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Evolution of disease transmission 
during the COVID‑19 pandemic: 
patterns and determinants
Jie Zhu & Blanca Gallego*

Epidemic models are being used by governments to inform public health strategies to reduce the 
spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that 
control processes of disease transmission and recovery. However, the validity of these parameters is 
challenged by the uncertainty of the impact of public health interventions on disease transmission, 
and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a 
stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 
infection across 101 countries. The dynamics of disease transmission was represented in terms of the 
daily effective reproduction number ( R

t
 ). The relationship between public health interventions and 

R
t
 was explored, firstly using a hierarchical clustering algorithm on initial R

t
 patterns, and secondly 

computing the time-lagged cross correlation among the daily number of policies implemented, R
t
 , 

and daily incidence counts in subsequent months. The impact of updating R
t
 every time a prediction is 

made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries 
with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social 
distancing measures and a shorter gap between interventions were associated with a reduction on 
the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume 
was associated with lower future R

t
 (75 days lag), while a lower R

t
 was associated with lower future 

policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically 
updated R

t
 produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) 

when R
t
 was kept constant. Monitoring the evolution of R

t
 during an epidemic is an important 

complementary piece of information to reported daily counts, recoveries and deaths, since it provides 
an early signal of the efficacy of containment measures. Using updated R

t
 values produces significantly 

better predictions of future outbreaks. Our results found variation in the effect of early public health 
interventions on the evolution of R

t
 over time and across countries, which could not be explained 

solely by the timing and number of the adopted interventions.

Mathematical and computational models of disease outbreaks are used to generate knowledge about the biologi-
cal, behavioral and environmental processes of disease transmission, as well as to forecast disease progression. 
Public health responders rely on insights provided by these models to guide disease control strategies1. As an 
example, in mid March 2020, the British government changed its SARS-CoV-2 response policy following a brief 
on simulation results from Ferguson et al.2, which indicated an unacceptable forecasted number of deaths in the 
absence of more stringent control measures.

Different models have been applied to model the spatial and temporal dynamics of SARS-CoV-2 transmis-
sion (see the review study3). They range from simple deterministic population-based models4–6, that assume 
uniform mixing, to complex agent-based models2,7 in which individuals defined by different attributes related 
to their susceptibility, infectiousness and social interactions transmit the pathogen to each other, given rise to 
heterogeneous transmission patterns.

Irrespective of their complexity, the accuracy of these models is constrained by the validity of the epidemio-
logical parameters that underpin them. For example, the model parameters controlling the risk of infection 
together with the social contact between infectious and susceptible individuals determine the transmission rate, 
which in turns influences the peak and duration of the epidemics. By manipulating these parameters, model-
ers can represent the impact of public health measures such as social distancing (lowering the contact rate) or 
wearing protective masks (lowering the risk of infection).
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This study evaluates the effectiveness of initial public health interventions globally by estimating the effective 
reproduction number (the expected number of secondary infections resulting from an infectious individual) 
on a daily basis and highlights the importance of using updated reproduction numbers for outbreak forecast. In 
the second section, we describe the “Methods”. In “Results”, we first present the patterns of initial public health 
interventions and effective reproduction numbers for a fixed temporal window across countries. Then, we look 
into the temporal patterns of number of public health interventions, effective reproduction number and inci-
dence counts using a time-lagged cross correlation analysis. Lastly, future outbreaks are predicted to illustrate 
how the currency of epidemiological parameters can influence the forecasting of expected infection counts. We 
end with a “Discussion”.

Methods
Data sources.  By 15 May 2020, there were 188 countries with recorded SARS-COV-2 infections, and 101 
of them had implemented at least one public health intervention to contain the spread of the virus and had at 
least one death8. We modeled the transmission dynamics of SARS-COV-2 between 22 Jan to 15 May 2020 by fit-
ting a stochastic SEIRD model9 (illustrated in Fig. 1) to three available time series: (1) daily number of incident 
cases, (2) daily number of deaths, and (3) daily number of recoveries, as recorded for each country by the Johns 
Hopkins Coronavirus Resource Center10.

To monitor public health interventions, we captured government stringent policies using the Oxford COVID-
19 government response tracker8, which contains 17 policies organized into three groups: containment and 
closure policies, economic policies and health system policies. We explored 12 of these policies, namely those 
that have a more immediate and direct impact on individual’s lifestyle and well-being. Social distancing policies 
(including travel policies) were further classified into two levels depending on whether the government took 
a recommended or required stance. International travel controls were divided into four levels: (1) screening 
arrivals, (2) quarantine arrivals from some or all regions, (3) ban arrivals from some regions, and (4) ban on all 
regions or total border closure.

Epidemic simulation model and analysis of transmission patterns.  We built an extended version 
of a SEIRD model that included transitions between reporting states and disease states in order to account for 
delays in reporting (Fig. 1). The model incorporates uncertainty in reported counts by explicitly modeling a 
Poisson process of daily reported infection, recovered and death counts, as well as of tested individuals. Follow-
ing previous literature11,12, the mean incubation period was assumed to be Erlang distributed with mean 5.2 days 
(standard deviation: 3.7)13, and the mean infectious period was assumed to be Erlang distributed with mean 2.9 
days (2.1)12. A sensitivity analysis of these two parameters on the prediction performance of the SEIRD model 
was performed and can be found in the supplementary material S1.

For each country k, the daily transmission rate ( βt,k ) and fatality rate ( ξt,k ) were modeled as a geometric 
random walk process, and sequential Monte Carlo simulation was used to infer the daily reproduction number, 
Rt,k (defined as the transmission rate over the assumed incubation period βt,k/γ ), as well as the daily fatality rate. 
The remaining unknown parameters were estimated via grid search using the maximum likelihood method. In 
each country, we assumed the outbreak started from the first infectious case and that the entire population was 
initially susceptible. Further details on the model can be found in the supplementary material S1.

We summarized the patterns of estimated effective reproduction number using smoothed time series of Rt,k 
generated by the Savitzky-Golay finite impulse response14 (FIR) filter. We compared hierarchical clustering from 
three algorithms: the WPGMA (Weighted Pair Group Method with Arithmetic Mean), the centroid linkage 
algorithm and the Ward variance minimization method.

Figure 1.   Simulation model structure. The population is divided into the following five classes: susceptible, 
exposed (non-infectious and asymptomatic), infectious (asymptomatic and symptomatic), removed (i.e., 
isolated, recovered, or otherwise non-infectious) and dead. The reported data is modeled with four classes: 
observed positive tests, reported infections, removed and deaths.
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Our study uses descriptive statistics to analyze the patterns of Rt,k and early public health interventions before 
15 May 2020. We characterized the time series of Rt,k by the following metrics (we drop the country index k for 
simplicity):

•	 The days from the outbreak to the maximum of the estimated effective reproduction number curve (i.e. Rt 
peak) before 15 May 2020;

•	 Rt peak duration, defined as the time it takes Rt to reduce to 50% of Rt peak;

We related these metrics to three metrics captured over 8 social distancing policies:

•	 Policy timing (days from onset), defined as days from the outbreak onset to the intervention;
•	 Policy volume, which refers to the number of interventions applied; and
•	 Policy gap, defined as the average number of days between any two policies.

In addition to the static analysis of early control measures and Rt patterns at the beginning of the pandemic, we 
conducted a time-lagged cross correlation (TLCC) analysis of the daily policy volume, daily effective reproduc-
tion number, and daily incidence counts from the first case detected in each country until the end of 2020. Please 
refer to the supplementary material S1 for implementation detail.

Lastly, we measured the prediction accuracy of our stochastic SEIRD compartment model up to 30 days from 
the time of prediction over 230 daily rolling windows ( j ∈ {1, 2, . . . , 230} ) from 15 May 2020 to 31 Dec 2020. An 
outbreak associated with prediction j in country k is defined according to:

where Ek,j is the cumulative count of cases at the end of the jth window, Ck,j is the cumulative count of cases at 
the beginning of the jth window, and q is the growth rate threshold. An outbreak is defined as Yk,j = 1.

To quantify the impact of the currency of transmission parameters on outbreak predictions, we estimated 
future incidence counts for each j and k in two ways: (1) with a constant Rt,k defined as the average Rt,k over the 
last five days at the beginning of the forecasting study (from the 11th to the 15th of May 2020), and (2) with a 
dynamic Rt,k that is updated daily as the average Rt,k over the last five-days before the time of prediction.

An Area under the Receiver Operating Characteristic Curve (AUROC) over the range of q was estimated 
using true positive and false positive rates15. The AUROC from the model with a dynamic effective reproduc-
tion number was compared against the AUROC from the model with a static effective reproduction number.

Results
Patterns of initial public health interventions and effective reproduction number.  Our three 
clustering algorithms identified the same 5 distinct patterns of Rt at the second level of the hierarchy tree (results 
from WPGMA are provided in the supplementary material S1). Patterns of Rt were summarized by their mean 
and standard deviation, peak duration, and days from outbreak to peak. Table 1 shows these values for each 
cluster, together with the timing, volume and gap of public health interventions, as well as the number of infec-
tions, deaths and tests. A visual illustration of the relationships among Rt , reported incidence and interventions 
can be found in Fig. 2.

Cluster 1 has 12 countries featuring the longest duration of Rt peak. Interestingly, two Rt peaks of similar levels 
were observed in these countries (please see Fig. 2), where the first one took place during the second week from 
the outbreak; and the second was after 45.7 (37.08, 54.25) days. This cluster includes countries such as Australia 
and US who started international travel control and contact tracing shortly after the initial outbreak, but delayed 
subsequent social distancing measures by a few weeks.

Likewise, cluster 2 had an average days from onset to Rt peak of 21.8 (12.59, 31.01) days, which is about 7 days 
later than cluster 1. The average duration of Rt peak in this cluster is also about 3 days shorter. The 20 countries 
in this cluster, such as Brazil and New Zealand, adopted most interventions (7.3 (6.68, 7.82)) with the shortest 
gap between any two interventions (7.1 (5.06, 9.05) days) compared to other clusters, and they have the second 
lowest mortality per infection (0.04 (0.033, 0.05) death/infection).

Cluster 3 contains 4 countries: Italy, Spain, Belgium and Sweden. The average level of Rt and its duration 
are similar to those in cluster 2. However, their average mortality rate is more than 3 times higher than in the 
second cluster. This severe mortality burden has been featured in a recent study16. These 4 countries are also 
characterized by the highest infection rates (4.1 cases per thousand population), the highest testing rates (35.7 
tests per thousand population), and an aging population (20.1% of the population of these four countries aged 
65 or above17). These high infection rates are consistent with a low number of adopted interventions (5.8) and 
the time taken to apply the first social distancing policy (34.5 days).

Cluster 4 includes 51 countries that are similar in their transmission patterns, and cannot be distinguished 
under the second level of the hierarchy tree using the first 60 days of observations. The evolution of this cluster’s 
average Rt , including the timing and duration of its peak, is comparable to that of cluster 5 but with a much 
lower level and volatility. Meanwhile, this cluster’s policy adoption resembles that of cluster 2 but its Rt peak 
duration is shorter.

Cluster 5 has 14 countries such as China, Iraq and Argentina. They had the highest average Rt at 4.8 (3.44, 
6.18), which was lifted by the Rt peak during the initial outbreak (please see Fig. 2). However, their average peak 
duration is the shortest at 3.7 (2.58, 4.79) days. On average, these countries adopted their first social intervention 
7.9 (6.7, 9.02) days after the outbreak, which is earlier than other clusters.

Yk,j = Ek,j/Ck,j > q, q ∈ [1, 3],Yk,j ∈ {0, 1}
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Overall, policy timing appeared to have a negative impact on the peak duration of Rt . For example, compare 
clusters 1 and 5, where the first has the longest transmission peak and the second has the shortest. This can be 
related to the timing of adopting social distancing measures, where cluster 5 only took one fifth of the time of 
cluster 1 to have around 7 policies in place. Across countries, the correlation between the number of adopted 
policies per unit time and the duration of the Rt peak was − 0.26.

The gap between any two policies was also found to be correlated with the duration of the Rt peak, with a 
correlation coefficient of 0.24. Clusters 1 and 3 adopted similar number of policies with similar delays. However, 
the average policy gap in cluster 1 was 5 days longer than in cluster 3.

There was not much difference in policy volume across clusters. By 15 May 2020, on average 7.0 (6.81, 7.29) 
social distancing measures had been adopted among all examined countries, and around 60% of them had both 
testing and contact tracing policies in place. Only 32% of these countries had income support and 51% had debt 
or contract relief policies. The pattern of adoption of each individual policy in these clusters is provided in the 
supplementary material S1.

The combined effect of less social distancing measures, and longer policy timing and gap can result in a 
prolonged period with a high level of Rt . By 15 May 2020, the average of median Rt across examined countries 
had reduced from its peak of 20.5 (17.79, 23.20) to 1.3 (0.94, 1.74).

Correlation among public health interventions, the effective reproduction number, and inci‑
dence counts.  The time-lagged cross correlation (TLCC) among the daily effective reproduction number, 
daily incidence counts, and policy volume was estimated for each country using data from the first case detected 
in each country until 31 Dec 2020. Figure 3 shows the resulting correlation coefficients averaged over countries 
as a function of offset days.

As it can be seen in Fig. 3, the daily effective reproduction number leads the daily incidence counts by 78 
days (that is when correlation is maximized). Meanwhile, the correlation between the policy volume and daily 
reproduction number is two-folded. On one hand, a higher policy volume leads to lower future Rt (the negative 
correlation is minimized when Rt lags the policy volume by 75 days). On the other hand, a lower Rt is associated 
with lower future policy volume (the positive correlation is maximized when the Rt leads by 102 days). Lastly, 
the negative association between the increased policy volume and declined incidence counts is small for lags up 
to 180 days. Instead, one can only observe that declined incidence counts are closely related to lower number 
of policies in the future (the positive correlation is maximized when the counts lead the volume by 135 days).

In Table 2, we present the TLCC peak correlations by cluster. The first section shows that the effective repro-
duction number is consistently leading the incidence counts by 65–149 days across clusters. The second section 
shows how policy volume leads the effective reproduction number in clusters 1–3 by 37–67 days, while in clusters 
4 and 5, higher absolute correlations are observed when policy volume leads the effective reproduction number 
by 103 and 160 days respectively. The last section of the table records the relationship between policy volume 
and incidence counts. All clusters, except from cluster 3, show significant positive correlation between the two 
time series. In cluster 1, a greater absolute correlation is observed when policy volume lags incidence counts by 
105 days, while in clusters 2, 4 and 5 policy volume leads incidence counts by 102–168 days respectively.

Table 1.   Key descriptive statistics across clusters as at 15 May 2020. This table displays selected descriptive 
statistics from 101 selected countries at the beginning of the pandemic up to 15 May 2020. The first section 
(as indicated by the solid horizontal lines) records the pattern of estimated daily reproduction number. Only 
cluster 1 is characterized by countries having two peaks of similar levels in their daily reproduction numbers. 
The second section summarizes the pattern of 8 social distancing policies. The last section records the average 
number of observed tests, reported deaths, reported infections per thousand population and reported deaths 
per infection. We averaged these values across countries in each cluster and recorded their sample standard 
error times the 95% confidence level value in brackets. For a detailed description of each examined policy the 
reader is referred to the supplementary materia S1l.

Metric Cluster 1 (12) Cluster 2 (20) Cluster 3 (4) Cluster 4 (51) Cluster 5 (14)

Rt Peak
Duration (days) 9.9 (2.14) 6.6 (1.38) 6 (1.52) 4.4 (0.56) 3.7 (1.12)

Days from outbreak 14.7 (5.10)/45.7 (8.62) 21.8 (9.21) 30.3 (3.08) 25.5 (5.80) 18.1 (6.07)

Rt

Mean 2.3 (0.20) 2.7 (0.30) 2.9 (0.30) 2.6 (0.22) 4.8 (1.36)

SD 1.4 (0.14) 2.5 (0.49) 2.8 (0.66) 3.1 (0.75) 12.7 (4.06)

Policy

Gap (days) 13.1 (3.97) 7.1 (2.04) 8.7 (5.75) 7.8 (1.93) 9.9 (2.59)

Volume (number) 6.8 (0.50) 7.3 (0.62) 5.8 (2.63) 7.1 (0.34) 7.1 (0.45)

Timing (days from 
onset) 41.8 (3.78) 12.9 (2.39) 34.5 (8.96) 11.2 (2.78) 7.9 (1.20)

Reported Statistics

Tests/’000 21.5 (8.95) 19.1 (10.93) 35.7 (13.1) 10.5 (6.5) 10.2 (7.21)

Reported deaths/’000 0.13 (0.10) 0.08 (0.06) 0.56 (0.17) 0.01 (0.001) 0.13 (0.17)

Reported infec-
tions/’000 1.5 (0.80) 1.7 (1.11) 4.1 (1.00) 0.9 (0.49) 2.1 (2.61)

Death/Infection 0.06 (0.03) 0.04 (0.01) 0.14 (0.02) 0.03 (0.001) 0.05 (0.02)
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Improved forecasting accuracy with a dynamic effective reproduction number.  Forecasting of 
incident counts up to 30-days from the time of prediction was performed for each country. The model was able 
to identify 44 of the 53 countries which had a major outbreak (Defined by a growth rate threshold value q > 1.5 , 
that is by the end of prediction window the cumulative counts would grow by 150% compared to the counts at the 
start of the window.) 30-days from 15 May 2020 (true positive rate of 83.02% ), as well as 38 out of 48 countries 
which did not experience an outbreak (true negative rate of 79.17%).

Model predictions were reasonably stable to assumptions about the values of incubation period and the mean 
infectious period, although our sensitivity analysis (described in the supplementary material S1) observed an 
improvement in accuracy by assuming either a longer mean infectious period or a shorter incubation period.

Predictions were repeated over 230 daily rolling windows from 15 May 2020 until 31 Dec 2020. In the first 
experiment, Rt is set constant as the estimated Rt averaged over the previous 5 days. That is, when making a pre-
diction in day 2, the model takes into account the updated reported counts, recoveries and deaths but Rt remains 
the same as in day 1. In the second experiment, Rt is updated dynamically every time we make a new prediction.

The AUROC averaged over all countries using these two methods is displayed in Fig. 4. As expected the 
dynamic update of Rt produces more accurate results with AUROC = 0.56 (0.555, 0.568) for static Rt vs. 
AUROC = 0.72 (0.708, 0.723) for dynamic Rt.

Figure 2.   Patterns of early public health interventions and the evolution of effective reproduction number by 
cluster. (a) The left panel shows the estimated daily reproduction number for each cluster during the first 60 days 
of the epidemics. The dashed gray line represents the median and the light gray shading represents the 5th to 
95th quantiles. The number of countries that adopted the corresponding selected public health intervention are 
displayed using colored dots. (b) The left side of the right panel shows the mean estimated daily reproduction 
number in selected countries until 15 May 2020. The right side of the right panel displays the reported (in 
dashed black line) and estimated average incidence counts (in solid blue line). In both cases, the light and dark 
blue shading represent 75% and 95% confidence intervals of the model estimate respectively, and the colored 
lines mark the initiation of the corresponding selected public health intervention.
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Discussion
To date, various algorithms have been applied to modeling the spatial and temporal dynamics of the transmission 
of SARS-CoV-2, including mathematical simulation-based models2,4,5,7 and statistical models6. For example, a 
Wuhan study4 used a deterministic, population-based compartment model. Baseline model parameters were 
fitted on observed local and exported cases. The impact of containment measures was explored by assuming vari-
ous contact patterns given different physical distancing scenarios. The simulation suggested sustaining intense 
social distancing until the end of April 2020. Similarly, an Italian study5 used a more complex deterministic 
model to analyze the effect of social distancing. Initial parameters were inferred from fitting the model outputs to 
observed counts, deaths and recoveries while preserving a priori information on their relative magnitude. Dur-
ing the course of the simulation, the effect of social distancing was modeled by changing the value of key model 
parameters. They found predictions were extremely sensitive to key parameters related to disease transmission, 

Figure 3.   Time-lagged cross correlation (TLCC) among selected time series. This figure depicts TLCC among 
selected time series for an offset from − 180 to 180 days. The solid blue line shows the TLCC between the daily 
effective reproduction number and the daily reported incidence count. The solid red line shows the TLCC 
between the daily policy volume and the daily effective reproduction number. Finally, the solid gray line shows 
the TLCC between the daily policy volume and the daily incidence count. All calculations are averaged over the 
TLCC of each country from the first count until 31 Dec 2020. The filled circles and triangles indicate the peak 
correlations (the maximum positive correlation or the minimum negative correlation) between two series.

Table 2.   Key descriptive statistics across clusters as at 15 May 2020. This table shows the maximum positive 
correlation and the minimum negative correlation among the daily policy volume, the daily effective 
reproduction number and the daily incidence count for each cluster identified in “Patterns of initial public 
health interventions and effective reproduction number”. We highlighted the correlation with the highest 
absolute value in each section and cluster. The values in the brackets record the offset days associated with the 
maximum or minimum correlation.

Cluster 1 (12) Cluster 2 (20) Cluster 3 (4) Cluster 4 (51) Cluster 5 (14)

Rt , Incidence
0.34 (− 76) 0.4 (− 104) 0.24 (− 65) 0.21 (− 149) 0.39 (− 80)

− 0.15 (63) − 0.09 (179) − 0.19 (− 17) − 0.04 (74) − 0.04 (114)

Volume, Rt
0.13 (14) 0.21 (179) 0.17 (150) 0.11 (103) 0.15 (160)

− 0.16 (− 37) − 0.23 (− 61) − 0.29 (− 67) − 0.06 (− 90) − 0.11 (− 78)

Volume, Incidence
0.17 (− 105) 0.3 (102) 0.19 (40) 0.16 (132) 0.25 (168)

− 0.14 (− 2) − 0.26 (− 129) − 0.21 (− 120) − 0.01 (− 179) 0.01 (− 90)
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which may be a problem in the presence of changing interventions. In this case, for instance, the basic reproduc-
tion number during 29 Mar to 6 Apr 2020 (when the national lock down was fully operational) was assumed to 
be 0.99, compared to our estimated effective reproduction number, which varied from Rt = 1.97 (1.44, 2.50) to 
1.07 (0.76, 1.38) during that period. The difference between these numbers may be attributed to different model 
structures as well as to our consideration for the lag in reporting.

The assumption of population-wide homogeneous parameters limits the ability of these deterministic models 
to assess the spread of disease and its decline in relation to control measures18,19. During the current epidemic, 
a study in Singapore7 used agent-based influenza epidemic simulations to recreate a synthetic but realistic rep-
resentation of the Singaporean population. The effect of distancing measures was then assessed by assuming 
different transmission rates under given social distancing policies. They recommended implementation of the 
quarantine of infected individuals, distancing in the workplace, and school closures immediately after having 
confirmed cases once international travel control has been imposed.

Further, Report 9 by Imperial College London2 assigned individuals to household, school, workplace and 
wider community and simulated scenarios by manipulating contact rates within and between groups. They found 
that a combination of case isolation, home quarantine and social distancing of aged population was the most 
effective scenario. This agrees with our findings that concentrated implementation of multiple interventions is 
most effective to contain transmission.

Rather than assessing the intervention impact via simulation, e statistical models aim to represent the empiri-
cal association between public health interventions and transmission rates and/or counts. For example, Report 13 
by Imperial College London6 used a semi-mechanistic Bayesian hierarchical model to infer the impact of social 
distancing and travel lockdowns on the daily reproduction number in 11 European countries (11 countries in 
the original study are Austria, Belgium, Switzerland, Germany, Denmark, Spain, France, United Kingdom, Italy, 
Norway and Sweden.). The daily reproduction number was modeled as a function of the baseline reproduction 
number before any intervention together with multiplicative relative percent reductions in Rt from interventions. 
Model parameters were fitted to observed deaths in these countries as a function of the number of infections. 
This model had heavy assumptions on prior distributions of model parameters and assumed consistent inter-
vention impact across countries to leverage more data for fitting. By 28 Mar 2020, they found Rt was reduced to 
around 1 across the 11 countries. Our study found similar reduction in Rt , which was sustained after one and a 
half months at 15 May 2020, when the average of the median of Rt was 1.17 (0.91, 1.53) across these countries.

Our results highlight the importance of using real-time estimates of Rt in these types of studies, since it is 
difficult to set epidemiological parameters under uncertain impact from public health interventions. This is 
particularly important given that prediction of future counts is very sensitive to simulation parameters. In this 

Figure 4.   Outbreak prediction accuracy of the stochastic SEIRD model with dynamic and static effective 
reproduction numbers. This figure depicts the AUROC corresponding to 30-day outbreak predictions over 230 
daily rolling windows from 15 May 2020 to 31 Dec 2020, and averaged over the selected 101 countries. The solid 
blue line corresponds to forecasts using the daily updated reproduction number averaged over the last five days 
previous to the time of prediction. The dashed blue line corresponds to forecasts in which the daily reproduction 
number remains static as the average over 11–15 May 2020.
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study, we demonstrated that updating the daily effective reproduction number facilitates more accurate simu-
lations of future incidence counts as well as real-time monitoring of the effect of public health interventions.

We first conducted a hierarchical clustering analysis of Rt from 29 Jan to 15 May 2020 in order to system-
atically characterize early public health interventions in relation to the patterns of disease transmission across 
countries. The analysis revealed significant heterogeneity in the effect of control measures on the daily effective 
reproduction number. For example, there were two transmission peaks in countries such as Australia and the 
US, which started international travel control shortly after the onset, but delayed subsequent social distancing 
measures by a few weeks. The clustering analysis also questioned the effect of testing and contact tracing in the 
presence of considerable community transmission and in the absence of social distancing. Italy, Spain, Belgium 
and Sweden were amongst the top 8 countries with the highest mortality burden16 and they were also amongst 
the top 10 countries carrying out most tests per population.

This heterogeneous effect makes it challenging to forecast future outbreaks by looking solely at the current 
interventions and disease counts. In fact, our time-lagged cross correlation analysis revealed that the negative 
correlation between the number of implemented polices and the level of virus transmission is reflected only in 
the updated daily effective reproduction number but not in the incidence counts in lags up to 180 days due to the 
substantial delay between the policy implementation and the reduction in incidence counts. Therefore, the calcu-
lated Rt keeps a much closer track of the prevailing disease transmission trend than the reported incidence counts, 
and using updated Rt in conventional SEIRD simulations can improve the predictions on future outbreaks.

Using the estimated daily effective reproduction number, we were able to forecast future outbreaks with rea-
sonable accuracy from 15 May to the end of 2020. In particular, we predicted the worrisome increase in outbreak 
probability in countries such as Brazil in June 2020 and the possibility of second outbreaks in countries like USA, 
Italy and Japan in Nov 2020. We present the estimated Rt and predicted incidence counts in these countries on a 
daily basis in the supplementary material S1 along with two most populous countries, China and India.

Limitations.  There are several limitations to our analysis. The estimated daily reproduction number is spe-
cific to our extended, population-level SEIRD model. This model does not represent the heterogeneity of trans-
mission within a country, and therefore, may be less relevant for countries such as the US and China, which 
have varied adoption of interventions across regions. Researchers using other models need to estimate their own 
transmission parameters in a similar manner.

Our stochastic model does not fit well during the initial week of the epidemic outbreak, when only a small 
number of data points were available across countries. Over time, the availability and reliability of data improved, 
which was reflected in an increased model prediction accuracy, where the absolute bias of fitted daily incidents 
remains below 15% (please refer to the supplementary material S1 for more details). Nevertheless, we acknowl-
edge that varied data quality across countries may influence the accuracy of our analyses. In particular, WHO’s 
daily Situation Reports shifted its reporting cutoff time on 18 Mar 2020, which compromised the comparability 
of its earlier figures. There was not much difference between the other two sources of disease counts20 except 
that Johns Hopkins also included estimates of presumptive positive cases that have been confirmed by state or 
local labs, but not by national labs. Two well-known problems of COVID-19 data are under-reporting of cases 
and delays in reporting. We attempted to account for both problems by introducing a parameter representing 
the proportion of actual cases detected via testing, as well as delays in reporting. We used plausible biological 
parameters based on current evidence, but these values might be refined as more clinical evidence becomes avail-
able. The standardized intervention measures from Oxford COVID-19 Government Response Tracker, may also 
suffer from inaccuracies. As the updating frequency of the tracker is performed once a week in most countries, 
we infer missing records of policies using the last recorded policy implementation.

Conclusions
This study provides an estimate of the daily effective reproduction number of the SARS-CoV-2 transmission 
across countries and over time as various public health interventions were adopted. This allowed us to look at 
the evolution of disease transmission in the presence of containment measures. We confirmed the importance 
of using updated estimations of the reproduction number for the monitoring of future outbreaks.
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