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ABSTRACT: The fabrication of electrically conductive hydrogels
is challenging as the introduction of an electrically conductive filler
often changes mechanical hydrogel matrix properties. Here, we
present an approach for the preparation of hydrogel composites
with outstanding electrical conductivity at extremely low filler
loadings (0.34 S m−1, 0.16 vol %). Exfoliated graphene and
polyacrylamide are microengineered to 3D composites such that
conductive graphene pathways pervade the hydrogel matrix similar
to an artificial nervous system. This makes it possible to combine
both the exceptional conductivity of exfoliated graphene and the
adaptable mechanical properties of polyacrylamide. The demon-
strated approach is highly versatile regarding porosity, filler
material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the
matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive
hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.
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Electrically conductive hydrogels are gaining increasing
interest, as they can serve as biosensors,1−4 bioelec-

tronics5−7 and scaffolds for functional tissues,8 such as
cardiac9,10 and nervous tissue.11,12 They are also intensely
discussed as materials for biohybrid robotics, where the
contraction of electrically excitable cells leads to actuation.13

In general, hydrogels are known as superabsorbents and can
naturally contain and hold large amounts of water or aqueous
solutions. Intrinsic conductivity in conductive hydrogels can
originate from ionic and electrical conductivity. For ionic
conductivity, the hydrogel can be viewed as a polymer network
swollen in an electrolyte.1 Electrical conductivity in intrinsi-
cally conductive hydrogels is based on the presence of
conjugated π-electron systems, where π-electrons can move
freely and serve as mobile charge carriers, but these conjugated
structures are inherently rigid and compromise the mechanical
properties.5 Maintaining the physicochemical properties of
hydrogels such as toughness, stretchability, and sustaining
multiple cyclic compressions remains a challenge in the
development of conductive hydrogels. Strategies to make
intrinsically nonconductive hydrogels conductive are, first, by
in situ polymerization, second, by the addition of conductive
filler materials by blending or by postpolymerization, or third,
by coating procedures.1,14 Filler materials that are typically
used include gold or iron oxide nanoparticles, carbon

nanomaterials such as exfoliated graphene, reduced graphene
oxide, carbon nanotubes (CNTs), or conductive poly-
mers.14−17 A particularly technically relevant filler material is
graphene. Since its discovery in 2004,18,19 graphene has
become a very popular material with numerous applications as
it offers excellent mechanical and chemical properties including
a very high Young’s modulus (1000 GPa)20 as well as a high
charge carrier density and mobility resulting in an outstanding
electrical conductivity of up to 6 × 105 S m−1.21,22 Graphene is
a two-dimensional carbon nanomaterial consisting of a
monolayer of sp2-hybridized carbon atoms, which form a
hexagonal honeycomb structure.21 When one atom-layer thick,
graphene absorbs 2.3% of incident white light, which means
that multilayered graphene is still transparent, when sufficiently
thin.23 This is particularly relevant for hydrogels, which are
often optically transparent.
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In this work, we focused on a hydrogel composite made
from polyacrylamide (PAM) in combination with exfoliated
graphene (EG). Polyacrylamide is a well-known synthetic
hydrogel with a stiffness adjustable through altering the
amount of cross-linker methylene-bis-acrylamide, leading to a
stiffness from 0.5 up to 740 kPa.24 Additionally, cross-linked
polyacrylamide is biocompatible, thus making it a suitable
material for biological applications (Figure S1). In general,
electrical conductivity is promoted in hydrogels filled with
conductive nanoparticles after reaching the percolation thresh-
old at certain filler degrees.1 The amount of filler is a critical
aspect as high filler amounts alter the properties of the matrix
material, often leading to mechanical reinforcement of the
matrix, thereby changing the mechanical properties.25

To reach a sufficiently high electrical conductivity but to
prevent reinforcement of the matrix, we herein use a different
strategy: We restrict the conductive pathways to micro-
channels, similar to nerves in the body. The conductive
pathways are based on microengineered graphene framework
structures, which are embedded into a polyacrylamide hydrogel
matrix to generate a microchannel-containing conductive
hydrogel. The striking benefit of this approach is that the
filler material is not mixed with the hydrogel matrix, but the
conductive pathways are predetermined by the graphene
framework; only in these regions is conductive filler material
present. Thus, 99.9% of the hydrogel matrix is filler-free;26

hence, the overall hydrogel matrix is kept free from filler
materials, and its properties are maintained. The structure of

the composites was examined by scanning electron microscopy
and X-ray microtomography (micro-CT). We investigated the
response of the material to cyclic compression tests and
analyzed the electrical conductivity. The amount of filling
material was adjusted, and tailorable specific electrical
conductivities were achieved at extremely low filler concen-
trations.
Our general concept for the fabrication of conductive

hydrogels is based on a template-assisted approach and
schematically shown in Figure 1. 3D networks made from
tetrapodal-shaped zinc oxide microparticles (t-ZnO) serve as
versatile templates.26 In brief, t-ZnO powder is produced
utilizing the so-called flame transport synthesis.27,28 For
producing the templates, a defined amount of loose t-ZnO
powder is pressed to templates using a rigid mold with defined
geometry, followed by an annealing step at elevated temper-
atures (1150 °C, 5 h). The specific shape of the t-ZnO results
in templates with an interconnected arm structure allowing
high control over porosity (up to 94.7%), pore size, and
geometry of the final template.26 The template is super-
hydrophilic, and thus, aqueous dispersions of 2D nanomaterial
(e.g., graphene, CNTs) can be infiltrated using a drop-casting
process29 (Figure 1b). The 2D material covers the surface of
the ZnO tetrapods while the water evaporates. By tailoring the
concentration of the dispersion and by repeating the
infiltration process several times, the thickness of the resulting
2D nanomaterial layer can be adjusted (up to 10 nm).26 In a
following step, the hydrogel is introduced by infiltrating a

Figure 1. Fabrication process for conductive microchannel-containing hydrogels. (a−d) Schematic illustration of the preparation steps for a 3D
network composite consisting of a hydrogel matrix and microchannels coated with an electrically conductive 2D filler material (here with exfoliated
graphene). Images of the infiltration process: (e) t-ZnO template before infiltration, (f) drop-casting process with 2D filler material (Step 2), (g)
after complete infiltration, the hydrogel precursor solution is drop-cast on the template until it is filled completely (Step 3), (h) polyacrylamide-
exfoliated graphene (PAM-EG) composite (EG: 0.32 vol %).
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hydrogel precursor solution into the template such that the
entire free volume (∼94%) is filled up (Figure 1c). After
polymerization of the hydrogel, the t-ZnO template is removed
by wet-chemical treatment. This results in a hydrogel that
contains hollow microchannels covered with graphene. Raman
spectroscopy revealed that no covalent bonding between PAM
and EG formed, but the bonding is based on structural
attachment and van der Waals forces (Figure S2). The overall
structure of the microchannel network resembles that of the
interconnected network of tetrapodal ZnO in the sense of a
bottom-up fabrication (Figure 1d).30,31 A schematic represen-
tation of the cross-section of a t-ZnO arm and the resulting
microchannel after ZnO dissolution, respectively, is given in
Figure 1a−d. An image sequence of the infiltration processes
employing exfoliated graphene as the conductive filler and
polyacrylamide as the hydrogel is shown in Figure 1e−h. The
PAM network and PAM-EG samples are biocompatible
(Figure S1). The whole fabrication process can be adjusted
to other 0D, 1D, and 2D nanomaterials [e.g., gold nano-
particles (0D), CNTs (1D), reduced graphene oxide (2D),

MXene (e.g., Ti3C2Tx) (2D)] as well as to other hydrogel
systems (e.g., poly-N-isopropylacrylamide) leading to a wide
variety of possible applications.
Scanning electron microscopy (SEM) reveals the structure

of the microchannels in the hydrogel. SEM images of a t-ZnO
template, a t-ZnO template coated with exfoliated graphene (t-
ZnO-EG), a microchannel-containing polyacrylamide (PAM)
hydrogel, and a polyacrylamide-exfoliated graphene (PAM-
EG) composite with conductive microchannels are shown in
Figure 2a−d. The insets show macroscopic images of the t-
ZnO and t-ZnO-EG templates and the swollen hydrogel
samples. Figure 2b and the inset show the coating of t-ZnO
tetrapods by exfoliated graphene sheets demonstrating the
uniform coating of t-ZnO with EG by the drop-casting
method.26 Removing water from hydrogels results in
shrinkage; thus, no quantitative statement about the channel
size in the swollen hydrogel is possible. The tetrapodal
structure originating from the sacrificial ZnO templates shown
in Figure 2a is clearly visible in the hydrogel samples (Figure
2c,d). The arrows in Figure 2c,d each show a channel that has

Figure 2. Representative SEM micrographs of the structure of (a) t-ZnO templates, (b) t-ZnO template coated with exfoliated graphene (t-ZnO-
EG), (c) microchannel-containing polyacrylamide (PAM), and (d) microchannel-containing polyacrylamide-exfoliated graphene (PAM-EG)
composites. White arrows in parts c and d indicate a channel that has been cut into two halves. The channel surface of the polyacrylamide gel is
smooth and homogeneous, while the channels of the microchannel-containing PAM-EG composite are covered with exfoliated graphene. The
characteristic wrinkled structure of multilayered graphene is visible in the high-magnification image (d3). (e) A thin layer of PAM-EG composite on
a SiO2 wafer imaged with light microscopy shows an interference pattern (arrows) of multilayered graphene assembled on tetrapod arms. (f, g)
Rendered X-ray microtomography 3D images of t-ZnO-EG and network PAM, respectively. The colors in the 3D renderings designate connected
components. Inset scale bars: 6 mm.

Nano Letters pubs.acs.org/NanoLett Letter

https://dx.doi.org/10.1021/acs.nanolett.0c04375
Nano Lett. 2021, 21, 3690−3697

3692

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c04375/suppl_file/nl0c04375_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c04375/suppl_file/nl0c04375_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig2&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c04375?ref=pdf


been cut into two halves. Microchannel-containing polyacry-
lamide shows very smooth channel surfaces (Figure 2c), while
in the conductive hydrogels, the channel surface is uneven and
rippled (Figure 2d), which shows the characteristic wrinkled
structure of multilayered graphene.32,33 It is evident that the
conductive filler material coats the channel walls and did not
diffuse into the hydrogel matrix. This is also supported by the
fact that, in the SEM, the hydrogel matrix was prone to
charging, whereas the conductive channels were not (Figure
S3). Multilayered graphene is known to show interference
patterns on SiO2 due to strong scattering centers.34

Dehydrated PAM-EG samples cut with an ultramicrotome
and mounted on a Si-wafer were analyzed with light
microscopy in epi-illumination mode, and observed interfer-
ence patterns are highlighted in Figure 2e. Figure 2f,g shows

rendered micro-CT 3D images in a region of interest of a t-
ZnO-EG and a network PAM scaffold, respectively. The colors
in the 3D renderings designate connected components. The
connectivity of the tetrapods in the ZnO-EG sample was
calculated as 97.1% and that of the microchannel network in
the PAM sample as 70.6%. Image artifacts and lower image
contrast due to movements of the sample in the beam likely
influenced the calculated connectivity of the network PAM
sample. The decrease in connectivity in the hydrogel sample in
comparison with the sacrificial template of around 30% can be
explained by the hydrogel system itself, as swelling of the
hydrogel could lead to the destruction of original connections
and pathways. Nevertheless, as shown in Figure 2g, one
connected region (purple color) extends over the entire region
of interest in the network PAM scaffold.

Figure 3. Electrical conductivity of PAM-EG composites: (a) Schematic of the conductivity measurement setup. The sample was mounted with
silver paste in a customized sample holder. The measurement took place in water to prevent drying of the hydrogel composites. (b) Specific
conductivity of the PAM-EG composite as a function of EG concentration. Error bars represent standard deviation, N = 3. (c) Comparison of the
conductivities of electrically conductive hydrogels based on carbon filler material. The red stars indicate the results for the PAM-EG composites
from this work. The list of all electrically conductive hydrogels with corresponding references are shown in Table S1 in the Supporting Information.
(d) Normalized conductivity (σ(t)/σ0) as a function of time. PAM-EG with 0.32 vol % measured over 12 days (N = 3). (e) Normalized change in
resistance during cyclic compression of up to 35%. The inset shows the resistance values for the uncompressed and compressed state for 15
consecutive cycles. (f) Water content and mass swelling ratio of different samples.

Nano Letters pubs.acs.org/NanoLett Letter

https://dx.doi.org/10.1021/acs.nanolett.0c04375
Nano Lett. 2021, 21, 3690−3697

3693

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c04375/suppl_file/nl0c04375_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c04375/suppl_file/nl0c04375_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig3&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.0c04375/suppl_file/nl0c04375_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04375?fig=fig3&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c04375?ref=pdf


To determine the electrical conductivity of the PAM-EG
composites, the two-point method was used, and triplicates of
samples were measured in water. The setup is shown in Figure
3a. The voltage was increased from −1 to +1 V in step sizes of
0.05 V while measuring the current. All samples showed ohmic
behavior (Figure S4). Figure 3b shows the specific conductivity
of PAM-EG composites as a function of the filler
concentration. The pure PAM samples exhibited a conductivity
of 0.006 S m−1. Specific conductivity increased by more than 3
orders of magnitude with an increasing amount of filler
material indicating the presence of percolating pathways
consisting of graphene. Conduction between the graphene

flakes is possible by either tunneling or direct contact.22 By
adding increasing amounts of EG to the system, more direct
contacts form between graphene sheets and, thus, contribute to
a higher conductivity. The addition of 0.04 vol % EG results in
a conductivity of 0.012 S m−1 corresponding to an increase of
50% in comparison to the pure PAM samples. A filler fraction
of 0.32 vol % results in a conductivity of 1.8 S m−1. Comparing
these values to the conductivity of heart tissue (around 0.1 S
m−1)35 shows that the values achieved here make the material
interesting for cardiac tissue engineering, where engineered
cardiac patches are used for treating damaged heart tissue after
a myocardial infarction.15,36 We exceed the value of heart tissue

Figure 4. (a−d) Representative cyclic stress−strain curves for 33% strain of bulk PAM, network PAM, and PAM-EG composites with 0.16 and 0.32
vol % filler content, respectively. All samples show viscoelastic behavior and a slight hysteresis. The microchannel-containing PAM-EG hydrogels
revealed a distinctive hysteresis of the initial cycle, which is the result of a preconditioning phenomenon. (e) Initial Young’s modulus up to 5%
strain. Error bars depict standard deviation, N = 3. (f) Recovered height after 100 cycles. Error bars depict standard deviation, N = 3.
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already for small filler concentrations of 0.16 vol % EG with a
conductivity of 0.34 S m−1. Compared to previous approaches,
shown in Figure 3c, our fabrication method allows us to
decrease the amount of filler material by more than 1 order of
magnitude, still exceeding the DC conductivity of heart tissue.
Predetermining the conductive pathways, which pervade the
material like an artificial nervous system, is thus beneficial to
reach high conductivities at low filler concentration.
For all applications, a sufficient long-term stability of the

samples is required. To demonstrate the stability of our
samples at extended times, the relative change in specific
conductivity of PAM-EG (0.32 vol %) over a storage time of
12 days is shown in Figure 3d. During the first 9 days, the
conductivity dropped by 31%. This is probably caused by
further swelling of the hydrogel and redispersion of EG in
water resulting in a partial destruction of conductive pathways.
After 9 days, no further decrease of the conductivity was
measured. Additionally, resistance measurements during cyclic
compression of up to 35% for 15 cycles were performed. Figure
3e shows the normalized change in resistance during a
compression of up to 35%. Upon compression, the change in
resistance increased. This result suggests that more conductive
pathways formed. Thus, PAM-EG composites may be a
suitable material for pressure sensing applications. The inset
shows the resistance values for the uncompressed and
compressed state for 15 cycles. After the first cycle, the
resistance of the uncompressed state increased by approx-
imately 30%. This might be due to rearrangements of graphene
sheets and partial destruction of conductive pathways.
However, the resistance of the uncompressed and compressed
state stayed at a constant level during the subsequent cycles
demonstrating that the material is able to withstand cyclic
compression. Swell tests in Figure 3f show that all samples
exhibit a water content of approximately 90% and a mass
swelling ratio of around 870%.
The mechanical properties of the prepared hydrogels were

tested via cyclic compression tests. The microchannel-
containing, conductive PAM-EG composites with two different
filler amounts were compared to microchannel-containing
PAM networks and bulk PAM samples. In Figure 4a−d,
representative cyclic compressive stress−strain curves of all
hydrogels and composites are shown for 100 consecutive
cycles up to a compressive strain of 33%. All samples are
viscoelastic due to the viscoelasticity of the hydrogel. The
microchannel-containing PAM-EG hydrogels revealed a
distinctive hysteresis of the initial cycle. This might be
attributed to a preconditioning phenomenon:37 During the
first cycle, the system adapts to the applied force including the
rearrangement of graphene sheets, material interactions, and
breaking of van der Waals forces. Consecutively, the system
stays in an equilibrium state displaying no further significant
change in the stress−strain curve. Figure 4e shows the
compressive Young’s modulus determined up to a strain of
5% of the different hydrogel types over all cycles except the
initial one. In comparison to the bulk PAM hydrogels (E = 45
kPa) the Young’s modulus of microchannel-containing PAM is
83 kPa and thus almost twice that of the bulk material. This
can be explained by the introduction of water-filled micro-
channels into the hydrogel matrix, which leads to an enhanced
stiffness as water generally has a high compressive bulk
modulus (2.25 GPa).38

The compressive Young’s moduli of microchannel-contain-
ing PAM-EG composites with 0.16 and 0.32 vol % filler

increased by 102% to 91 kPa and by 33% to 60 kPa in
comparison to bulk PAM, respectively. The microchannel-
containing PAM-EG composites with 0.16 vol % filler reveal no
further significant increase of the compressive modulus
compared to microchannel-containing PAM hydrogels (in-
crease by 10%) implying that the introduced EG does not
induce a reinforcement of the material. This shows that our
strategy to introduce conductive pathways is an excellent way
to produce conductive hydrogels while not altering the matrix
properties. However, for the PAM-EG composites with 0.32
vol % filler, a decrease in Young’s modulus was observed in
contrast to PAM-EG composites with 0.16 vol % filler. This
might result from interactions between EG and the
components used in PAM polymerization such as the initiator
ammonium persulfate (APS). APS is used in the production of
graphene oxide sheets where it assists in enhanced oxidation of
graphite flakes.39 By implication, this means that the
decomposition of APS by the exfoliated graphene leads to a
reduced number of formed free radicals, which are
participating in the polymerization, resulting in a reduced
number of polymer chains. Thus, the chains exhibit a longer
chain length and, therefore, a higher elasticity. Nevertheless, by
adjusting the amount of APS and the catalyst N,N,N′,N′-
tetramethylethylenediamine (TEMED), the Young’s modulus
could be restored to 74.5 kPa (Figure 4e).
The recovered height after 100 cycles and a compression of

33% is above 94% for all sample types indicating a good
mechanical stability (Figure 4f). The slightly decreased
recovered height for the PAM-EG composites might be
attributed to the rearrangement of graphene flakes during the
initial cycles as addressed above. The ultimate compressive
strain of all samples is around 67% for all sample types with an
ultimate compressive stress of approximately 0.1 N mm−2

(Figure S6).
In summary, we presented a highly versatile fabrication

method for the preparation of microchannel-containing
conductive hydrogels. The incorporation of exfoliated
graphene frameworks into a polyacrylamide matrix generates
conductive pathways, which pervade the hydrogel matrix
similar to an artificial nervous system. This approach results in
a very high conductivity of 0.34 S m−1 at an extremely low filler
concentration of 0.16 vol % EG. Simultaneously, the effect of
the incorporated EG on the mechanical properties of the
hydrogel matrix is kept remarkably low, only leading to an
increase of Young’s modulus of 10%.
In Figure 5, the weight-percent normalized conductivity is

depicted as a function of the increase in Young’s modulus.
Compared to other conductive hydrogel systems, our approach
makes it possible to achieve excellent electrical conductivities
while maintaining the hydrogel matrix properties.
Further, the material provides a microchannel system that

can be beneficial for liquid transport or drug delivery as the
incorporation of such a microchannel network enhances
diffusion shown in Figure S7. Furthermore, the conductive
hydrogel is adaptable in its conductivity, porosity, mechanical
properties, size, and shape while, additionally, the fabrication
method is adaptable to other 1D and 2D nanomaterials (e.g.,
reduced graphene oxide, CNTs, MXenes (e.g., Ti3C2Tx), gold
nanorods) as well as to other hydrogel systems (e.g., poly-N-
isopropylacrylamide) leading to a wide variety of possible
applications, e.g., in bioelectronics, biosensing, and biohybrid
soft robotics.
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Fabian Schütt − Functional Nanomaterials, Institute for
Materials Science, Kiel University, 24143 Kiel, Germany;
orcid.org/0000-0003-2942-503X; Email: fas@tf.uni-

kiel.de
Christine Selhuber-Unkel − Institute for Molecular Systems
Engineering (IMSE), Heidelberg University, 69120
Heidelberg, Germany; Max Planck School Matter to Life,
69120 Heidelberg, Germany; orcid.org/0000-0002-5051-
4822; Email: selhuber@uni-heidelberg.de

Authors
Christine Arndt − Biocompatible Nanomaterials, Institute for
Materials Science, Kiel University, 24143 Kiel, Germany;
Institute for Molecular Systems Engineering (IMSE),
Heidelberg University, 69120 Heidelberg, Germany

Margarethe Hauck − Functional Nanomaterials, Institute for
Materials Science, Kiel University, 24143 Kiel, Germany

Irene Wacker − Cryo Electron Microscopy, Centre for
Advanced Materials (CAM), Heidelberg University, 69120
Heidelberg, Germany

Berit Zeller-Plumhoff − Institute of Metallic Biomaterials,
Helmholtz-Zentrum Geesthacht, 21502 Geesthacht,
Germany; orcid.org/0000-0002-7562-9423

Florian Rasch − Functional Nanomaterials, Institute for
Materials Science, Kiel University, 24143 Kiel, Germany;
orcid.org/0000-0003-4623-1659

Mohammadreza Taale − Institute for Molecular Systems
Engineering (IMSE), Heidelberg University, 69120
Heidelberg, Germany; orcid.org/0000-0003-2033-3294

Ali Shaygan Nia − Department of Chemistry and Food
Chemistry, Center for Advancing Electronics Dresden (cfaed),
Technische Universität Dresden, 01062 Dresden, Germany

Xinliang Feng − Department of Chemistry and Food
Chemistry, Center for Advancing Electronics Dresden (cfaed),
Technische Universität Dresden, 01062 Dresden, Germany;
orcid.org/0000-0003-3885-2703

Rainer Adelung − Functional Nanomaterials, Institute for
Materials Science, Kiel University, 24143 Kiel, Germany
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