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ABSTRACT: The rapid development of artificial neural networks
and applied artificial intelligence has led to many applications.
However, current software implementation of neural networks is
severely limited in terms of performance and energy efficiency. It is
believed that further progress requires the development of neuro-
morphic systems, in which hardware directly mimics the neuronal
network structure of a human brain. Here, we propose theoretically
and realize experimentally an optical network of nodes performing
binary operations. The nonlinearity required for efficient computa-
tion is provided by semiconductor microcavities in the strong
quantum light-matter coupling regime, which exhibit exciton−
polariton interactions. We demonstrate the system performance
against a pattern recognition task, obtaining accuracy on a par with
state-of-the-art hardware implementations. Our work opens the way to ultrafast and energy-efficient neuromorphic systems taking
advantage of ultrastrong optical nonlinearity of polaritons.
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■ INTRODUCTION

The human brain, despite consuming only about 15 W of
power, is superior to the most advanced modern super-
computers in many practical tasks, such as object detection and
classification. Artificial neural networks (ANNs) are an
approach to data processing that mimics the operation of a
biological network of neurons, allowing researchers to
implement machine learning. Recent years have witnessed
immense progress in ANN-based applied artificial intelligence,
which has found many important applications in a growing
diversity of fields, including medicine, logistics, finance,
marketing, defense, agriculture, quantum science, geoscience,
gaming, information technology, cybersecurity, language
processing, robotics, and autonomous vehicles.1,2

As the amount of data continually grows, there is an urgent
need to provide faster and more energy efficient systems.
However, in comparison with the human brain, software
simulations of neural networks are inefficient.3 In the von
Neumann architecture, prevalent in conventional computers,
the memory and processing units are physically separated,
which results in a communication bottleneck. Moreover, the
development of current semiconductor technology is bounded
by the practical limit of Moore’s law and Amdahl’s law, which
hinder the further increase of computational power through
the decrease of system size or the increase of the number of
processing units.4 These bounds are largely due to the limited

energy efficiency of memory, communication channels, and
processing units, which no longer improves exponentially as in
the previous decades.5 Therefore, it is crucial to find an energy-
efficient and powerful alternative for big data processing. Such
a platform is required to realize a neuromorphic approach to
neural networks, in which the massively parallel structure of
the network is realized physically rather than simulated.3 In
this context, photonic systems are natural candidates;4,6−12 but,
most of the existing realizations were only able to perform
basic machine learning tasks, and the advantage of optical
system in terms of speed or energy efficiency has not been
clearly demonstrated.
Recently, semiconductor microcavities in the quantum

strong-coupling regime have emerged as a promising hardware
platform for machine learning.13,14 Exciton-polaritons are
quasiparticles resulting from the coupling between photons
and excitons in this system.15,16 They exhibit properties of
both light and matter. Electrostatic interactions of excitons lead
to optical nonlinearity orders of magnitude stronger than in
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conventional optical media.17,18 The cavity photon lifetime
results in a picosecond reaction time. The extremely low
effective mass of polaritons allows for Bose−Einstein
condensation16,19 recently realized at room temperature in
organic and nonorganic materials,20−22 demonstrating strong
nonlinear effects.23,24 Basic logic elements such as polariton
switches, transistors, and gates have been realized.18,25−30 A
system consisting of a polariton microcavity and an off-line
classifier was demonstrated to outperform linear classification
algorithms.14

To solve practical tasks of high complexity, a neural network
has to perform a nonlinear transformation of input data into an
effective higher-dimensional space. This allows for determining
the result with a linear classification at the output layer.31

Recently, binarized neural networks, in which the activations or
weights of connections are two-level and the neurons perform
simple binary operations, have received much attention.32,33

Binarized networks are characterized by a greatly improved
speed and energy efficiency, at the cost of a minimal reduction
of inference accuracy.
Here, we propose theoretically and realize experimentally a

binary network implemented in a polariton microcavity system.
Importantly, the hardware of the network is composed of
energy-passive optical elements only, such as resonators, beam
splitters, and optical filters. We demonstrate that binarized
neurons can operate in a fully all-optical mode, which allows
for exploiting the intrinsic ultrashort time scales and high
energy efficiency of photonics.34 The energy cost of a single
binary operation is measured to be of the order of picojoules,
which is comparable to the state-of-the-art electronic neuro-
morphic implementations, while the computation time scales
are in the picosecond range. We demonstrate approximately
96% classification accuracy of handwritten digits from the
Modified National Institute of Science and Technology
(MNIST) data set, using a simple single-hidden-layer network
in a noisy experimental environment.

■ RESULTS
All-Optical XOR Logic Gate. The first step in the

implementation of a binarized network is the realization of
its basic building block,33 a single XOR gate. The XOR task is a
generic example of a problem not solvable using a perceptron
or a linear classifier, see Figure 1a. Therefore, it is a benchmark
of the capability to solve problems that require a nonlinear
transformation. The principle of the implementation is
depicted in Figure 1b. In addition to the inputs, which
correspond to the two-dimensional xy plane in Figure 1b, a
nonlinear feature (z axis) is provided by a micrometer-sized
exciton−polariton condensate.
In our experiment, the microcavity consists of two CdTe-

based Bragg mirrors, separated by an approximately 600 nm
thick (Cd,Zn,Mg)Te layer. At the antinodes of the electro-
magnetic standing wave, six (Cd,Zn,Mn)Te quantum wells
(QWs) are introduced for efficient coupling of QW excitons
and the photonic modes (see the Supporting Information for
more details).
We excite two spatially separated localized condensation

sites, Figure 1c, with a series of nonresonant picosecond laser
pulses, encoding the corresponding inputs with low (0) or high
(1) pulse energy. The two sites are localized close to each
other, with a 2 μm distance, which results in a Josephson
junction type coupling.35,36 The light emitted from con-
densation sites is a nonlinear transformation of the inputs,

directed to the linear classifier. The classifier is trained to
distinguish “0” and “1” results by adjusting output weights, or
the cut in the feature space (Figure 1b).
Figure 2 shows the results obtained using an optoelectronic

setup. The photoluminescence of a condensation site as a
function of the combined pulse energy of the two inputs
resembles the ReLU (rectified linear unit) activation function,
see Figure 2a. Figure 2b shows the energy integrated output
intensity from one of the sites for the four possible binary input
combinations. The emission intensity from the two sites is
converted to electronic signals by the camera and used to infer
the result using linear classification. As demonstrated in Figure
2c, the accuracy (or the ratio of correct to total predictions) of
the XOR gate depends on the degree of nonlinearity η (see the
Supporting Information for the definition of η), and an almost
perfect operation is obtained for η ≈ 5. Our system achieved
perfect accuracy (no mistakes in several hundred thousand
operations) due to the nonlinearity reaching η ≈ 50.
Having constructed the XOR unit, we build a binary

network with a single hidden layer of several thousand (Ngates)
of XOR gates, see Figure 2e. We consider the handwritten digit
recognition task using the MNIST data set, which consists of
60000 training samples and 10000 testing samples of 28 × 28
greyscale images.37 At the input, we convert each image into a
black and white bitmap, and assign a random pair of pixels
from the 28 × 28 image to each of the gates, see Figure 2e. The
same pairs of pixel positions denoted by p1···pn are assigned to
the same gates 1···n for all digits. This allows us to detect
nontrivial correlations between pixels even in the single-layer
network. The above stage does not require any nonlinear
operation and can be implemented all-optically, for example,
using a three-dimensional laser-written waveguide array.38

Since the assignment is random and does not change during
training, the structure of the network can be considered as a

Figure 1. Nonlinear classification and experimental realization. (a)
The XOR operation is a generic classification problem that is linearly
inseparable in the space of inputsthere exists no straight line
separating points corresponding to the “0” and “1” results marked
with blue and orange circles, respectively. (b) An additional feature,
represented by the z axis, which is a nonlinear function of inputs,
allows for performing classification with a two-dimensional plane. (c)
Experimental realization in an exciton−polariton system. A series of
picosecond pulses encoding the inputs are incident on a semi-
conductor microcavity in the strong coupling regime, triggering a
nonlinear response as a result of bosonic condensation. The emission
is used to perform linear classification.
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binary generalization of extreme learning machines.39 Deep
networks with more complex structures can be implemented
by cascading layers of XOR gates.33 To demonstrate the
capability of the network, we use time multiplexing to realize
all gates in the hidden layer. Logistic regression is used to
determine the optimal classification hyperplane in the Ngates-
dimensional space (see the Supporting Information for
details). The results are shown in Figure 2d, where we plot
the accuracy of inference as a function of Ngates. For around
10000 gates the accuracy reaches a plateau at the level of
approximately 96%. This is comparable to or higher than that
for the state-of-the-art neuromorphic implementations9,14,40−42

and is considerably higher than the accuracy of pure software
linear classification of the grayscale MNIST data set (92.7%)
or its binarized version (91.5%), obtained with logistic
regression algorithm.
Similar to the majority of photonic realizations,7,8,40,43 in the

above scheme the linear classification is implemented
electronically. This limits the speed and energy efficiency of
the system. To solve this issue, we demonstrate that binarized
neurons can operate in the all-optical configuration. Such a
device is a photonic analog of neural network accelerators.44−47

In Figure 3a, we show the modified setup of the XOR gate, in
which the linear classification is performed by optical elements
only. The input pulses are directed at beam splitters, which

create auxiliary optical paths bypassing the microcavity. In
contrast to the previous scheme, a single condensation site is
excited by both input pulses. The weights w1 and w2 of direct
connections between the input and the output are
implemented with neutral density filters, which reduce the
pulse intensity in a controlled way. Since the emission from the
condensate is always darker than the input pulses, the emission
weight is set to unity. The emission from the condensate mixed
with the two weighted auxiliary pulses constitutes the optical
output of the gate. This intensity mixing effectively performs a
simple three-component vector-matrix multiplication, which is
necessary to perform the classification in the three-dimensional
feature space (see the Supporting Information for details).
The nonlinear element has to exhibit a negative differential

input−output dependence in a range of excitation powers, as
shown in Figure 3b. As the filter weights w1 and w2 cannot be
negative, the monotonically positive dependence would not
lead to a useful gate (see the Supporting Information). We use
a long-pass spectral filter placed behind the cavity to obtain the
negative response shown in Figure 3b. In the “11” input
configuration the polariton−polariton interactions shift the
emission to higher frequencies, which are blocked by the filter.
This method allows for obtaining the well-defined “0” and “1”
output levels, which are consistent for all input configurations,

Figure 2. Optoelectronic machine learning. (a) The nonlinear dependence of the total emission intensity from the condensation site on the energy
of two input pulses. (b) Emission in the four input configurations demonstrates nonlinearity. Insets show typical real-space emission observed on a
CCD camera for each realization. The same color scale is preserved for each panel. Image size is of ∼7 μm × 7 μm. (c) Accuracy of the XOR gate
as a function of the useful degree of nonlinearity η. (d) Accuracy of the MNIST handwritten digit prediction versus the number of XOR gates.
Dashed lines show the benchmarks of software linear classification for the full and binarized MNIST input. (e) Conceptual scheme of the network
with a single hidden layer of XOR gates.
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see Figure 3c. The noise of the output results mostly from the
limited stability of our laser.
To estimate the energy efficiency we determine the input

pulse energy required for a single gate operation. The power of
input pulses in the “1” state was measured using a power meter
at the entrance to the microcavity to be 1.2 mW at 76 MHz
repetition rate, which gives approximately 16 pJ pulse energy
per gate operation, while the energy of auxiliary pulses was
much lower. The approximate cost is around 16 pJ per synaptic
operation, comparable to the state-of the-art neuromorphic
electronic implementation.3

Discussion. The radical change of the paradigm of
computation allows us to propose an optical system that can
be realized with currently available optical elements. In
particular, the system does not require a separate memory
unit, as all information is carried by photons propagating
through the network. We emphasize that despite the binary
structure of the network, which is based on XOR gates, we go
beyond the traditional digital computer architecture. Our
approach reveals the potential of semiconductor microcavity

systems as a platform for energy efficient information
processing.
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Bartłomiej Seredyński − Institute of Experimental Physics,
Faculty of Physics, University of Warsaw, PL-02-093
Warsaw, Poland; orcid.org/0000-0003-4675-0010

Dario Ballarini − CNR NANOTEC−Institute of
Nanotechnology, 73100 Lecce, Italy; orcid.org/0000-
0002-2453-5849

Daniele Sanvitto − CNR NANOTEC−Institute of
Nanotechnology, 73100 Lecce, Italy

Timothy C. H. Liew − School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore
637371

Wojciech Pacuski − Institute of Experimental Physics, Faculty
of Physics, University of Warsaw, PL-02-093 Warsaw,
Poland; orcid.org/0000-0001-8329-5278
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Figure 3. All-optical implementation of XOR gate. (a) Scheme of the
experimental setup, in which the linear classification of Figure 1b is
implemented with two auxiliary pulse paths controlled with neutral
density filters, corresponding to weights w1 and w2. (b) Dependence
of emission intensity on the energy of excitation pulses for equal pulse
energy in both pulses. The spectral filter placed behind the sample
allows for obtaining a negative differential response of the condensate
emission. (c) Measured filtered emission intensity for all four
combinations of inputs (blue) and the output intensity of the all-
optical XOR gate (dark blue), which consists of the emission
combined with the weighted inputs. Black dashed lines separate
realizations of different inputs. Red dashed lines indicate the gate
output intensity levels corresponding to results “0” and “1”. Insets
show typical real-space emission observed on a CCD camera for each
realization. The same color scale is preserved for each panel. Image
size is of ∼6 μm × 6 μm.
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