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Abstract

In the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and 

specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody 

therapies are relatively easy to develop; they are as specific as vaccines in targeting severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted much attention in 

the past few months. This article reviews seven existing antibodies for neutralizing SARS-CoV-2 

with 3D structures deposited in the Protein Data Bank (PDB). Five 3D antibody structures 

associated with the SARS-CoV spike (S) protein are also evaluated for their potential in 

neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding 

domain (RBD) are compared with those between angiotensin-converting enzyme 2 and RBD 

complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, 

we introduce topological data analysis, a variety of network models, and deep learning to analyze 

the binding strength and therapeutic potential of the 14 antibody–antigen complexes. The current 

COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed.
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1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world. By June 17, 

2020, more than 8.2 million individuals were infected, and 443,000 fatalities had been 

reported. Currently, there are neither specific drugs nor effective vaccines available (8). 

Traditional drug discovery involves a long and costly process, requiring more than 10 years 

on average to put a drug on the market. Vaccine development typically takes more than one 

year. In contrast, developing potent SARS-CoV-2-specified antibodies that are produced 

from blood B cells in response to and counteracting SARS-CoV-2 antigens is a relatively 

less time-consuming and more efficient strategy for combating the ongoing pandemic (8, 31, 

36, 49, 56, 65, 73, 74, 81, 85, 88).

Antibody, also called immunoglobulin (Ig),is a large, Y-shaped protein that typically consists 

of two identical heavy chains and two identical light chains. A heavy chain can be separated 

into two regions, a constant region and a variable region. Moreover, each light chain has two 

successive domains, a constant domain and a variable domain. The two heavy and two light 

chains of an antibody are connected through disulfide bonds within the constant region (52). 

An antibody binds to the antigenic determinant (also called the epitope) through the variable 

regions in the tips of the heavy and light chains. Each of these chains contains three 

complementarity-determining regions (CDRs), which are located in the tips of each variable 

domain. Most of the differences among antibodies are generated within the CDRs, which 

determine the specificity of individual antibodies.

Benefitting from the broad specificity of antibodies, antibody therapies have been proven to 

be a promising way to fight cancer; autoimmune disease; neurological disorders; and 

infectious viruses such as human immunodeficiency virus (HIV), Ebola, and Middle East 

respiratory syndrome (MERS) (12, 58, 76). Recently, several studies have shown that the 

convalescent plasma of SARS-CoV-2 patients, which contains neutralizing antibodies 

created by adaptive immune responses, can effectively improve patient survival rates (7, 9, 

59). However, plasma-based therapeutics cannot be produced on a large scale. Therefore, 

seeking potent industrial-scale antibody therapies has become one of the most feasible 

strategies to fight against SARS-CoV-2. The spike (S) protein, a multifunctional molecular 

machine that binds to the human cell receptor angiotensin-converting enzyme 2 (ACE2), is 

one important target of neutralizing antibodies and the focus of therapeutic and vaccine 

design efforts (67). Many researchers have reported the binding affinities of SARS-CoV-2 S 

protein in complex with antibody candidates and ACE2. However, these reported values may 

vary by two orders of magnitude for a given antibody due to different experimental methods, 

conditions, calibrations, and human errors, which hinders the development of antibody 

therapies for SARS-CoV-2. Therefore, the development of a unified paradigm for ranking 

the potency of SARS-CoV-2 antibodies is a pressing need.

In this article, we review seven existing SARS-CoV-2 antibody therapeutic candidates from 

the literature. As molecular structures are able to reveal the molecular mechanism of 

antibody–antigen interactions, we only focus on the SARS-CoV-2 S protein antibodies that 

have 3D structures released in the Protein Data Bank (PDB). Since antibodies may directly 
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compete with ACE2 for binding to the S protein receptor-binding domain (RBD), the 

structure and binding affinity of ACE2 and S protein complexes have been studied to 

understand the efficiency of antibodies. Moreover, since the S proteins of SARS-CoV and 

SARS-CoV-2 share 80% amino acid sequence identity (70), SARS-CoV S protein antibodies 

are potential candidates for treatment of COVID-19. Therefore, we review five existing 

SARS-CoV S protein antibodies and analyze their binding affinities with the SARS-CoV-2 S 

protein. Furthermore, we employ topological data analysis (TDA), artificial intelligence, and 

a variety of network models to address literature controversy and provide a unified paradigm 

for ranking the potency of all antibodies. Finally, we review the current clinical trials of 

COVID-19 antibody candidates.

2. AN OVERVIEW OF ANTIBODY STRUCTURES, FUNCTIONS, AND 

THERAPIES

An antibody can be divided into different parts according to its functions. Specifically, the 

arms of the Y-shaped protein contain sites that can recognize and bind to specific antigens. 

This region of the antibody is called a fragment, antigen-binding (Fab) region and is 

composed of one constant domain and one variable domain from each heavy and light chain 

of the antibody (52). Figure 1 illustrates the structure of the antibody. The variable domain 

(Fv) region is the most important region for binding to antigens. On light and heavy chains, 

CDRs composed of three variable loops of β-strands are responsible for binding to a specific 

antigen. The CDRs are incredibly variable, allowing a large number of antibodies with 

slightly different tip structures, or antigen-binding sites, to exist. Each of these variants can 

bind to a different antigen; thus, the enormous diversity of antibody paratopes on the 

antigen-binding fragments allows the immune system to recognize an equally wide variety 

of antigens (43). This antibody paratope diversity is generated by random recombination 

events of a set of gene segments that encode different antigen-binding sites (or paratopes), 

followed by random mutations in this area of the antibody gene to create further diversity 

(16, 42). It has been estimated that humans generate approximately 10 billion different 

antibodies (24). The base of the Y plays a role in modulating immune cell activity. This 

region is named the fragment, crystallizable (Fc) region and is composed of two heavy 

chains. The Fc region ensures that each antibody generates an appropriate immune response 

for a given antigen by binding to a specific class of Fc receptors or other immune molecules. 

This process activates different physiological effects, including recognition of opsonized 

particles; lysis of cells; and degranulation of mast cells, basophils, and eosinophils (33, 80).

In addition to conventional antibodies, camelids also produce heavy-chain-only antibodies 

(HCAbs). HCAbs, also referred to as nanobodies, contain a single variable domain (VHH) 

that makes up the equivalent Fab of conventional immunoglobulin G (IgG) antibodies (29). 

This single variable domain typically can acquire affinity and specificity for antigens 

comparable to those of conventional antibodies. VHHs can easily be constructed into 

multivalent formats and have higher thermal stability and chemostability than do most 

antibodies (14, 17, 27, 40, 57, 68). Another advantage of VHHs is that they are less 

susceptible to steric hindrances than are large conventional antibodies (25).
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In immune systems, antibodies are generated and secreted by B cells, usually differentiated 

B cells, including plasma cells or memory B cells (Figure 2). Antibodies have two physical 

forms, a membrane-bound form called the B-cell receptor (BCR), which is found to attach to 

the surface of B cells, and a soluble form that moves freely in the blood plasma. The BCR 

facilitates the activation and subsequent differentiation of B cells into either plasma or 

memory B cells. The activation of B cells has two mechanisms: T cell–dependent (TD) 

activation and T cell–independent (TI) activation (44). In TD activation, once a BCR binds a 

TD antigen, the antigen is taken up into the B cell through receptor-mediated endocytosis, 

degraded, and presented to T helper (TH) cells as peptide pieces in complex with major 

histocompatibility complex-II (MHC-II) molecules on the cell membrane (2). TH cells 

recognize and bind these MHC-II–peptide complexes through their T cell receptor (TCR). 

Following TCR–MHC-II–peptide binding, T cells express the surface protein CD40L, as 

well as cytokines such as IL-4 and IL-21. These signals promote B cell proliferation, 

immunoglobulin class switching, somatic hypermutation, and guide differentiation. Upon 

receipt of these signals, B cells are activated (13). In TI activation, T cells are absent, and B 

cells receive signals from recognition and binding of a common microbial constituent to toll-

like receptors (TLRs) or extensive cross-linking of BCRs to repeated epitopes on a bacterial 

cell (44). TI activation is rapid, but antibodies generated from it tend to have a lower affinity 

and are also less functionally versatile than those from TD activation (44). After being 

activated, B cells can be differentiated into plasma cells or memory B cells to generate and 

secrete antibodies. Memory B cells can even survive in a human body for years to remember 

the same antigen and trigger a fast response upon future exposure (4).

Antibodies protect our health in four ways: First, their Fab regions can bind to pathogens 

and thus prevent pathogens from entering or damaging cells; second, they trigger the 

removal of pathogens by macrophages and other cells via coating of the pathogen; third, 

they cause the destruction of pathogens by stimulating other immune responses such as a 

complement pathway (53); and last, antibodies can also lead to vasoactive amine 

degranulation against certain types of antigens such as helminths and allergens (33).

The antibody mechanism enlightens the development of vaccines and antibody therapies. A 

vaccine is typically made of weakened or killed forms of a microbe, its toxins, or one of its 

surface proteins that resemble a disease-causing microorganism. These forms cannot cause 

an infection, but the immune system still regards them as foreign objects and produces 

antibodies in response. After the threat has passed, most of the antibodies will break down, 

but memory B cells remain and remember the antigens in the vaccine.

Antibodytherapiesweredevelopedinthe1970s, following the discovery of the structures of 

antibodies and the development of the hybridoma technology that provided the first reliable 

source of monoclonal antibodies (mAbs) (5, 38). Rather than being extracted from 

convalescent patient plasma, mAbs are made from identical immune cells that are all clones 

of a unique parent cell; thus, they can have a monovalent affinity to the same epitope. As a 

result, the most significant advantage of mAbs over conventional small-molecular drugs is 

their high specificity, which facilitates precise action (32). A second advantage is their long 

half-life, which allows infrequent dosing (41). Third, molecular engineering technologies 

have enabled the structure of mAbs to be fine-tuned for specific therapeutic actions and to 
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minimize immunogenicity (28, 46, 51, 69), thus enhancing their safety. This is reflected in 

mAbs’ approval rate of approximately 20%, compared to 5% for new small-molecular 

entities (54, 55). Finally, mAbs can be developed in a short time period, e.g., 5–6 months 

(37). Currently, mAbs have already established their therapeutic and prophylactic efficacy 

against cancer; autoimmune disease; neurological disorders; and infectious viruses such as 

HIV, Ebola, and MERS (12, 58, 76). However, there are adverse effects, mostly related to 

immunomodulation, and therapeutic mAbs (32), such as antibody-dependent enhancement 

(66) and cytokine storm (11), can be associated with infection.

3. SARS-CoV-2 ANTIBODY THERAPEUTIC CANDIDATES

Both SARS-CoV and SARS-CoV-2 belong to lineage B of the betacoronavirus genus and 

have four structural proteins, known as the S, envelope, membrane, and nucleocapsid 

proteins (84, 89). The nucleocapsid protein holds the single-stranded RNA genome. 

Together with the membrane, S, envelope, and membrane proteins create the viral envelope 

(83). The S protein, which forms homotrimers protruding from the viral surface, mediates 

the entry of coronaviruses into host cells when it binds with ACE2 (67). More specifically, 

the S protein comprises two functional subunits: the S1, which is responsible for binding to 

the host cell receptor, and the S2, which promotes the fusion of the virus and cellular 

membranes (71, 72).

ACE2 is a single-pass transmembrane protein with its active domain exposed on the cell 

surface and is expressed in lungs and many other tissues (30). ACE2 serves as the main cell 

entry point for SARS-CoV, SARS-CoV-2, and some other coronaviruses (73). Notably, the 

equilibrium dissociation constant (Kd) of the binding between ACE2 and the S protein is 

significantly increased in SARS-CoV-2 compared to SARS-CoV (65, 70). Moreover, SARS-

CoV-2 may also use basigin to assist in cell entry (75). Therefore, SARS-CoV-2 is more 

infectious than SARS-CoV.

Antibody therapy is a promising means of fighting COVID-19. Figure 2 provides a 

schematic illustration of antibody therapy for COVID-19. Notably, neutralizing monoclonal 

antibodies (mAbs) isolated from convalescent patient memory B cells provides an effective 

intervention for SARS-CoV-2 due to the safety, scalability, and therapeutic effectiveness of 

these antibodies (7, 9, 59). As the S protein mediates host cell entry, it is the target of 

neutralizing antibodies and the main focus of therapeutic and vaccine design efforts (67).

Antibodies can target different SARS-CoV-2 S protein positions. Although a potent N-

terminal domain (NTD) antibody has been reported (10), most known antibodies target the 

SARS-CoV-2 S-protein RBD. Table 1 provides a summary of SARS-CoV-2 and SARS-CoV 

S protein RBDs in complexes with existing antibodies and ACE2 structures. The structures, 

functions, and properties of these complexes are analyzed below.

As summarized in Table 1, 12 mAbs targeting the SARS-CoV-2 or SARS-CoV S-protein 

RBD have been reported that have their 3D experimental complex structures available in the 

PDB. According to Pinto et al. (49), the most promising is S309, which shows almost equal 

neutralization potency against SARS-CoV and SARS-CoV-2. Pinto et al. state that 19 out of 
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24 residues of the S309’s epitope are strictly unchanged from SARS-CoV and SARS-

CoV-2, and the other five residues are conservatively or semiconservatively substituted (49). 

However, some other researchers are still concerned about the claimed cross-effectiveness 

against both SARS-CoV and SARS-CoV-2 (74). Notably, two experimental structures of the 

S309 and SARS-CoV-2 S-protein complex have been released, one having a closed 

conformation of the S protein and the other having an open conformation. The binding 

affinity of S309 and S-protein RBD complex is not sensitive to closed or open 

conformations (49) of the S protein.

CR3022 is another potentially potent antibody that may bind to both SARS-CoV and SARS-

CoV-2 (65,88). It has also been shown that, compared with m396,a SARS-CoV-specific 

antibody, CR3022 has a significantly stronger binding signal to SARS-CoV-2. 

However,itsaffinity to SARS-CoV-2 is much weaker than its affinity to SARS-CoV (88). It 

has also been suggested that CR3022 can only access the open conformation of the S-protein 

RBD (88).

Other promising SARS-CoV-2 antibodies include CB6 and P2B-2F6, which are specific 

human mAbs extracted from convalescent COVID-19 patients (36,60). VHH-72 cross-reacts 

with SARS-CoV-2 and SARS-CoV S proteins, but its binding affinity to SARS-CoV-2 is 

much lower than that to SARS-CoV (81).B38 also shows direct competition with ACE2 in 

binding to the SARS-CoV-2 S protein (85).

3.1. Three-Dimensional Structure Alignment

All of the available 3D structures of the SARS-CoV-2 S-protein RBD in complex with 

antibodies are aligned to ACE2. Figures 3 and 4 show the alignment of SARS-CoV-2 and 

SARS-CoV antibodies, respectively. The PDB ID of these complexes can be found in Table 

1.

As shown in Figure 3, the antibodies CB6, B38, H11-D4, and P2B-2F6 have their epitopes 

overlapping with the ACE2 binding site, suggesting that their bindings are in direct 

competition with that of ACE2. Theoretically, this direct competition reduces the viral 

infection rate. For an antibody with a strong binding ability, it will directly neutralize SARS-

CoV-2 without the need of antibody-dependent cell cytotoxicity (ADCC) and antibody-

dependent cellular phagocytosis (ADCP) mechanisms. However, the binding sites of 

epitopes of S309 and CR3022 are far from that of ACE2, leading to the absence of binding 

competition (49, 65). One study shows that the ADCC and ADCP mechanisms contribute to 

the viral control conducted by S309 in infected individuals (49). Research indicates that 

CR3022 neutralizes the virus in a synergistic fashion (63).

Figure 4 shows that, on the SARS-CoV RBD, the epitopes of antibodies S230, 80R, 

F26G19, and m396 overlap with that of ACE2. VHH-72 locates slightly away from the 

ACE2 binding site but still sterically clashes with the ACE2 binding. They all lead to 

binding competition that neutralizes the virus.
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3.2. Alignment of Antibody and ACE2 Epitopes on Spike Protein 2D Sequences

Figure 5 highlights the contact regions of antibodies and ACE2 epitopes on SARS-CoV-2 

RBD or SARS-CoV RBD 2D sequences. Consistent with the 3D alignment, with the 

exception of S309, CR3022, and VHH-72, all of the antibodies have epitopes overlapping 

with the ACE2 binding site, especially the residues from 486 to 505 of the SARS-CoV-2 

RBD (corresponding to the residues 472 to 491 of the SARS-CoV RBD). Although the 

VHH-72 epitope residues do not overlap with the ACE2 binding site, VHH72 occupies parts 

of the space of the ACE2 binding site, which disrupts ACE2 binding with RBD. Therefore, 

VHH-72 also has a competitive binding ability against ACE2. Figure 5 also shows that these 

epitope residues have many mutations from the SARS-CoV-2 RBD to the SARS-CoV RBD, 

which could explain why most of the antibodies lack cross-reaction to both SARS-CoV-2 

and SARS-CoV. We return to this below.

4. EXPERIMENTAL PITFALLS IN THE AFFINITY MEASUREMENTS OF 

ANTIBODY BINDING WITH S PROTEIN RECEPTOR BINDING DOMAIN

Table 1 clearly shows the discrepancies in reported experimental Kd values for ACE2 in 

complexes with the SARS-CoV-2 S protein [i.e., 1.2 nM (70), 15.2 nM (65), and 34.6 nM 

(82)]. Moreover, a 191-fold difference in magnitude has been reported in experimental Kd 

values for the ACE2 and SARS-CoV S protein complex [i.e., 5.0 nM (70), 325.8 nM (82), 

and 1.70 nM (61)].

The inconsistency in experimental values is not isolated. The experimental Kd values for 

CR3022 binding with the SARS-CoV-2 S-protein RBD have been reported as 6.28 nM (65) 

and <0.1 nM (88). This level of discrepancy in reported experimental values makes it 

impossible to select antibody candidates appropriately.

As shown in Table 1, two binding assay techniques are used to measure Kd values of 

antibody–antigen interactions. The discrepancies in Kd values for CR3022 are based on 

biolayer interferometry (BLI) measurements. BLI detects the surface changes on biosensor 

tips induced by protein–protein association and dissociation by analyzing the interference 

pattern of white light reflected from the surface. BLI results are sensitive to biosensor 

preparation, stability of the light source, temperature control, calibration, and human errors 

(62). Surface plasmon resonance (SPR) has also been employed for determining the Kd 

values of antibody and RBD complexes, as shown in Table 1. This method detects the 

reflectivity change induced by molecular adsorption, such as that of polymers, DNA, or 

proteins, using changes in reflection angles. Similarly, SPR is also sensitive to the 

preparation of conjugated antigens, stability of the light source, temperature control, 

calibration, and human errors (1). The widespread inconsistency in reported antibody and S 

protein binding affinities motivated us to carry out the computational analysis of existing 

antibody–S protein complexes described below.
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5. COMPUTATIONAL ANALYSIS OF ANTIBODY–SARS-CoV-2 

INTERACTIONS

To create a unified assessment and ranking of S-protein RBD binding complexes with 

antibodies and ACE2, we utilize TDA, graph theory, network models, and machine learning 

to analyze the 3D complexes presented in Table 1. We also evaluate the potential of 

repurposing SARS-CoV antibodies for SARS-CoV-2 using the topology-based network tree 

(TopNetTree) model (77).

5.1. Ranking of ACE2 and Antibodies

The prediction results and network descriptors are presented in Tables 2 and 3 for SARS-

CoV-2 complexes and SARS-CoV complexes, respectively. In Table 2, the complexes are 

ranked according to their predicted binding affinities, G, followed by flexibility–rigidity 

indexes (FRIs) (45, 86), which have the highest covariance. They are computed based on all 

of the Cα atoms on the RBD and all of the Cα atoms in antibodies or ACE2. The FRI Rη 
indicates the measurement of geometric compactness and topological connectivity of 

protein–protein interactions (PPIs) at each residue, such that the larger η is, the longer the 

range of pairwise influence will be. In comparison with the predicted energy, a strong 

binding affinity corresponds to a large rigidity index. The summation of binding affinity 

changes computed with the TopNetTree model (77) by modifying the RBD residues to 

glycine (G) are presented; S10 and S8 stand for those residues within 10 Å and 8 Å, 

respectively, of any Cα of antibodies. The binding affinity change following each mutation 

to glycine (G) is calculated by the TopNetTree model for PPIs (77), where a positive binding 

affinity change ΔΔG means a stronger binding affinity for the mutant and vice versa. 

Therefore, a summation of considered residues in the RBD with smaller values indicates a 

strong binding affinity of the wild type.

The rest of the table gives the Cα-based complex analysis from multiple network descriptors, 

including edge density (d), degree heterogeneity (ρ) (19), average path length (〈L〉) (79), 

average betweenness centrality (〈Cb〉) (26), average eigencentrality (〈Ce〉) (3), average 

subgraph centrality (〈Cs〉) (23), average network communicability (〈M〉) (21), and average 

network communicability angle (〈Θ〉) (22). With the exception of the degree heterogeneity, 

which is calculated based only on the RBD Cα atoms, other descriptors are calculated from 

all Cα atoms on the RBD and antibody (or ACE2) Cα atoms within 10 Å from any Cα atom 

on the RBD. The degree heterogeneity demonstrates antibody or ACE2 influence to the 

RBD such that close degree heterogeneity numbers would have similar impacts. For 

example, molecules B38 and H11-D4 have degree heterogeneity values that are close to 

ACE2, as well as sharing the same receipt domain. The average betweenness centrality (26) 

and average eigencentrality (3) values are correlated quite well to the predicted binding 

affinities.

Table 3 shows the results of predictions and network descriptors for the SARS-CoV S-

protein complex. Again, the predicted binding affinities have high correlations to FRIs. For 

degree heterogeneity, m396 has a similar impact to ACE2. Molecule 80R (PDB 2GHW) has 

the highest rigidity index both for η = 10 and η = 8, which indicates a more rigid complex 
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structure between 80R and the RBD. In the comparison of SARS-CoV S-protein RBD and 

SARS-CoV-2 S-protein RBD in Table 2, descriptors are close to each other except for the 

summation of binding affinity changes, which includes more biological and chemical 

information than do the other rows. Thus, the network structures for the SARS-CoV RBD 

and SARS-CoV-2 RBD complexes are similar.

5.2. Repositioning of SARS-CoV Antibody Candidates for SARS-CoV-2

In this section, we predict the binding affinities of SARS-CoV antibodies when they are 

applied to SARS-CoV-2 neutralization using the TopNetTree model (77). Specifically, we 

compute the binding affinity changes following the mutations from the SARS-CoV RBD to 

the SARS-CoV-2 RBD. These changes can be very significant. One study showed that a 

single mutation (V367F) can lead to a 10-fold increase in IC50 for a particular antibody (56).

Figure 6 shows both predicted binding affinities of each SARS-CoV complex and predicted 

binding affinities of each molecule with the SARS-CoV-2 RBD, which are calculated by 

accumulating binding affinities of single mutations from SARS-CoV RBD to SARS-CoV-2 

RBD and adding the sum to the binding affinities of SARS-CoV complexes. Obviously, 

antibody 80R (PDB 2GHW) has the largest binding energy change in SARS-CoV ranking, 

as well as in SARS-CoV-2 ranking, among these SARS-CoV antibodies. Molecule VHH-72 

(6WAQ) has a smaller binding affinity than does ACE2 (3D0G) for the SARS-CoV RBD but 

an equivalent binding affinity for the SARS-CoV-2 RBD. Molecules m396, S230, and 

F26G19 have weaker binding affinities after modifying from the SARS-CoV RBD to the 

SARS-CoV-2 RBD. Finally, the binding affinity of the SARS-CoV RBD with ACE2 

following mutations to SARS-CoV-2 is slightly higher than the binding affinity of the 

SARS-CoV RBD with ACE2, indicating that SARS-CoV-2 is more infectious than SARS-

CoV. This is consistent with experimental reports (70, 82).

Figures 7 and 8 show the binding affinity changes on individual mutations of the SARS-CoV 

S-protein RBD, where more precise trends can be observed. In Figure 7, the molecule 80R 

has a similar trend to ACE2; both of them share the most receptive binding domain of the 

SARS-CoV-2 S protein. In Figure 8, most of the binding affinity changes following 

mutations in the receptor binding motif (RBM) of ACE2 are negative, which indicates 

stronger binding affinities with the SARS-CoV RBD.

5.3. Network Analysis of Antibody–Antigen Complexes

Various network models have been employed to analyze the structure and function of the 

main SARS-CoV and SARS-CoV-2 proteases (20). We utilize network models to illustrate 

interactions between the binding complexes of the RBD of SARS-CoV or SARS-CoV-2 and 

antibodies or ACE2.

In the microscopy of each single residue, the performances on the network models reveal the 

similarities and differences between complexes. In Figure 9, the SARS-CoV RBD with 

ACE2 (PDB 3D0G), SARS-CoV-2 RBD with ACE2 (PDB 6M0J),and SARS-CoV-2 RBD 

with CR3022 (PDB: 6W41) are listed and aligned; 6W41 has the strongest predicted binding 

affinity and the largest deviation to 6M0J, as shown in Tables 2 and 3. It is interesting to 

observe that the domains that have high rigidity index values are similar in all three 
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complexes. In the comparison of betweenness centralities of the three structures, although 

3D0G has many large values, it has the lowest average betweenness centrality among the 

structures, as shown in Tables 2 and 3. Analogously to the rigidity index, all three complexes 

have the same regions of high individual eigencentrality values and subgraph centrality 

values. Overall, the differences between 3D0G and 6M0J are quite small in their network 

analysis. However, the betweenness centrality reflects their difference such that a higher 

average value would indicate a stronger binding affinity. Moreover, all three complexes 

coincidentally have similar regions of high values for network descriptors, which suggests 

that this region would play a key role in PPIs.

6. CLINICAL TRIALS OF COVID-19 ANTIBODY THERAPEUTIC 

CANDIDATES

Table 4 summarizes the currently ongoing clinical trials of COVID-19 antibody therapeutic 

candidates in the United States, China, and Europe. These data are collected from the 

National Institutes of Health (NIH) (https://www.nih.gov/coronavirus), the European 

Medicines Agency (EMA) (https://www.clinicaltrialsregister.eu/ctr-search/search?

query=covid-19), and media reports.

Notably, most of the current COVID-19 antibody therapeutic clinical trial candidates are 

aimed at targets other than the S protein. These antibodies were initially developed for other 

diseases and have been repurposed for treating COVID-19, and they could alleviate some 

COVID-19 symptoms such as cytokine storm and inflammation instead of killing the virus 

directly.

Nonetheless, two antibody candidates under clinical trials are targeting the S protein and 

block the SARS-CoV-2 entry into human cells. One of them is LY3819253, developed by 

Eli Lilly and Company in the United States, which is in phase II clinical trials and already 

highlighted in The Scientist (90). The other is JS016,developed by Junshi Biosciences in 

China (60),which is currently in phase I clinical trials.

7. MATERIAL AND METHODS

7.1. Sequences and Structures

All of the sequences and 3D structures that we used were downloaded from the PDB 

(https://www.rcsb.org). The sequences were extracted from FASTA files, while 3D structures 

were obtained from PDB files.

3D alignments and graphs were created using PyMOL (15).2D sequence alignments were 

calculatedbyclustalw(https://www.genome.jp/tools-bin/clustalw)(64),and2Dalignmentgraphs 

were generated by Jalview (78).

7.2. Topology-Based Network Tree Model for Protein–Protein Interaction Binding Affinity 
Changes Upon Mutation

In this section, we describe the TopNetTree model, which predicts binding affinity changes 

following mutation ΔΔG for PPIs (77). This method is based on structures regarded as 
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topological features and a supervised machine learning model, gradient boosting tree (GBT), 

and convolution neural network (CNN). In Figure 10, the train and predicting processes are 

elucidated, involving two major modules: topology-based feature generation and CNN-

assisted GBT model. In feature generation, the element-specific and site-specific persistent 

homology is the key mathematical technique that can simplify the structural complexity of 

protein–protein complexes and translate the biological information into topological 

invariants. The first step of the TopNetTree process uses a CNN as a preprocessing model to 

extract topological features. Assembling CNN-pretrained features and other features, the 

GBT model predicts PPI binding affinity changes. Other features such as chemical and 

physical information that have not been absorbed into topological features can improve the 

proposed model’s predicting ability (for more details, see 77).

7.2.1. Topology-based feature generation of protein–protein interactions.—
Persistence homology is the key mathematical theory behind topology-based feature 

generation. As a subtopic of algebraic topology, persistence homology is built on the 

simplicial complex and filtration on discrete data sets under various settings. For example, 

the set of atoms in PPIs forms the discrete data set. When building the constructions, a 

variety of simplicial complexes are built on point clouds such that the Vietoris-Rips (VR) 

complex and alpha complex are widely used (18); this applied to our approach. After a 

simplicial complex is set up, the topological invariants of the point-cloud data set can be 

identified and are enumerated by counting the numbers referred to as Betti-0 (H0), Betti-1 

(H1), and Betti-2 (H2) for components, rings, and cavities of the data set, respectively. 

Obviously, the complex protein–protein structure is simplified to its geometric and 

topological characteristics for data features, while redundant and uninformative features or 

calculations are fully abandoned. Moreover, making filtration dependent on the simplicial 

complex turns the 3D point-cloud data set of PPIs into topological bar codes, which record 

the birth and death of each topological invariant. The topological features simplify the PPI 

complex in many directions. However, it is also essential to have better construction to 

reflect different biological or chemical properties. Various subsets for PPI complex 

constructions are defined as follows:

1. Am: atoms of the mutation site;

2. Amn r : atoms in the neighborhood of the mutation site within a cut-off distance 

rÅ;

3. AAb r : antibody atoms within rÅ of any atoms of antigen;

4. AAg r : antigen atoms within rÅ of any atoms of antibody; and

5. Aele E : atoms in the system that has atoms of element type E

Therefore, the distance matrix is defined based on atom sets such that it excludes the 

interactions in the same set. For interactions between atoms ai and aj in set A and/or set ℬ, 

the modified distance is defined as
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Dmod ai, aj =
∞ if ai, aj ∈ A, or ai, aj ∈ ℬ,
De ai, aj if ai ∈ A and aj ∈ ℬ, 1.

where De(ai, aj) is the Euclidian distance between ai and aj. Then, the persistence homology 

can be constructed to be element and site specific.

If one has atomic coordinates, then one can carry out their topological analysis and analysis 

of their properties via simplices and simplicial complexes. A set of k + 1 affinely 

independent points, v0, v1, v2, …, vk in ℝn, is a k-simplex denoted σi, such that a 0-, 1-, 2-, 

or 3-simplex in geometry representation is a vertex, an edge, a triangle, or a tetrahedron, 

respectively. The finite collection of the simplex is a simplicial complex K = {σi}, which is 

true if a subset (also called a face) τ of a k-simplex σi of K is also in K, τ ⊆ σi and σi ∊ K 
imply τ ∊ K, and the nonempty intersection of any two simplices in K is a face of both. 

Furthermore, a k-chain is a finite formal sum of all simplices in K, ∑iαiσik, where αi is a 

coefficient in ℤp, and p is a chosen prime number. The set of all k-chains of the simplicial 

complex K equipped with an algebraic field forms an Abelian group Ck K, ℤp .

A boundary operator ∂k : Ck → Ck − 1 for a k-simplex σk is homomorphism defined as

∂kσk = ∑
i = 0

k
−1 i υ0, υ1, …, υi, …, υk ,

where υ0, υ1, …, υi, …, υk  is a (k − 1)-simplex excluding vi from the vertex set. An important 

property of the boundary operator, ∂k ‒ 1 ∂k = Ø, follows from the fact that boundaries are 

boundaryless. Moreover, the kernel of the boundary operator is Zk = ker∂k = {c ∊ Ck|∂kc = 

∅}, whose elements are called k-cycles; the kth boundary group is the image of ∂k + 1 

denoted as Bk = im ∂k + 1 = ∂k + 1c |c ∈ Ck + 1 . The algebraic construction to connect a 

sequence of complexes by boundary maps is called a chain complex:

⋯
∂i + 1 Ci X

∂i Ci − 1 X
∂i − 1 ⋯

∂2 C1 X
∂1 C0 X

∂0 0,

and the kth homology group is the quotient group defined by Hk = Zk/Bk. Obviously, 

boundary operators imply Bk ⊆ Zk ⊆ Ck. The Betti numbers are defined by the number of 

basis in kth homology group Hk, which counts k-dimensional holes. For example, Betti-0, β0 

= rank(H0) reflects the number of connected components; Betti-1, β1 = rank(H1) reflects the 

number of loops; and Betti-2, β2 = rank(H2) reveals the number of voids or cavities. 

Together, the set of Betti numbers {β0, β1, β2, …} indicates the intrinsic topological 

property of a system. Computational boundary operators directly work on the distance 

matrices generated on different atom groups, and the Betti number can be calculated by 

counting the number of zero eigenvalues of corresponding boundary operators.

The model is interested in the evolution of a simplicial complex and in tracking topological 

characteristics that vary as the simplicial complex changes such that each object (the atomic 
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set of a PPI complex) can be classified and represented as a machine learning feature. In 

persistent homology, a filtration of a topology space Kisa nested sequence ofsubspaces 

{Kt}t = 0, …, m of K such that ∅ = K0 ⊆ K1 ⊆ K2 ⊆ ⋯ ⊆ Km = K. Considering the complex 

group in this sequence, we can have a sequence of chain complexes by homomorphisms, 

C∗(K0) C∗(K1) ⋯ C∗(Km), and a corresponding homology sequence, 

H∗(K0) H∗(K1) ⋯ H∗(Km). The p-persistent kth homology group of Kt is defined as 

Hk
t, p = Zk

t / Bk
t + p ∩ Zk

t , where Bk
t + p = im∂k + 1 Kt + p . Thus, the homology group reveals 

that the homology classes of Kt persist until Kt+p. In the filtration process, the persistent 

homology bar codes recording the birth and death of topological invariants can be generated 

along the spacial changing of radius on the point-cloud data set. The machine learning 

feature vectors, as a consequence, can be constructed from these sets of filtration bar code 

intervals.

The filtration parameter interval is discretized into bins, which can model the behavior of bar 

codes in each bin (6). Thus, these bins are packaged as features for advanced machine 

learning algorithms directly. Then, the number of persistence intervals is counted for each 

bin to record birth events and death events. Three feature vectors (H0, H1, and H2) are 

generated for each topological bar code for the machine learning method. The Betti-0 (H0) 

bar code is obtained from the VR filtration,and the Betti-1 (H1) and Betti-2 (H2) bar codes 

are obtained from alpha complex filtration, where Betti-1 and Betti-2 are sparser and more 

stable than the Betti-0 bar codes. Thus, the Betti-0 bar code is incorporated into CNN 

models, and the Betti-1 and Betti-2 bar codes are for GBT training. Intuitively, features 

generated by binned bar code vectorization can reflect the structure of the protein–protein 

complex and its biological and chemical properties, such as the strength of atom bonds or 

van der Waals interactions. Meanwhile, the statistics of bar lengths, birth values, and death 

values, such as maximum, minimum, mean, etc., can be set as features for the machine 

learning process.

7.2.2. Machine learning models.—Predicting the binding affinity changes following 

mutations for PPIs is very challenging due to the complex data set and different 3D 

structures. To overcome this challenge, one can use a hybrid machine learning algorithm that 

integrates a CNN and GBT to predict the binding affinity changes. The vectorized H0 bar 

code feature is converted into concise features by the CNN method. Then, CNN-trained 

features are combined with the rest features as the full feature set to train a GBT module for 

a robust predictor with effective control of overfitting.

CNN is considered to be the most successful architecture as a class of deep neural networks. 

CNN is a regularized case of a multilayer connected neural network. Each neuron is 

connected locally to the next convolution layer neurons, and the weights are shared in 

different locations. In TopNetTree, CNN is an intermediate model that applies vectorized H0 

features into a higher-level abstract feature for the GBT method. GBT is an ensemble 

method that builds a powerful module for regression and classification problems as weak 

learners. The method sums the weak learners to eliminate the overall error based on the 

assumption that each learner is likely to make different mistakes. According to the current 
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prediction error on the training data set, the ensemble method is built on a decision tree 

structure. GBT with topological features (TopGBT) is relatively robust against 

hyperparameter tuning and overfitting and is suitable for a moderate number of features. Our 

work uses the GBT package provided by scikit-learn (v. 0.23.0) (48).

Finally, TopNetTree follows a process (Figure 10) in which a supervised CNN model is 

trained for extracting high-level features from H0 barcodes, where the PPI ΔΔG is a label. 

Then, the flattened layer neural outputs of CNN are ranked according to their importance in 

a GBT model. Based on the importance, the whole set of features consists of an ordered 

subset of CNN-trained features, high-dimensional topological bar codes, H1 and H2, and 

auxiliary features for the final GBT model. As for the parameters, an optimal parameter 

setting with the best result of the 10-fold evaluation is selected from the experiments with 

different parameter settings.

7.2.3. Cross-validation of TopNetTree.—The TopNetTree method is trained on the 

SKEMPI 2.0 data set (35), which has 4,169 variants in 319 different complexes. A set S8338 

with 8,338 variants was derived from the SKEMPI 2.0 data set by setting the reverse 

mutation energy changes to the negative values of the original energy changes. To address 

the reliability of the TopNetTree method, we performed a 10-fold cross-validation on the 

SKEMPI 2.0 data set with the Pearson correlation coefficients Rp, Kendall’s τ, and the root 

mean square error (RMSE) being 0.98, 0.89, and 0.37 kcal/mol, respectively. As shown in 

Table 5, these metrics are based on the average of 10 10-fold cross-validations, which 

indicates that TopNetTree is well trained. The performance test of 10-fold cross-validation 

on a data set gives Rp = 0.84, τ = 0.60, and RMSE =1.06 kcal/mol, which is the same level 

of accuracy as the best results in the literature (77).

7.3. Graph Network Analysis

Graph networks represent interactions between pairs of units in biomolecular systems. The 

quantity of unique characteristics of the networks can be measured for descriptions and 

comparisons of different networks. When the PPIs are considered as networks, each 

descriptor evaluates the network properties and measures how proteins connect. For 

instance, a fixed domain of S-protein RBD and antibodies forms a network, where residues 

from 320 to 518 on SARS-CoV and residues from 329 to 530 on SARS-CoV-2 are 

considered in terms of Cα atoms. As discussed above, interaction subsets or similar subsets 

for Cα of each amino acid are defined as follows:

1. CAb r : antibody Cα atoms within r Å of any Cα of the antigen, where r = ∞ is 

for all Cα atoms on the antibody, and

2. CAg r : antigen Cα atoms within r Å of any Cα of the antibody, where r = ∞ is 

for all Cα atoms on the antigen.

With these definitions, network descriptors are defined below.

7.3.1. Flexibility–rigidity index.—The FRI is a great tool to illustrate the elasticity 

between atoms for molecular interaction prediction (45, 86). The molecular rigidity index is 

defined as a summation of all the atomic rigidity index μη,i as
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Rη = ∑
i = 1

NAB
μη, i = ∑

i = 1

NAB
∑
j = 1

NAG
e−

ri − rj
η

2

, 2.

where ri are atom positions; NAB and NAG are the numbers of atoms of antibody and 

antigen, respectively; and r =∞ for all Cα atoms such that CAb ∞  and CAg ∞ . The 

molecular rigidity index is used to describe the behavior of the dynamics and elastostatics of 

the biomolecular elasticity, where η controls the influence range between atoms. In PPIs, the 

elasticity between antibody and antigen, especially long-range impacts, is studied by 

calculating the FRI of the network consisting of Cα atoms.

7.3.2. Degree heterogeneity.—The degree heterogeneity is an index that evaluates the 

heterogeneity of a network on different distribution (19). The degree distribution ki is the 

number of ith nodes that have ki connections to other nodes. Therefore, the degree 

heterogeneity reflects the distributions of a network on different impacts, which is defined as

ρ = ∑
i = 1

Ne
∑

j = i + 1

Ne
ki

−1/2 − kj
−1/2 2 . 3.

In this case, Ne represents the number of edges. In our case, we study two networks 

consisting of all Cα atoms in CAg ∞ , where one network consists of Cα atoms from the 

SARS-CoV RBD, and the other consists of Cα atoms from the SARS-CoV-2 RBD. The 

degree heterogeneity illustrates the impacts of ACE2 or antibodies on these networks.

The rest descriptors are built on the network consisting of Cα atoms from CAg ∞  and 

CAb 10 .

7.3.3. Edge density.—The edge density is defined as

d = 2Ne
Nυ Nυ − 1 , 4.

where Ne is the number of edges, and Nv is the number of vertices for Cα atoms from 

CAg ∞  and CAb 10 . The edge density is also called the average degree centrality. For a 

complete network in which each every pair of network vertices is connected, the edge 

density is equal to one. A noncomplete network has an edge density smaller than one. With 

the same number of residues in the RBD for each PPI, a higher edge density stands for a 

firm connection between RBD and ACE2 or antibodies.

7.3.4. Average path length.—The characteristic path length indicates the typical 

separation between two vertices in the network. It was used to study infectious disease 

spread in the so-called small-world networks (79). The shortest path distance d(i,j) is defined 

as the shortest path between the corresponding pairs of vertices i and j. In PPIs, the path 
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length between two atoms reflects how ACE2 or antibodies connect to the RBD. The 

average path length is defined as

L = 1
Nυ Nυ − 1 ∑

i = 1

Nυ
∑

j = i + 1

Nυ
d i, j 5.

for Cα atoms from CAg ∞  and CAb (10). In this case, Nv represents the number of vertices.

7.3.5. Average betweenness centrality.—The concept of betweenness centrality 

illustrates communications in a network (26). The betweenness centrality of a vertex vk is 

given as

Cb vk = ∑
i = 1

Ne
∑

j = i + 1

Ne
gij υk /gij, 6.

and the average betweenness centrality is given as

Cb = 1
Nυ

∑
k = 1

Nυ
Cb υk , 7.

where gij(vk) is defined as the number of geodesics linking vertex vi and vj that pass vk, and 

gij considers all the paths between vi and vj. Nv indicates the number of vertices.

7.3.6. Average eigencentrality.—The eigenvector centrality represents the elements of 

the eigenvector Vmax with respect to the largest eigenvalue of the adjacency matrix A(3). It 

describes the probability of starting at and returning to the same point for infinite-length 

walks. Thus, the average eigenvector centrality is

Ce = 1
Nυ

∑
i = 1

Nυ
ei, 8.

where ei are elements of Vmax. The average eigenvalue centrality stands for the average 

impact spread of vertices beyond its neighborhood for an infinite walk.

7.3.7. Average subgraph centrality.—The following descriptors are built on the 

exponential of the adjacency matrix, E = eA. The average subgraph centrality is defined as

Cs = 1
Nυ

∑
k = 1

Nυ
E k, k , 9.

which indicates that the vertex participates in all subgraphs of the graphs (20, 23). In this 

case, E(k, k) indicates the element located at the kth row and kth column. Subgraph 

centrality is the summation of weighted closed walks of all lengths starting and ending at 

same node. The long path length has a small contribution.
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7.3.8. Average communicability and average communicability angle.—The 

final two descriptors are average communicability, given as

M = 2
Nυ Nυ − 1 ∑

i = 1

Nυ
∑

j = i + 1

Nυ
E i, j , 10.

and average communicability angle, given as

Θ = 2
Nυ Nυ − 1 ∑

i = 1

Nυ
∑

j = i + 1

Nυ
θ i, j , 11.

where θ i, j = arccos E i, j
E i, i , E j, j , and E is the exponential of the adjacency matrix. The 

average communicability measures how much two vertices can communicate by using all of 

the possible paths in the network, where the shorter path has more weight (20, 21). The 

average communicability angle evaluates the efficiency of two vertices passing impacts to 

each other in the network with all possible paths (20, 22).

8. CONCLUSION

Developing effective therapies for combating COVID-19 caused by SARS-CoV-2 has 

become a vital task for human health and the world economy. Although designing new anti-

SARS-CoV-2 drugs is of paramount importance, traditional drug discovery might take many 

years. Effective vaccines typically require more than a year to develop. Therefore, a more 

efficient strategy in fighting COVID-19 is to look for antibody therapies, which is a 

relatively easier technique compared to the development of small-molecular drugs or 

vaccines. The search for possible antibody drugs has attracted increasing attention in recent 

months. Moreover, CDRs, which are located in the tip of the antibody, determine the 

specificity of antibodies and make antibody therapies a promising way to fight COVID-19. 

Above, we analyze the structure, function, and therapeutic potential of seven SARS-CoV-2-

neutralizing antibody candidates that have 3D structures available in the PDB. In a 

comparative study, we also review five antibody 3D structures associated with SARS-CoV, 

as well as two ACE2 3D structures, one associated with SARS-CoV-2 and the other with 

SARS-CoV. All antibody and ACE2 structures form complexes with viral S proteins. The 

multiple-order-of-magnitude discrepancies in reported experimental binding affinities for 

these complexes motivates us to carry out a systematic computational analysis of these 14 

complexes. Using computational topology, machine learning, and wide class network 

models, we put all of the complexes on an equal footing to evaluate binding and interactions. 

Additionally, we evaluate the repositioning potentials of five SARS-CoV antibodies for 

treating COVID-19 by predicting their binding affinity changes following the mutations 

from SARS-CoV to SARS-CoV-2 at the S-protein RBD. Finally, we summarize all of the 

currently ongoing clinical antibody trails for COVID-19, which have many targets, including 

the S protein. In a nutshell, we provide a review of existing antibody therapies for 

COVID-19 and introduce many theoretical models to rank the potency and analyze the 

properties of antibodies.
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Figure 1. 
A schematic illustration of an antibody. Abbreviations: Fab, fragment, antigen-binding; Fc, 

fragment, crystallizable.
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Figure 2. 
A schematic illustration of antibody therapy. Abbreviations: ACE2, angiotensin-converting 

enzyme 2; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Figure 3. 
The alignment of the available 3D structures of SARS-CoV-2 S-protein RBD in binding 

complexes with antibodies, as well as with ACE2. Abbreviations: ACE2, angiotensin-

converting enzyme 2; RBD, receptor-binding domain; S, spike; SARS-CoV-2, severe acute 

respiratory syndrome coronavirus-2.
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Figure 4. 
The alignment of the available 3D structures of the SARS-CoV S-protein RBD in binding 

complexes with antibodies, as well as with ACE2. Abbreviations: ACE2, angiotensin-

converting enzyme 2; RBD, receptor-binding domain; S, spike; SARS-CoV, severe acute 

respiratory syndrome coronavirus.
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Figure 5. 
Illustration of the contact positions of antibody and ACE2 epitopes with SARS-CoV-2 and 

SARS-CoV S-protein RBDs on RBD 2D sequences. The proteins in the structures of 6M0J, 

6WPS, 6W41, 7C01, 7BWJ, 7BZ5, 6Z43, and 7BYR are in complexes with the SARS-

CoV-2 S protein, while the proteins in the structures of 3D0G, 2DD8, 6NB6, 6WAQ, 2GHW, 

and 3BGF are in complexes with the SARS-CoV S protein. Abbreviations: ACE2, 

angiotensin-converting enzyme 2; RBD, receptor-binding domain; S, spike; SARS-CoV, 

severe acute respiratory syndrome coronavirus.
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Figure 6. 
An illustration of the binding affinities of antibodies with SARS-CoV and SARS-CoV-2 

RBDs. The molecular names of these antibodies are 80R (PDB 2GHW), ACE2 (3D0G), 

VHH-72 (6WAQ), m396 (2DD8), S230 (6NB6), and F26G19 (3BGF). Abbreviations: 

ACE2, angiotensin-converting enzyme 2; RBD, receptor-binding domain; SARS-CoV, 

severe acute respiratory syndrome coronavirus.
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Figure 7. 
Overall binding affinity changes following the mutations of S protein RBD from SARS-CoV 

to SARS-CoV-2 for molecules 80R, ACE2, and VHH-72. The x axis records the wild type to 

the mutant type at the specific residue position. The tan region marks the RBM 

corresponding to ACE2. The height of each bar indicates the predicted binding affinity 

changes. A positive change indicates a strengthening of binding. Abbreviations: ACE2, 

angiotensin-converting enzyme 2; PDB, Protein Data Bank; RBD, receptor-binding domain; 

RBM, receptor-binding motif; S, spike; SARS-CoV, severe acute respiratory syndrome 

coronavirus.
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Figure 8. 
Overall binding affinity changes following the mutations of S protein RBD from SARS-CoV 

to SARS-CoV-2 for molecules m396, S320, and F26G19. The x axis records the wild type to 

the mutant type at the specific residue position. The tan region marks the RBM 

corresponding to ACE2. The height of each bar indicates the predicted binding affinity 

changes. A positive change indicates a strengthening of binding. Abbreviations: ACE2, 

angiotensin-converting enzyme 2; PDB, Protein Data Bank; RBD, receptor-binding domain; 

RBM, receptor-binding motif; S, spike; SARS-CoV, severe acute respiratory syndrome 

coronavirus.
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Figure 9. 
Cα network analysis of three antibody–antigen complexes. Circles indicate antigen (spike-

protein receptor-binding domain), and cubes represent antibody or angiotensin-converting 

enzyme 2. Columns list complexes 3D0G, 6M0J, and 6W41. Rows represent FRI, 

betweenness centrality, eigencentrality, and subgraph centrality. Abbreviations: FRI, 

flexibility–rigidity index; PDB, Protein Data Bank.
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Figure 10. 
An illustration of the TopNetTree model (77). Protein structure shown in the plot is an 

antibody (PDB 7BZ5) (blue indicates heavy chain, orange indicates light chain) and SARS-

CoV-2 S protein RBD (green) complex. H0 are the 0-dimensional topological input features 

for the machine learning model. Abbreviations: PDB, Protein Data Bank; RBD, receptor-

binding domain; S, spike; SARS-CoV, severe acute respiratory syndrome coronavirus.
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Table 1

A summary of monoclonal antibodies targeting the SARS-CoV-2 or SARS-CoV S protein with the 3D 

experimental structures of their complexes available in PDB

Protein or antibody Target Kd (nM)/Method PDB ID Resolution (A)˚

ACE2 SARS-CoV-2 RBD 1.2 / BLI (70)
34.6 / BLI (82)
15.2 / BLI (65)

6M0J (39) 2.45

S309 SARS-CoV-2 RBD IgG = 0.104 Fab = 1.98 / BLI (49) 6WPS, 6WPT (49) 3.10, 3.70

CR3022 SARS-CoV-2 RBD IgG = 6.28 / BLI (65)
IgG < 0.1 Fab = 115 / BLI (88)

6W41 (88) 3.08

CB6 SARS-CoV-2 RBD IgG = 2.49 / SPR (60) 7C01 2.85

P2B-2F6 SARS-CoV-2 RBD IgG = 5.14 /SPR (36) 7BWJ (36) 2.85

B38 SARS-CoV-2 RBD IgG = 70.1 /SPR(85) 7BZ5 (85) 1.84

H11-D4 SARS-CoV-2 RBD NA 6Z43 3.30

BD23 SARS-CoV-2 RBD NA 7BYR (8) 3.84

ACE2 SARS-CoV RBD 5.0 / BLI (70)
325.8 / BLI (82)
1.70 / BLI (61)

3D0G 2.80

CR3022 SARS-CoV RBD IgG < 0.1 Fab = 1 / BLI (88) NA NA

S309 SARS-CoV RBD IgG = 0.12 Fab = 1.81 / BLI (49) NA NA

m396 SARS-CoV RBD IgG = 0.005 Fab = 20 / BLI (50) 2DD8 (50) 2.30

S230 SARS-CoV RBD IgG = 0.06 / BLI (73) 6NB6 (73) 4.30

VHH-72
a SARS-CoV RBD IgG = 1.15 / SPR (81) 6WAQ (81) 2.20

80R SARS-CoV RBD IgG = 1.59 / BLI (61) 2GHW (34) 2.30

F26G19 SARS-CoV RBD Fab = 26 / SPR (47) 3BGF (47) 3.00

a
The binding affinity of VHH-72 with the SARS-CoV-2 RBD is Fab = 54 nM.

Abbreviations: ACE2, angiotensin-converting enzyme 2; BLI, biolayer interferometry; Fab, fragment, antigen-binding; NA, not applicable; PDB, 
Protein Data Bank; RBD, receptor-binding domain; S, spike; SARS-CoV, severe acute respiratory syndrome coronavirus; SPR, surface plasmon 
resonance.
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Table 2

Graph network descriptor consisting of SARS-CoV-2 S-protein RBD, ACE2, and antibodies

Molecule CR3022 B38 CB6 ACE2 BD23 H11-D4 S309 P2B-2F6

PDB ID 6W41 7BZ5 7C01 6M0J 7BYR 6Z43 6WPS 7BWJ

ΔG −15.4 −14.7 −13.5 −11.9 −10.8 −10.3 −9.9 −9.6

R10 335 349 338 279 227 201 256 211

R8 134 138 132 105 106 82 97 82

S10 19.15 30.17 36.56 20.83 10.39 8.91 18.28 17.74

S8 11.69 12.39 13.36 16.60 5.49 4.41 7.04 5.97

d 0.070 0.069 0.072 0.072 0.069 0.077 0.071 0.074

ρ 0.0192 0.0190 0.0196 0.0185 0.0171 0.0190 0.0206 0.0196

〈L〉 13.69 14.26 13.75 13.85 14.80 13.59 13.86 13.98

〈Cb〉 0.0109 0.0111 0.0110 0.0113 0.0130 0.0113 0.0112 0.0117

〈Ce〉 0.052 0.050 0.052 0.051 0.053 0.054 0.054 0.053

〈Cs〉 1590955 2397825 2010826 2105421 813061 2248985 1387110 1562243

〈M〉 847509 1237464 1096771 1132331 413572 1239452 753625 855641

〈Θ〉 0.0192 0.0190 0.0196 0.0185 0.0171 0.0190 0.0206 0.0196

ΔG indicates the predicted binding affinity (kcal/mol) [the predictions are made using the Prodigy web server (87)]; R10 and R8 indicate the FRI 

with η of 10 and 8, respectively; S10 and S8 indicate the summation of binding affinity changes (ΔΔG kcal/mol) by mutating RBD residues within 

10 Å and 8 Å to any Cα of antibodies to glycine; d indicates edge density; ρ indicates degree heterogeneity; 〈L〉 indicates average path length; 

〈Cb〉 indicates average betweenness centrality; 〈Ce〉 indicates average eigencentrality; 〈Cs〉 indicates average subgraph centrality; 〈M〉 indicates 

average communicability; and 〈Θ〉 indicates average communicability angle.

Abbreviations: FRI, flexibility–rigidity index; PDB, Protein Data Bank; RBD, receptor-binding domain; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2.
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Table 3

Graph network descriptor consisting of SARS-CoV S-protein RBD, ACE2, and antibodies

Molecule 80R ACE2 VHH-72 m396 S230 F26G19

PDB ID 2GHW 3D0G 6WAQ 2DD8 6NB6 3BGF

ΔG −17.3 −11.5 −9.7 −9.4 −7.7 −6.7

R10 378 270 255 304 195 254

R8 157 101 103 119 72 101

S10 20.35 13.05 13.37 10.79 11.48 14.01

S8 8.92 1.56 7.49 6.47 8.09 7.84

d 0.070 0.070 0.074 0.073 0.078 0.072

ρ 0.0206 0.0187 0.0193 0.0186 0.0197 0.0190

〈L〉 13.35 12.91 13.46 12.90 12.96 12.63

〈Cb〉 0.0120 0.0108 0.0109 0.0113 0.0119 0.0113

〈Ce〉 0.053 0.053 0.053 0.054 0.054 0.056

〈Cs〉 2693776 1418662 1607217 2383597 3167175 1897873

〈M〉 1446506 730809 915061 1311299 1714397 1039376

〈Θ〉 0.0206 0.0187 0.0192 0.0186 0.0196 0.0190

ΔG indicates the predicted binding affinity (kcal/mol) [the predictions are made using the Prodigy web server (87)]; R10 and R8 indicate FRI with 

η of 10 and 8, respectively; S10 and S8 indicate the summation of binding affinity changes (ΔΔG kcal/mol) by mutating RBD residues within 10 Å 

and 8 Å to any Cα of antibodies to glycine; d indicates edge density; ρ indicates degree heterogeneity; 〈L〉 indicates average path length; 〈Cb〉 
indicates average betweenness centrality; 〈Ce〉 indicates average eigencentrality; 〈Cs〉 indicates average subgraph centrality; 〈M〉 indicates average 

communicability; and 〈Θ〉 indicates average communicability angle.

Abbreviations: FRI, flexibility–rigidity index; PDB, Protein Data Bank; RBD, receptor-binding domain; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2.
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Table 4

Summary of ongoing clinical trials of COVID-19 antibody therapeutic candidates

Antibody ID Manufacturer Target Trial location
Trial 
phase Start date

Lanadelumab
a Shire pKal Radboud University Medical Center, 

Nijmegen, Netherlands
4 /

Octagam
a Pfizer Antibody mixture Sharp Memorial Hospital, San Diego, 

California, United States
4 4/28/2020

Sarilumab
a,b Regeneron 

Pharmaceuticals and 
Sanofi

IL-6 Assistance Publique—Hôpitaux de Paris, 
Paris, France

3 3/25/2020

VA Boston Healthcare System, Boston, 
Massachusetts, United States

2 4/10/2020

Sirukumab
a,b Janssen Biotech IL-6 Sanofi-Aventis Recherche et 

Développement, Chilly-Mazarin, France
3 3/26/2020

Loyola University Medical Center, 
Maywood, Illinois, United States

2 4/24/2020

Canakinumab
a,b Novartis Interleukin-1β Novartis Investigative Site, Glendale, 

California, United States
3 4/30/2020

Novartis Pharma GmbH, Nürnberg, 
Germany

3 4/29/2020

IFX-1
b InflaRx C5a InflaRx GmbH, Jena, Germany 3 3/29/2020

Lenzilumab
a Humanigen GM-CSF Mayo Clinic, Phoenix, Arizona, United 

States
3 4/30/2020

Mylotarg
b Celltech and Wyeth CD33 UK Research and Innovation, United 

Kingdom
3 5/5/2020

Ravulizumab
b Alexion Pharmaceuticals C5 Alexion Europe SAS, Levallois-Perret, 

France
3 5/7/2020

Tocilizumab
a,b Roche IL-6 Queen’s Medical Center, Honolulu, Hawaii, 

United States
3 6/1/2020

F. Hoffmann-La Roche Ltd., Basel, 
Switzerland

3 4/6/2020

Avdoralimab
b Innate Pharma C5a Assistance Publique Hôpitaux De Marseille, 

Marseille, France
2 4/23/2020

Bevacizumab
b Genentech VEGF-A Fundación para la Investigación Biomédica 

de Córdoba, Córdoba, Spain
2 4/24/2020

CERC 002
a Cerecor LIGHT Cape Fear Valley Medical Center, 

Fayetteville, North Carolina, United States
2 6/9/2020

Clazakizumab
a Bristol Myers Squibb and 

Alder Biopharmaceuticals
IL-6 Cedars-Sinai Medical Center, Los Angeles, 

California, United States
2 4/24/2020

Gimsilumab
a Eisai Inc GM-CSF UCLA Ronald Reagan Medical Center, Los 

Angeles, California, United States
2 4/12/2020

IC14
a Scripps Research CD14 University of Washington, Seattle, 

Washington, United States
2 7/2020

Infliximab
a Janssen Biotech TNFα Tufts Medical Center, Boston, 

Massachusetts, United States
2 6/1/2020

Leronlimab
a CytoDyn CCR5 University of California, Los Angeles, 

California, United States
2 4/1/2020

LY3127804
a Eli Lilly and Company Ang2 NorthShore University HealthSystem, 

Evanston, Illinois, United States
2 4/20/2020
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Antibody ID Manufacturer Target Trial location
Trial 
phase Start date

LY3819253
a Eli Lilly and Company S protein Cedars-Sinai Medical Center, Los Angeles, 

California, United States
2 6/13/2020

Mavrilimumab
a MedImmune GM-CSF Cleveland Clinic Health System, Cleveland, 

Ohio, United States
2 5/20/2020

MSTT1041A
a Genentech ST2 eStudySite-Chula Vista-PPDS, Chula Vista, 

California, United States
2 6/2/2020

Nivolumab
b Bristol-Myers Squibb PD-1 Centre Léon Bérard, Léon, France 2 4/1/2020

Otilimab
a,b MorphoSys GM-CSF GSK Investigational Site, Saint Louis Park, 

Minnesota, United States
2 5/28/2020

GlaxoSmithKline Research Development 
Ltd., Brentford, United Kingdom

2 5/20/2020

Siltuximab
b Eusapharma IL-6 Fundacié Clínic per a la Recerca 

Biomédica, Barcelona, Spain
2 4/7/2020

SNDX-6352
a Syndax Pharmaceuticals CSF-1R HonorHealth, Scottsdale, Arizona, United 

States
2 5/30/2020

ARGX-117
b Argenx C2 Argenx BV, Zwijnaarde, Belgium 1 4/21/2020

TJ003234
a / GM-CSF GW Medical Faculty Associates, 

Washington, District of Columbia, United 
States

1 4/11/2020

JS016
c Junshi Biosciences S protein Huashan Hospital Affiliated to Fudan 

University, Shanghai, China
1 6/7/2020

a
See https://clinicaltrials.gov/ct2/results?recrs=ab&cond=covid-19&term=&cntry=US&state=&city=&dist=.

b
See https://www.clinicaltrialsregister.eu/ctr-search/search?query=covid-19.

c
See https://www.globenewswire.com/news-release/2020/06/07/2044620/0/en/Junshi-Biosciences-Announces-Dosing-of-First-Healthy-Volunteer-

in-Phase-I-Clinical-Study-of-SARS-CoV-2-Neutralizing-Antibody-JS016-in-China.html.
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Table 5

Ten-fold cross-validation of the TopNetTree on the SKEMPI 2.0 data set

Rp τ RMSE (kcal/mol) Rp τ RMSE (kcal/mol)

Fold 1 (Train) 0.981 0.884 0.366 Fold 6 (Train) 0.983 0.904 0.353

Fold 1 (Test) 0.835 0.595 1.065 Fold 6 (Test) 0.836 0.594 1.064

Fold 2 (Train) 0.982 0.902 0.360 Fold 7 (Train) 0.983 0.904 0.356

Fold 2 (Test) 0.839 0.600 1.061 Fold 7 (Test) 0.838 0.594 1.060

Fold 3 (Train) 0.982 0.887 0.366 Fold 8 (Train) 0.979 0.878 0.392

Fold 3 (Test) 0.837 0.595 1.068 Fold 8 (Test) 0.840 0.596 1.061

Fold 4 (Train) 0.981 0.880 0.369 Fold 9 (Train) 0.982 0.902 0.362

Fold 4 (Test) 0.841 0.596 1.059 Fold 9 (Test) 0.838 0.596 1.069

Fold 5 (Train) 0.982 0.906 0.365 Fold 10 (Train) 0.982 0.886 0.367

Fold 5 (Test) 0.839 0.594 1.062 Fold 10 (Test) 0.835 0.596 1.064

Average (Train) 0.982 0.893 0.366

Average (Test) 0.838 0.596 1.063

Abbreviation: RMSE, root mean square error.
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