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ABSTRACT: The human innate immune system responds to both pathogen
and commensal bacteria at the molecular level using bacterial peptidoglycan
(PG) recognition elements. Traditionally, synthetic and commercially accessible
PG monosaccharide units known as muramyl dipeptide (MDP) and N-glycolyl
MDP (ng-MDP) have been used to probe the mechanism of innate immune
activation of pattern recognition receptors, such as NOD-like receptors.
However, bacterial PG is a dynamic and complex structure, with various
chemical modifications and trimming mechanisms that result in the production of
disaccharide-containing elements. These molecules pose as attractive targets for
immunostimulatory screening; however, studies are limited because of their
synthetic accessibility. Inspired by disaccharide-containing compounds produced
from the gut microbe Lactobacillus acidophilus, a robust and scalable chemical
synthesis of PG-based disaccharide ligands was implemented. Together with a
monosaccharide PG library, compounds were screened for their ability to stimulate proinflammatory genes in bone-marrow-derived
macrophages. The data reveal distinct gene induction patterns for monosaccharide and disaccharide PG units, suggesting that PG
innate immune signaling is more complex than a one activator−one pathway program, as biologically relevant fragments induce
transcriptional programs to different degrees. These disaccharide molecules will serve as critical immunostimulatory tools to more
precisely define specialized innate immune regulatory mechanisms that distinguish between commensal and pathogenic bacteria
residing in the microbiome.

■ INTRODUCTION

The human body is responsible for maintaining ∼39 trillion
bacterial cells that constitute the microbiome.1−3 The gut
microflora is one area of the body teeming with hundreds of
species of bacterial cells.4−6 The bacteria in the gastrointestinal
(GI) tract are benefactors to the human host, performing
essential biological chemical transformations and producing
key essential vitamins and amino acids.7−10 While many of
these organisms serve to maintain a healthy state for the
human host, bacterial pathogenesis disrupts this symbiotic
relationship. Dysbiosis in the human microbiome can lead to a
variety of inflammatory diseases, including ulcerative colitis
and Crohn’s disease (CD), rheumatoid arthritis, GI cancer,
and asthma.11,12 Therefore, the host−microbiome interface is
an attractive target for therapeutic intervention.13 In order to
develop novel immunotherapies and antibiotics, it is critical to
fully understand the molecular mechanisms by which nature
recognizes and responds to bacteria.
Humans have developed host defense mechanisms to

combat infectious diseases, including the innate immune
system, the body’s first line of defense against invading
pathogens such as bacteria.14 Pattern recognition receptors
(PRRs) are programmed in this system to interact with

essential components of bacterial cells such as flagella,
lipopolysaccharide (LPS), lipoteichoic acids, and bacterial
cell wall peptidoglycan (PG) components (Scheme 1).15−18

Since the pioneering PRR discovery, multiple families of PRRs
have been classified, such as toll-like receptors (TLRs), C-type
lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-I-
like receptors (RLRs), AIM2-like receptors (ALRs), peptido-
glycan binding proteins (PGBPs), the SLAM family (SLAMF),
and OAS-like receptors (OLRs).19−21 How this system
provides a tuned innate immune response toward pathogens
while ignoring symbiotic microorganisms that constitute the
microbiome is not fully understood.
The bacterial microbe-associated molecular pattern

(MAMP) PG is sensed by a variety of PRRs, including
NOD1, NOD2, NLRP3, NLRP1, and PGBPs (Scheme
1).22−33 These ligands are small fragments derived from a
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large PG polymer that surrounds the bacterial cell, consisting
of repetitive units of β-1,4-linked N-acetylglucosamine
(GlcNAc) and N-acetylmuramic acid (MurNAc) with short
peptide chains containing both L- and D-amino acids present
on the muramic acid residue (Figure 1). Although the bacterial
cell wall is highly conserved among species, differences
arise.34,35 Variations in cross-linking (3−3 vs 3−4 vs 2−4
linkages) as well as substitution of amino acids, primarily at the
third position (e.g., meso-diaminopimelic acid (m-DAP), L-Lys,
L-Orn, L-Ala, L-Glu, L-homoserine), are observed in both
Gram-positive and Gram-negative bacteria (Figure 1, shown in
blue).35 Modifications of the carbohydrate backbone of PG
have also been identified in a variety of bacterial species,
including N-deacetylation in Listeria,36 O-acetylation in
Helicobacter pylori,37 N-glycolylation in Mycobacterium tuber-
culosis,38 and muramic δ-lactam in Bacillus subtilis,39 all of

which block PG lytic enzymatic digestion, leaving the 1,6-
anhydro ring40 as the lytic product (Figure 1, shown in red).
From this knowledge of PG complexity, one can easily imagine
a pool of tunable immunostimulatory fragments that are critical
for mediating host−pathogen interactions. However, the small-
molecule details in this signaling landscape are incomplete
because of the limited amount of biologically significant
MAMP PG chemical probes.
Variations in PG structure among bacterial species have led

chemists to synthesize a variety of small-molecule probes based
on monomeric units of this structure. In particular, many of
these building blocks are now commercially available. For
example, N-acetyl muramyl dipeptide (MDP) is a representa-
tive small-molecule PG mimic for “general” bacteria and has
been shown to interact with NLRs, such as NOD2 and
NLRP1, which are associated with a variety of diseases
including irritable bowel diseases (IBDs) and vitiligo (Scheme
1).24,27,28,31,41,42 In addition, a “modified” bacterial PG
fragment, N-glycolyl MDP (ng-MDP), derived from the
hydroxylated PG product of Mycobacterium, has been heavily
investigated because of the direct link of Mycobacterium
paratuberculosis with CD (Scheme 1).43 Both “general” and
“modified” PG fragments have been shown to stimulate a
potent NOD2-dependent immune response and thus are the
primary ligands of choice for immunologists because of the
ligand synthetic simplicity and commercial availability
(Scheme 1).24,44,45

However, MDP and ng-MDP represent only a defined
element of the PG fragment pool and fail to capture the major
PG hydrolase degradation products, disaccharide muropep-
tides.46,47 These disaccharide PG fragments are synthetically
complex, limiting their accessibility and restricting their
analysis in traditional immunostimulatory assays such as
NFκB luciferase-reporter and ELISA screens.26,41,48−50 Ques-
tions in the field surrounding the natural ligand of NLRs, like
NOD2, as well as the biological influence of other N-acetyl
muramic acid-containing PG fragments still remain unan-
swered without an expanded cell wall PG library.51 In this
study, disaccharide PG-based fragments from the gut microbe
Lactobacillus acidophilus52,53 were identified. Inspired by the
generation of these PG products, a reliable and scalable
synthetic route to several PG disaccharide fragments was
implemented, leading to the first fully characterized N-
acetylglucosamine N-acetylmuramic acid tripeptide (GMTP).
These disaccharides were combined with a library of
monosaccharide PG derivatives and screened for gene
transcription activation, cytokine production, and phosphor-
ylation profiles using bone-marrow-derived macrophages
(BMDMs). Interestingly, GMTP was discovered to be a
more potent activator for select gene transcriptional programs,
many of which are related to IBD, compared with their
monosaccharide counterparts. Measurements of cytokine
production and downstream phosphorylation programs
complement these genetic studies. Gene expression profiles
comparing the disaccharide to the monosaccharide fragments
reveal a complex innate immune signaling pattern, validating a
highly intricate molecular mechanism for sensing of PG
fragments.

■ RESULTS AND DISCUSSION
Identification of Disaccharide PG Fragments from L.

acidophilus Cultures. Previous exploration of Gram-negative
and Gram-positive bacteria has led to the identification of

Scheme 1. PRR Signalinga

aCommon activation pathways of proinflammatory cytokine and
chemokine production upon stimulation by molecular signatures
known as pathogen-associated molecular patterns (PAMPs) are
depicted.15 In the advent of the microbiome, because of similarities
between pathogenic and nonpathogenic organisms, these signals are
now called microbe-associated molecular patterns (MAMPs).18 Here
the model of activation by PG (and synthetic mimics, MDP and ng-
MDP) is shown.

Figure 1. Peptidoglycan structure and modifications. The chemical
functionalities of the peptide side chain (blue) and carbohydrate
backbone (red) in bacterial PG across species are shown.
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several disaccharide PG fragments that activate an immune
response.24,26,42,54−57 In order to screen for biologically
relevant fragments from Gram-positive bacteria residing in
the gut microbiome, a lysozyme degradation assay of L.
acidophilus was implemented (Scheme 2). L. acidophilus is a

major commensal inhabitant of the human microbiota in
intestinal, oral, and vaginal tracts.58 Since the 1970s, L.
acidophilus has been commercially produced as a probiotic with
reported therapeutic effects.53,59,60 To screen this organism for
PG small molecule production, L. acidophilus cultures were
treated with lysozyme,61 a muramidase found in high
concentrations in both the human mouth and gut.62 The
lysed PG was then subjected to high-resolution liquid
chromatography−mass spectrometry (HR-LCMS) analysis,
and four disaccharide PG fragments were identified: N-
acetylglucosamine N-acetylmuramic acid dipeptide (GMDP),
N-acetylglucosamine N-acetylmuramic acid tripeptide
(GMTP), N-acetylglucosamine N-acetylmuramic acid tetra-
peptide (GMTTP), and N-acetylglucosamine N-acetylmuram-
ic acid pentapeptide (GMPP) (Scheme 2). GMTP was
observed in high abundance compared with other disaccharide
fragments (SI-Table 2, entry 2, in Supporting Information 1
(SI1)). This result is in agreement with previously published
work in which GMDP, GMTP, GMTTP, and GMPP were
identified with variations at the third amino acid resi-
due.42,52,56,61,63−65 However, lack of accessibility to these
disaccharides because of the complexity of chemical synthesis
has prevented a rigorous investigation of their immunological
activity. This motivated the synthetic development of well-
characterized disaccharides in larger and more accessible
quantities.
Synthesis and Characterization of Disaccharide PG

Fragments. A total synthesis using Schmidt glycosylation was
implemented to obtain protected β-1,4-linked intermediate 10
over 13 chemical transformations.42,66,67 From this intermedi-
ate, a modular strategy was utilized to access PG fragments 1−
3 (Scheme 3). GMMP (1) was first produced through global
deprotection of the acetyl protecting groups and the
(trimethylsilyl)ethyl ester (TMSE) of compound 10 followed
by direct hydrogenation with 20% Pd(OH)2. GMDP (2) was
obtained by deprotection of TMSE with 1 N tetra-n-

butylammonium fluoride (TBAF) followed by direct coupling
of D-isolgn-OBn to yield intermediate 11, deacetylation of 11
using aqueous LiOH, and hydrogenation with 20% Pd(OH)2.
Finally, to obtain GMTP (3), by a slightly modified synthesis
the protected dipeptide D-isolgn-L-Lys(Z)-OBzl was synthe-
sized over two steps starting from commercially available H-
Lys(Z)-OBzl and Boc-D-glutamic acid α-amide.68 Then
deprotection of TMSE from 10 followed by direct coupling
to D-isolgn-L-Lys(Z)-OBzl yielded 12, which was then
deprotected in two subsequent steps to generate the final
product 3. To ensure purity for biological testing, all of the
final compounds were purified via reversed-phase chromatog-
raphy using a mass-directed autopurification system. From
intermediate 10, compounds 1−3 were obtained in overall
yields of 56% (two steps), 9% (four steps), and 21% (four
steps), respectively. Full NMR characterization and spectral
data are presented for each synthetic compound in the SI1;
such data have been unavailable to date for synthetic fragment
3.50

The assignment of 3 was confirmed utilizing a variety of 2D
NMR experiments, including 1H−13C HSQC-TOCSY, 1H−1H
COSY, 1H−13C HSQC, and 1H−13C HMBC (Figure 2 and
SI1). Upon hydrogenation, the anomeric hydroxyl mutarotates
into a mixture of two α/β isomeric species, with the α anomer
being favored. Through detailed NMR experiments, the
saccharide residues and peptide chains were elucidated,
confirming the structure and purity of the synthetic PG
fragments.

Genome-Wide Transcriptional Analysis Reveals PG-
Regulated Target Genes. With access to large quantities of
compounds 1−3, an investigation of the regulation programs
in mouse BMDMs in response to both mono- and disaccharide
PG fragments was implemented. To investigate gene regulation
mediated by PG units, a qRT-PCR assay was first utilized to

Scheme 2. Lysozyme-Induced PG Degradation of L.
acidophilusa

aL. acidophilus produces several disaccharide products. (a) Whole
bacterial cells were treated with lysozyme. (b) Lysed PG was
subjected to a 3 kDa spin filter. (c) PG fragmentation was analyzed by
high-resolution liquid chromatography−mass spectrometry (HR-
LCMS), and four fragments were identified (SI-Table 2). The assay
was replicated on three occasions. None of the identified masses were
observed in the controls (medium, wash buffer, and enzymatic
treatment buffer).

Scheme 3. Synthesis of PG Fragment Disaccharidesa

aIntermediate 10 was synthesized over 13 chemical steps. GMMP
(1): (a) LiOH, ACN/H2O; (b) 20% Pd(OH)2, H2, THF/H2O; 56%
yield over two steps. Compound 11: (c) 1 N TBAF in THF; (d)
DIPEA, HBTU, HOBt, D-isogln-OBn, DMF; 24% yield over two
steps. GMDP (2): (e) LiOH, ACN/H2O; (f) 20% Pd(OH)2, H2,
THF/H2O; 37% yield over two steps. Compound 12: (g) 1 N TBAF
in THF; (h) DIPEA, HBTU, HOBt, D-isogln-L-Lys(Z)-OBzl, DMF;
58% yield over two steps. GMTP (3): (i) LiOH, ACN/H2O; (j) 20%
Pd(OH)2, H2, THF/H2O; 37% yield over two steps.
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analyze the expression of immune response indicator genes. A
subset of nine compounds containing both synthesized
disaccharides 1−3 and six additional monosaccharides were
used to stimulate macrophages (SI-Figure 1). In this initial
investigation, target genes were selected on the basis of
previous RNA sequencing analysis with ng-MDP.69 From this
screen, the mRNA expression levels of the tested genes
increased significantly in BMDMs treated with GMTP
compared with MDP and ng-MDP (Figure 3A,B and SI-
Figure 2). Gene expression regulation was observed after 4 h of
stimulation with 20 μM compound treatment (Figure 3A,B
and SI-Figure 2). Importantly, this upregulation was not
observed when GlcNAc was removed from the GMTP
structure to yield the monosaccharide N-acetylmuramic acid
tripeptide (MTP), demonstrating that the β-1,4-linked
GlcNAc residue plays a critical role in the observed gene
activation (SI-Figures 1 and 2). Additionally, the third amino
acid, lysine, could play a critical role in generating a significant
gene response, as other disaccharide fragments such as GMMP
and GMDP did not activate as robustly (Scheme 2 and SI-
Figure 2). Upon further investigation, GMTP was determined
to activate Tnf-α and Cxcl10 significantly more than MDP and
ng-MDP (Figure 3B and SI-Figure 3). Il-1β and Cox2
transcripts were also potently induced by GMTP, whereas
MDP had no activation (Figure 3B). These results showcase
for the first time a specific disaccharide PG unit that is capable
of initiating gene expression programs differently than the
previous monosaccharide PG standards, MDP and ng-MDP.
To more precisely understand the transcriptional programs

upon PG fragment stimulation and measure the differences
observed in the qRT-PCR analysis, a whole-genome RNA
sequencing (RNAseq) study was performed on BMDMs
treated for 18 h with 20 μM GMTP, MDP, MTP, or ng-MDP
(Figure 4A and SI-Figure 1). Gene regulation in unstimulated
(water) BMDMs was used as a control. DESeq2 and intensity
difference analysis70,71 revealed significantly regulated genes in

each stimulation group, which were combined for gene set
enrichment and hierarchical clustering in Seqmonk (Support-
ing Information 2 (SI2), Tables 1−8). Here we show that
GMTP has significantly enhanced immune stimulating capacity
compared with MDP, MTP, and ng-MDP (Figure 4A and SI2
Table 9). GMTP induced a unique gene expression signature
distinct from that of MDP (Figure 4A and SI2 Tables 1, 2, 5,
and 6). Hierarchical clustering (HC) analysis identified genes
primarily induced by GMTP, such as Acod1, Ass1, Il6,
Gm17300, and Cx3cl (Figure 4A, cluster 1). Transcriptional
responses to GMTP and MDP similarly induced genes of
cluster 2, including Slfn2, Arl5c, Oas2, Gm36161, and
Tmem176a (Figure 4A). In contrast, expression of S100a4,
Rpl39, Rpns27l, Crip1, and Wdr89 was specifically induced by
MDP (and to a lesser extent ng-MDP) but not the other PG
fragments (Figure 4A, cluster 5; SI2 Tables 1−9). MTP was
less efficient in upregulating genes that were characteristically
induced by GMTP in cluster 1, consistent with the finding that
the GlcNAc component of GMTP is critical for gene activation
(SI2 Tables 5 and 7). ng-MDP, the “modified” PG fragment,
induced a strong response of a cluster of genes that included
Ltf, Lcn2, Ngp, Chil3, Mmp8, Mmp9, Cd177, S100a9, S100a8,
Il2rb, Lck and Retnlg (cluster 4), but GMTP did not (SI2
Tables 4 and 8), indicating a monosaccharide-specific
expression pattern. Genes in cluster 3 of the analysis were
induced by GMTP, MDP, and MTP (but not the modified PG

Figure 2. 1H−13C HSQC-TOCSY spectra of GMTP (3) with
magnification of the anomeric region for the major and minor isomer
carbohydrate ring spin systems. Spectra were recorded on a 600 MHz
Bruker NMR spectrometer at 298 K in D2O with the following
settings: D9 = 0.12; O1P = 3 ppm; O2P = 60 ppm; SW= 6 ppm; 1SW
= 100 ppm; D1= 2 s; NS= 24.

Figure 3. GMTP induces proinflammatory cytokine gene production.
(A) Molecular structures of compounds GMTP (3), MDP (4), and
ng-MDP (5). (B) Gene expression statistical analysis of qRT-PCR
data for Tnfα, Il-1β, Cox2, and Cxcl10 in BMDMs treated with 20 μM
3, 4, or 5 or control (water) for 4 h. Total RNA was harvested, and
the expression levels of selected genes were analyzed by qRT-PCR.
Individual ΔΔCT values are shown in SI-Table 1. Error bars indicate
mean ± SEM. Statistical significance was calculated using the two-
tailed Student’s t test (n = 3).
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ng-MDP), representing a core “general” PG response signature
that includes Il1b, Irf 7, Slfn5, Slfn8, Icam1, If it2, If it3, Oas3,
Rsad2, If i209, and Tmem176b (Figure 4A). Overall, macro-
phages responded to different PGs with identifiable unique
gene expression signatures (clusters 1−5) based on their
chemical structures.
GMTP emerged from these experiments as a new and

efficient activator of innate immune responses in macrophages.
Remarkably, 31 genes that were identified by DEseq2
analysis70,71 as significantly induced by GMTP have genetic
variants associated with either Crohn’s disease or ulcerative
colitis (IBD Exomes Browser, ibd.broadinstitute.org) (Figure
4B and SI2 Table 10). The relative expression of these IBD-
associated genes and the P values of the highest IBD-associated
variant are shown (Figure 4B and SI2 Table 10). While a few
of these genes were also part of the ng-MDP-induced
pathways, we also identified IBD-associated genes that
characterized the response to ng-MDP, including Mmp8,
Mmp9, Il2rb, Lck, and Lcn2 (Figure 4B and SI2 Table 10).
These findings indicate that the pathway associated with the
recognition of GMTP may play an important role in regulating
mucosal immune responses. An ELISA−Luminex-based assay
was used to screen the expression of a panel of inflammation-
associated proteins, and the results showed that IL-1β,
CXCL10 (IP10), KC (IL8 homologue), MIP2, IFN-γ, and
TNF-α protein expression was induced in the PG-fragment-
treated macrophages (Figure 4C), confirming the RNAseq
results.
We next carried out qRT-PCR analysis of mRNA expression

from genes from cluster 1 (Il6, Isg15, Acod1, and Cxcl9) in
three independent experiments in which BMDMs were treated
for 18 h with 20 or 100 μM GMTP, MDP, MTP, or ng-MDP
(Figure 5A). GMTP induced significantly more Il6, Acod1, and
Isg15 mRNA expression compared with MDP, MTP, and ng-
MDP (Figure 5A). GMTP induced a 33-fold increase in Il6

mRNA expression, while MDP, MTP, and ng-MDP induced a
7−10-fold increase. Acod1 expression was increased up to 60-
fold in the presence of 100 μM GMTP, while the other
compounds achieved an up to 10-fold increase. Remarkably,
GMTP and MTP had similar ability to induce Cxcl9 expression
at 20 or 100 μM compound. Among the studied genes, Isg15
mRNA expression was significantly induced only by GMTP in
these experiments (Figure 5A). These data emphasize that
even at higher concentrations, different gene programs are
activated. Finally, we measured IL6 secretion in the super-
natants of BMDMs after 18 h of stimulation. These
experiments confirmed that GMTP induced significantly
higher levels of IL6 compared with MDP, ng-MDP, or MTP
(Figure 5B). Together, these results revealed that the
synthesized peptidoglycan fragments were potent innate
immune stimuli that were able to induce shared and
fragment-specific gene expression profiles that may be able to
elicit unique immune responses.

Cellular Biochemical Characterization. To further
extend this study from the gene to protein level, we next
analyzed the activation (i.e., phosphorylation) of common PG
signaling pathways. Phosphorylation events are an essential
component of the downstream production of cytokines and
chemokines upon PG stimulation (Scheme 1).69 Through
immunoblot analysis, STAT1, IRF5, cJUN, and p65 NFκB
phosphorylation was screened (SI-Figure 4). Phosphorylation
was observed for IRF5, cJUN, and P65-NFκB 1 h and 4 h after
treatment with 20 μMMDP, ng-MDP, and GMTP, confirming
that all the three compounds were able to activate these
signaling pathways. The transcriptional activation of immunor-
egulatory genes observed for GMTP in combination with the
qRT-PCR and RNAseq analyses (Figures 3B, 4A,B, and 5)
could be a result of combinatorial activation of these pathways
(Figure 1) or involve yet uncharacterized transcriptional
regulators. The stability, interaction strength, or component

Figure 4. RNA sequencing analysis reveals differential gene expression in BMDMs after treatment with PG fragments. BMDMs derived from wild-
type mice were treated with PG fragments GMTP, MDP, MTP, or ng-MDP at 20 μM for 18 h (n = 3 biological replicates for each sample). (A, B)
Total RNA was subjected to RNA sequencing analysis. (A) Heat map of top genes differentially expressed (p < 0.01, FDR < 0.05, and logFC > 1)
in BMDMs treated with water (control) or PG fragments GMTP, MDP, MTP, or ng-MDP. Hierarchical clustering separated the genes into five
clusters depending on the PG activation pattern. Color scales represent upregulation (red) or downregulation (blue) of respective genes. (B) Heat
map showing all of the top IBD gene sets that are upregulated (red) or downregulated (blue) differentially between GMTP and ng-MDP compared
with the control (water). (C) Concentrations of cytokines (in pg/mL) released by BMDM + 20 μM compound treatment for 18 h as determined
by Luminex analysis. Data are represented as mean ± SEM (n = 3 biological replicates).
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recruitment of PRRs (Figure 1) into the subsequently forming
signaling complexes may be distinct and responsible for the
observed fragment-specific transcriptional responses. The
observed gene transcriptional differences could also be the
result of different binding affinities of mono- and disaccharide
PG fragments for their appropriate PRRs. Analysis of these
commonly studied components in peptidoglycan signaling
indicates that the transcriptional regulators and intermediaries
that induce fragment-specific gene expression will need to be
further defined. Future studies probing the potential PRR(s)
binding mechanism and complex components are needed to
further understand these PG-associated innate immune
responses.

■ CONCLUSION
Key lysozyme products of the Gram-positive commensal gut
bacterium L. acidophilus were identified and confirmed.
Corresponding biologically relevant disaccharide PG fragments
were subsequently synthesized and fully characterized on scale.
Whole-genome RNA sequencing identified GMTP as a key
disaccharide PG fragment that serves as a significant activator
of multiple gene transcriptional and cytokine programs (Figure
4A,B). By screening beyond traditional PG fragments for gene
activation events, we have identified unique induction patterns
for the production of a variety of IBD-associated gene
transcripts (Figure 4B). qRT-PCR analysis of mRNA
expression of genes from cluster 1 and cytokine analysis

confirmed that the synthesized peptidoglycan fragments were
able to induce shared and fragment-specific gene expression
profiles (Figure 5). Finally, the known PG signaling pathways
STAT1, IRF5, cJUN, and p65 NFκB were found to be
activated by GMTP, MDP, and ng-MDP (SI-Figure 4). These
results complement the sophisticated yet limited reports in the
field that use adjuvants other than MDP, such as GMTP−N-
dipalmitoylpropylamide (DPG)72 and mifamurtide,73 for
potent stimulation of PRRs. The knowledge of these specific
activation pathways will allow for more tunable adjuvants to be
compiled.
This work indicates that distinct PG fragments activate

shared pathways with different signaling strengths. Interest-
ingly, we also observed PG-fragment-specific gene signatures
that could be due to the activation of distinct recognition
pathways or the specific recruitment and activation of
additional signaling components. Altogether, the results
shown that innate immune stimulation by bacterial peptido-
glycan is much more complex than previously observed with
the small synthetic PG mimics muramyl dipeptide (MDP) and
N-glycolyl MDP (ng-MDP). These unique molecular
signatures of pathogen and commensal bacteria could enable
PRRs to control microbiome-specific homeostasis and regulate
immune responses, as bacteria with modifications (e.g., N-
glycolyl) of the carbohydrate backbone of PG are known to
evade immune recognition. A next obvious step forward from
this work is to determine potential PRR(s) required to detect
the various PG fragments, interaction strengths for individual
PG fragments therein, and the signaling mechanism that lead
to the distinct gene expression signatures that may be linked to
yet to be determined innate immune regulation. An important
future step will be to catalog all of the biologically relevant PG
components that are generated during microbe−host inter-
actions. With the structural details and the newly synthesized
molecules now available to the scientific community,
harnessing the mechanisms responsible for this differential
PG signaling paradigm will be essential in developing novel
therapeutics and adjuvants to control inflammation.
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