Skip to main content
. 2021 May 13;15:677106. doi: 10.3389/fnins.2021.677106
Algorithm 1. Multiple sources adaptation learning by utilizing correlation knowledge.
Input: Source datasets {Xis}i=1S, {Li}i=1S, target dataset Xt, and parameters α, β, and λ, the maximal iteration number ℓ.
Output: Converged projection matrices {Wi}i=1S, and matrices {Fi}i=1S and W0.
Initialization: Set itr = 0, and initialize {Wiitr}i=0S randomly. Let
Witr=[W1itr,,WSitr];
1: for i = 1 to S do
{
Compute matrix Miitr and Mi(l)itr, and Kiitr and Ki(l)itr with empirical kernel mapping, thus computing Ciitr=l=0cCi(l)itr by Ci(0)itr=KiitrMiitrKiitr and Ci(l)itr=Ki(l)itrMi(l)itrKi(l)itr, l = 1, …, c;
Compute ηiitr by Eq. 28, and then construct matrix ηitr and η0itr=[η1itrIr;;ηSitrIr];
Compute Fiitr=KiTWiitr;
}
2: repeat
{
Compute W0itr by (12);
Compute the diagonal matrix Uitr by (15);
Compute the matrix Ωitr by (16); set i = 1;
repeat
{
Compute Giitr with respect to Wiitr;
Compute Ziitr with respect to KiTWiitr-Fiitr;
Compute giitr=tr((KiTWiitr-Fiitr)TZi(KiTWiitr-Fiitr))[cpsbreak]+tr((Wiitr)TCiitrWiitr);
Compute ϑiitr according to Eq. 24, and then construct ϑitr;
Compute the matrix Eiitr by Eq. 17, and then Niitr by Eq. 19;
Compute Fiitr according to Eq. 20;
Compute Wiitr according to Eq. 14;
i = i + 1;
} until i > S
Update Wiitr+1=Wiitrs.t.i = 1,..,S;
Update Fiitr+1=Fiitr according to (20) s.t.i = 1,..,S;
Update ϑiitr+1 according to (24) s.t.i = 1,..,S;
Update ηiitr+1 according to (27) s.t.i = 1,..,S;
Update W0itr+1 according to (12);
Let itr = itr + 1;
}until itr > ℓ or ς < 10−5
3: return {Wa}a=0S and {Fi}i=1S.