which provides utility of them in later regression analysis. On the other hand, it requires frequent 
measurements over time, as greater amount of measures improves the estimation of the growth metrics and the 
selection of the nonlinear model32.

Our study included a mixture of EDCs including phthalates, phenols, PFAS, PCBs, organochloride pesticides 
and other short-lived chemicals as PAHs. In order to define the feasibility of a mixture-centered approach for 
chemical risk assessment, we focused in this study on 26 chemicals belonging to different chemical groups. The 
rationale for this selection, which represents only a portion of all the chemicals we currently are exposed to, was 
based on established evidence, both of their endocrine interfering properties of importance for metabolism and 
growth, their ubiquitous occurrence, and their association to metabolism and growth (from single compound 
studies). We chose WQS regression to analyze mixtures in our analyses due to several reasons. Considering that 
exposures to EDCs generally occur in complicated mixtures, the WQS regression allowed for estimation of the 
overall mixture effect on children’s weight providing simplicity of interpretation of the WQS index as well as the 
weights. Our approach of using WQS regression also permitted the identification of those chemicals driving 
the associations with each growth parameter, as well as allowing for different slopes and calculate sex-specific 
weights. In terms of handling correlated exposures, as in the case of EDC metabolites, WQS regression has shown 
to perform with good sensitivity and specificity in several studies relevant to environmental exposures, includ-
ing studies handling correlated high-dimensional data65–72. In comparison with other shrinkage methods (e.g. 
lasso, elastic net), WQS regression results in similar or improved identification of the chemicals of concern66. As 
compared to other methods that analyze mixtures, WQS regression is preferred in hypothesis driven analyses to 
evaluate association in a certain direction with the health outcome. Unsupervised approaches such as principal 
component analysis (PCA) or factor analysis (FA) may be preferable when there is no hypothesis a priori for the 
direction of the association.

When comparing results from the single-chemical modelling approach, many of the chemicals did not reach 
significance in the association with the growth parameters. This may be because mixture modelling approaches 
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may identify chemicals which would not be deducible from a single-chemical approach, due to the “cocktail 
effect” (e.g. additive, synergistic effects)63,64.

Our results should be interpreted in light of the following limitations. The modelling of children’s weight 
provided an estimation of a PGV at approximately three months of age which is later than what is usually 
described73. More frequent measures during the first weeks of life in the model might have been more sensitive 
to earlier growth spurts. Urine samples were only collected once during pregnancy. Therefore, we are not able 
to identify variations in exposure over time during pregnancy in particular for non-persistent EDCs. Previous 
biomonitoring studies on urinary concentrations of non-persistent EDCs (e.g. phthalates, phenols) have shown 
that within subject variability of exposure measured in single urine-spot samples shows a somewhat stable vari-
ability over time but may vary across pregnancy74,75. Hence, we may assume that for most women the urinary 
concentrations represents daily exposure during early pregnancy. In order to reduce misclassification, urine col-
lection was standardized by using only first-morning voids which are more reliable76,77. However, any potential 
misclassification should be nondifferential with respect to the outcome and therefore we expect bias towards the 
null. Some of the limitations of using WQS regression is that it assumes there is no interaction between expo-
sure, as well as constant change in risk between the quantiles. To assess the linearity assumption, LOESS plots 
between the WQS index and the covariate adjusted outcome are reviewed and quadratic terms can be added. In 
our analysis, our main goal was to estimate the overall mixture effect whereas other methods may be preferable 
for the evaluation of interactions between single exposures in a mixture (e.g. Bayesian kernel machine regres-
sion (BKMR))78. Although, the use of quantiles reduces the influence of outliers of exposure it also reduces the 
information of the full range of exposure66. Our results may also have limited generalizability as we did not split 
the data into training and validation set when performing WQS regression model due to our sample size which 
did not allow for stable estimation of weights.

Consistent with Barker and the DOHaD hypothesis, our results demonstrate that prenatal exposure to envi-
ronmental factors influence early growth, specifically a change in growth curve trajectories. This may be relevant 
in regards to long-term health effects and metabolic diseases. Future investigations on the metabolic health 
impacts of prenatal EDC mixture exposure in infancy through adulthood are critical areas of research.

Conclusions
Our results shows that prenatal exposure to EDC mixture have an impact on pre- and postnatal growth leading 
to lower birthweight z-scores and slower infancy weight gain. In a mixture of EDCs, we found evidence that 
both persistent and short-lived chemicals are of concern for children’s growth. It may be especially important 
to limit exposure to EDCs for pregnant women and children as they represent life stages sensitive for growth 
and development.

Methods
Study population.  This study is based on data from the SELMA study; an ongoing prospective study which 
recruited 2,582 pregnant women in 2007–2010 at approximately 10 weeks of gestation. The recruitment pro-
tocol has been described previously in more detail79. For this analysis we selected, 1,118 mother–child pairs 
with data on 26 suspect EDCs, child’s weight, and complete data on the selected covariates. Out of 2,582 preg-
nant women recruited into the SELMA study, a total of 1,549 mother–child pairs had information on children’s 
weight measurements (birth until 5.5 years of age), and 1,323 had measured EDCs concentrations from urine 
and blood samples during pregnancy. From those 1,323 mother–child pairs, a total of 205 had missing values 
either on maternal education (n = 185) or maternal BMI (n = 52), and therefore excluded from the analysis. This 
resulted in a final sample of 1,118 mother–child pairs. Children excluded due to any missing data (n = 783) had 
larger birthweight (3.7 kg vs. 3.6 kg) and their mothers were more likely to have lower education level (high 
school: 43.3% vs. 36.0%), smoke (9.9% vs. 5.5%), and multiparous (60.9% vs. 51.3%) (Table S3). The study was 
performed in accordance with the Declaration of Helsinki. All participating women signed informed consent for 
theirs and their children’s participation, and the study has been approved by the Regional Ethical Review Board 
in Uppsala, Sweden (2007-05-02, Dnr: 2007/062 and Dnr: 2015/177).

Sample collection and measurement of EDCs.  Women provided blood and first morning void urine 
samples during their 1st trimester of pregnancy during the enrollment visit at a prenatal care center. All samples 
were kept frozen until analysis (− 80ºC for serum and plasma, and − 20ºC for urine)79. A total of 54 analytes with 
either proven or suspected endocrine disrupting properties were analyzed. From these compounds, we selected 
41 metabolites with detectable values in at least 75% of the samples. After summation there were 26 metabolites 
and compounds included in the analysis (Table S1)80.

Urinary metabolites of nonpersistent chemicals with short biological half-life were analyzed using liquid 
chromatography coupled to a triple quadrupole mass spectrometer (LC–MS/MS) according to a method pre-
sented by Gyllenhammar et al. 201781. Serum was analyzed for PFAS and cotinine using LC/MS/MS according 
to Lindh et al. 201282. The laboratory is part of Erlangen Round Robin inter-laboratory control program and has 
qualified as HBM4EU laboratory for several compounds. Plasma samples were analyzed for persistent organic 
pollutants using gas chromatography–MS/MS (GC–MS/MS) according to Koponen et al., 201383. Spearman 
correlations coefficients between these chemicals have been reported previously and ranged between − 0.16 and 
0.75, with urinary creatinine-adjusted chemicals being low to moderately correlated and persistent chemicals 
highly correlated80. More detailed descriptions of the analytical methods for blood and urine samples has been 
described previously81,82,84.

We calculated summed variables for certain metabolites. The sum of DEHP and DINP metabolites were 
calculated on a molar basis. We also summed DDT with its metabolite DDE, and all the PCB congeners for total 
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exposure variables. For the metabolites measured in plasma, values below the level of detection (LOD) were 
replaced by the value of LOD/√(2), whereas for serum and urinary metabolites we used machine read values80. 
All urinary metabolites were creatinine adjusted in units of nmol per mol creatinine to adjust for urine dilution in 
the regression models. The full name of the 41 metabolites as well as the summed variables are listed in Table S1.

Anthropometric measures and covariates.  Children’s weight was measured at birth and after birth up 
to 15 times during routine health care visits at a Child Health Center (CHC) scheduled at 2 weeks of age, and at 
2, 3, 4, 5, 6, 8, 10, 12, 18, 30, 36, 48, and 66 months of age32. Birthweight z-scores were calculated based on the 
Swedish national growth reference85. Sociodemographic information was collected through self-administered 
questionnaires, whereas maternal age, weight, parity, child’s gestational age at birth (based on ulstrasound exam-
inations) and sex was collected through the Swedish medical birth registry. Smoking status of active smokers 
was determined based on cotinine levels above 15 (ug/dl), and on self-reported status if cotinine values were 
missing. Covariates were selected based on previous literature or statistical significance in the WQS regression 
models (p-value < 0.05)8,34–38,86,87.

Statistical analyses.  Descriptive statistics were used to summarize central tendency measures. Our method 
of analyzing children’s weight trajectory is built on previously published results from the SELMA study32. In 
brief, a double-logistic growth model was used to model each child’s weight trajectory from birth to 5.5 years of 
age including in average 11.6 (SD = 1.9) measures of weight per child (8 to 15 measures of weight). The double-
logistic model assumes a sigmoidal shape in two sequential growth periods and provides several parameters 
which are indicative of the shape of the weight trajectory (Fig. 1). For this analysis, we selected the following 
parameters: infant growth spurt rate (kg/month) and age at peak growth velocity (PGV) (months) from the first 
growth period. We log10 transformed the infant growth spurt rate to approximate a normal distribution. The 
infant growth spurt rate is the tangent at the inflection point of the curve and occurs at the same age as the PGV. 
Both parameters provide similar information in terms of the child’s weight trajectory. However, because we are 
interested in the shape of the curve we chose to analyze only the infant growth spurt rate.

To evaluate the association between mixtures of EDCs and the weight trajectory parameters, we used weighted 
quantile sum (WQS) regression which derives a weighted index estimating the mixture effect associated with 
each parameter, and also identifies chemicals of concern in the mixture through estimated weights66,69. The WQS 
regression has the following equation:

where g() is the link function (in this case generalized linear model), µ is the mean of the outcome, qi is the 
quantile of the ith component (here, deciles), wi is the weight associated with the ith component, z ′ is the vector of 
covariates and ϕ is the vector of parameters associated with the covariates. The term 

(
∑c

i=1
wiqi

)

 represents the 
index that weighs and sums the components included in the mixture. The weights associated with each compo-
nent in the mixture are estimated as the average from 100 bootstrap samples. The chemicals with higher weights 

g(µ) = β0 + β1

(

c
∑

i=1

wiqi

)

+ z
′

ϕ

Figure 1.   Double-logistic growth model to predict weight trajectories. The double-logistic growth model is 
in this analysis applied to predict children’s weight trajectories from birth to 5.5 years of age. The infant period 
is captured by the first of two logistic functions. This first function is exponential with weight (kg) increasing 
with age (months) and undertakes an inflection point where the rate constant is determined by the slope of the 
tangent line (β). This slope is in this analysis labeled as the infant growth spurt rate (kg/month). Growth velocity 
is the first derivative of the logistic growth model, and the peak growth velocity (PGV) is reached at age = δ.  
(Adapted from Tanner et al., 2020).
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account for higher contribution to the weighted index. We did not split the data into training and validation 
set as the sample size did not allow for stable weight estimates. Each of the weighted indices were then assessed 
with the respective outcome using linear regression models and adjusting for covariates. For each outcome, it 
is possible to derive both a positively and negatively associated index. By estimating one index at the time it 
focuses the inference, and thereby reducing some of the ill conditioning due to the complex correlation pattern. 
For birthweight z-scores we modeled an index associated with lower birthweight z-scores based on results from 
previous literature on EDCs and birthweight. For the other outcomes we ran WQS regression deriving indices in 
both directions and report the index where we found a significant association with the respective outcome. We 
also ran models with the interaction term WQS*sex and a stratified WQS regression with sex-specific weights88. 
These extensions to WQS regression have the advantage of estimating the weights in the presence of the interac-
tion term, and the stratified model with an interaction term permits a different regression coefficient for each level 
of the strata with strata-specific weights, in this case by sex. If the WQS index in the stratified model is significant, 
then the sex-specific weights are different between boys and girls and indicating different ranks and magnitudes 
of the components in the mixture. The WQS regression models were conducted using the R package “gWQS: 
generalized weighted quantile sum regression” version 2.089. All the models were adjusted by covariates selected 
a priori based on current literature and statistical significance (p-value < 0.05): maternal age, BMI, education, 
smoking, parity, child’s sex and gestational age at birth. The models with birthweight z-scores as outcome was 
not adjusted by sex or gestational age as this is already considered in the calculation of the z-scores. Also, the 
stratified models were not adjusted for sex.

We ran sensitivity analysis with single-chemical regression models with each of the 26 metabolites and the 
growth parameters; birthweight z-scores, infant growth spurt rate and age at PGV. All the analyses were per-
formed using the statistical software R version 3.5.2.

Data availability
According to the Ethical Review Board decision and obtained personal consent, data on participating children 
or their mothers can not be made freely available. This since they constitute clinical data subject to secrecy in 
accordance with the Swedish Public Access to Information and Secrecy Act [OSL 2009:400]. Unique combina-
tions of clinical data could make a study participant identifiable, and consequently a review of secrecy may result 
in restrictions regarding data availability.
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