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Abstract

Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution 

Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into 

two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical 

Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete 

Representation based SD (DR-SD), where the signal profile is represented by a discrete set of 

basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative and 

should integrate to unity throughout the unit sphere S2. However, to our knowledge, most existing 

SH-based SD methods enforce non-negativity only on discretized points and not the whole 

continuum of S2. Maximum Entropy SD (MESD) and Cartesian Tensor Fiber Orientation 

Distributions (CT-FOD) are the only SD methods that ensure non-negativity throughout the unit 

sphere. They are however computational intensive and are susceptible to errors caused by 

numerical spherical integration. Existing SD methods are also known to overestimate the number 

of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in 

peak detection owing to the angular discretization of the unit sphere. This paper proposes a SD 

framework, called non-negative SD (NNSD), to overcome all the limitations above. NNSD is 

significantly less susceptible to the false-positive peaks, uses SH representation for efficient 

analytical spherical deconvolution, and allows accurate peak detection throughout the whole unit 

sphere. We further show that NNSD and most existing SD methods can be extended to work on 

multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD 

in comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and 

an L1-norm regularized non-negative least-squares DR-SD. Experiments on synthetic and real 

single-/multi-shell data indicate that NNSD improves estimation performance in terms of mean 
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difference of angles, peak detection consistency, and anisotropy contrast between isotropic and 

anisotropic regions.
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Constraint; Spherical Harmonics

1. Introduction

Diffusion MRI (dMRI) non-invasively reveals the microstructure of white matter by 

capturing the diffusion patterns of water molecules. The most widely used dMRI approach, 

Diffusion Tensor Imaging (DTI), captures one fiber direction per voxel and is incapable of 

describing complex diffusion processes due to its Gaussian diffusion assumption (Johansen-

Berg and Behrens, 2009). In view of this, many High Angular Resolution Diffusion Imaging 

(HARDI) (Tuch et al., 2002) methods, have been developed in recent years to characterize 

non-Gaussian diffusion and compute quantities such as the Ensemble Average Propagator 

(EAP) (Wedeen et al., 2005; Descoteaux et al., 2010; Cheng et al., 2010b; Özarslan et al., 

2009; Cheng et al., 2012), diffusion Orientation Distribution Function (dODF) (Tuch, 2004; 

Hess et al., 2006; Descoteaux et al., 2007; Aganj et al., 2010; Cheng et al., 2010a, 2012), 

and fiber Orientation Distribution Function (fODF) (Tournier et al., 2004, 2007; Alexander, 

2005; Jian and Vemuri, 2007; Dell’Acqua et al., 2007, 2010; Landman et al., 2012; 

Weldeselassie et al., 2012).

Spherical Deconvolution (SD) has been shown to be effective for estimating the fODF by 

assuming that the measured diffusion-weighted signal can be obtained via spherically 

convolving a latent fODF with a fiber response function estimated from voxels known to be 

traversed by a single fascicle (Tournier et al., 2004, 2007; Jian and Vemuri, 2007; Johansen-

Berg and Behrens, 2009). The fODF can hence be recovered via an inverse problem by 

deconvolving the signal with the estimated fiber response function. The local peaks 

(maxima) of the fODF give the corresponding fiber directions. SD methods can be classified 

into two categories, 1) Continuous Representation based SD (CR-SD), which is normally 

based on the Spherical Harmonic (SH) basis (Tournier et al., 2004, 2007; Anderson, 2005), 

and 2) Discrete Representation based SD (DR-SD), which is based on a discrete mixture of 

rotated versions of the fiber response function (Jian and Vemuri, 2007; Dell’Acqua et al., 

2007, 2010; Landman et al., 2012).

Existing SD methods in both continuous and discrete representation categories share some 

common limitations. First, they often result in false-positive fiber directions (Tournier et al., 

2004, 2007; Alexander, 2005; Johansen-Berg and Behrens, 2009; Jian and Vemuri, 2007; 

Landman et al., 2012; Weldeselassie et al., 2012), especially in low-anisotropy gray matter 

and cerebrospinal fluid (CSF) regions. Second, they normally fall short in ensuring that the 

estimated fODF is a proper probability density function, because non-negativity and unit 

integral throughout the unit sphere are not explicitly enforced. Most SD methods, including 

the popular Constrained SD (CSD) (Tournier et al., 2007) and all DR-SD methods (Jian and 

Vemuri, 2007; Dell’Acqua et al., 2007, 2010; Landman et al., 2012), consider non-negativity 
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only on discretized points but not the whole continuum of the unit sphere S2. To the best of 

our knowledge, Maximum Entropy SD (MESD) (Alexander, 2005) and Cartesian Tensor 

Fiber Orientation Distributions (CT-FOD) (Weldeselassie et al., 2010, 2012) are the only 

existing methods that ensure non-negativity throughout S2. However, they are 

computationally inefficient and rely on the error-prone process of numerical spherical 

integration. Ad-hoc normalization is also employed in these methods to obtain fODFs with 

unit integral. Some methods estimate continuously non-negative dODFs (Schwab et al., 

2012; Cheng et al., 2012; Krajsek and Scharr, 2012) and EAPs (Cheng et al., 2012) using 

eigenvalue distribution of spherical functions and square root representation. But to our 

knowledge, none of these methods has been proposed to estimate continuously non-negative 

fODF in a SD framework. Third, for estimation of the fODF with reasonable accuracy, DR-

SD methods (Jian and Vemuri, 2007; Dell’Acqua et al., 2007, 2010; Landman et al., 2012) 

require a significant amount of rotated fiber response functions along directions that are 

distributed densely on the unit sphere, significantly increasing the dimensionality and the 

time cost of the optimization problem. Furthermore, since for DR-SD methods (Jian and 

Vemuri, 2007; Dell’Acqua et al., 2007, 2010; Landman et al., 2012) the local peaks 

(maxima) of the fODF are detected from discretized points on the unit sphere, the angular 

resolution is limited.

To our knowledge, existing SD methods deal only with single-shell data (i.e., single b-value) 

and do not consider the radial component of diffusion. With advances in dMRI, multi-shell 

data are increasingly available (e.g., Human Connectome Project (HCP)1 (Sotiropoulos et 

al., 2013)). For example, the HCP Q1 data2 come with three b-values (b = 

1000/2000/3000s/mm2). Recent estimation methods such as the ball-stick model (Jbabdi et 

al., 2012), Q-Ball Imaging (Aganj et al., 2010), and other multi-shell HARDI methods 

(Assemlal et al., 2011; Cheng et al., 2010b,a; Descoteaux et al., 2010; Özarslan et al., 2009) 

demonstrated that ODF, EAP as well as fiber directions can be estimated with greater 

accuracy from multi-shell data compared with single-shell data. However, there is currently 

no existing work on how to perform SD on multi-shell data.

In this paper, we propose a method called Non-Negative Spherical Deconvolution (NNSD) 

to estimate fODF from both single- and multi-shell data. The main contributions of this 

paper are summarized as follows:

• NNSD is the first SH-based SD method to guarantee non-negativity throughout 

S2, not only on discretized points on the unit sphere, as in CSD (Tournier et al., 

2007). In NNSD, non-negativity is achieved by representing the square root of 

the fODF as a linear combination of SH basis functions. Compared with non-SH 

methods like MESD and CT-FOD, which also guarantee non-negativity on the 

whole S2, NNSD is significantly faster due to the use of closed-form expression 

for spherical convolution. Compared with CSD which suppresses negative values 

in discrete samples using iteratively re-weighted regularization, the non-

1http://www.humanconnectome.org/data/
2http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html#dMRI
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negativity constraint in NNSD is built into its fODF representation and hence 

NNSD works well even without any regularization.

• In addition to the non-negativity constraint, NNSD reduces spurious peaks by 

implementing Riemannian gradient descent with an adaptive stopping condition. 

As a result, the anisotropy values of the fODFs estimated by NNSD in gray and 

white matter regions exhibit large contrast. Existing SD methods result in many 

false-positive peaks and hence high anisotropy in regions that are less 

anisotropic.

• Compared with traditional single-shell methods, we show that multi-shell data 

can be used for fODF estimation with greater robustness.

• Performance evaluation using real data is difficult due to the lack of ground truth. 

We propose in this paper a measure called Peak Consistency (PC) for 

quantitative fODF evaluation without exact knowledge of the ground truth.

Part of this work has been reported in our conference paper (Cheng et al., 2013b,a). Herein, 

we provide additional examples, results, derivations, and insights that are not part of this 

conference publication.

The rest of the paper is organized as follows. SD theory and algorithms are reviewed in 

Section 2. Section 2.1 provides an overview of existing SD methods using single-/multi-shell 

data, i.e. CSD (Tournier et al., 2007), a variant of CSD based on quadratic programming, 

MESD (Alexander, 2005), and DR-SD via L1 regularized non-negative least-squares fitting 

(L1-NNLS) (Jian and Vemuri, 2007; Landman et al., 2012). Section 2.2 describes NNSD 

and the associated Riemannian gradient descent algorithm. Two stopping strategies for 

Riemannian gradient descent are discussed. Section 3 furnishes evaluation details, including 

fiber response function estimation (Section 3.1), peak detection (Section 3.2), synthetic data 

generation (Section 3.3), and peak consistency evaluation (Section 3.4). In Section 4, NNSD 

is evaluated in comparison with the methods discussed in Section 2.1. Section 5 provides 

additional discussions on various aspects of NNSD. Section 6 concludes this paper.

2. Theory

2.1. Spherical Deconvolution Revisited

In this section, we describe CSD, MESD, and L1-NNLS, which were originally proposed for 

single-shell data, and generalize them for multiple-shell data. We also proposed a new 

implementation of CSD using quadratic programming.

Constrained SD (CSD).—SD (Tournier et al., 2004; Anderson, 2005) methods assume 

that the measured signal in each voxel is the product of convolving a latent fODF with an 

axisymmetric fiber response function. For u ∈ S2, the fODF is represented as

Φ(u) = ∑
l = 0

L
∑

m = − l

l
flmY l

m(u ), (1)

and the axisymmetric 3D fiber response function along the z-axis is represented as
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H(qu ∣ (0, 0, 1)) = ∑
l = 0

L
ℎl(q)Y l

0(u), (2)

where Y l
m(u) is the l order m degree real SH basis function (Johansen-Berg and Behrens, 

2009; Descoteaux et al., 2007) defined in spherical coordinates as

Y l
m(θ, ϕ) =

2Re yl
m (θ, ϕ)  if −l ≤ m < 0,

yl
m(θ, ϕ)  if m = 0,

2Im yl
m(θ, ϕ)  if  0 < m ≤ l,

(3)

yl
m(θ, ϕ) = 2l + 1

4π
(l − m)!
(l + m)!eimϕPl

m(cos θ) . (4)

Re(·) and Im(·) denote respectively the real and imaginary parts of a complex number. Pl
m( ⋅ )

is the associated Legendre polynomial. Since the fODF is antipodal symmetric, only even l’s 

are used. Based on the property of spherical convolution and spherical harmonics (Tournier 

et al., 2004; Anderson, 2005), the diffusion signal can be represented in closed form as the 

convolution of the fiber response function with the fODF (Tournier et al., 2004) using

E(qu) = ∫
S2H(qu ∣ r)Φ(r)dr = ∑

l = 0

L
∑

m = − l

l 4π
2l + 1flmℎl(q)Y l

m(u) . (5)

Note that in the original formulation (Tournier et al., 2004), signal measurements are 

performed on a single-shell in the q-space3, fixing q at a certain value. In the current work, 

we let q vary and define the fiber response function in ℝ3, hence allowing the coefficients 

{hl(q)} to vary across shells. This generalization allows us to extend CSD to work with 

multi-shell data. Based on Eq. (1) and Eq. (2), the SH coefficient vector f = (f00, …, fLL)T of 

the fODF can be estimated via

min
f

‖Mf − E‖2
2, (6)

where M = 4π
2l + 1ℎl qi Y l

m ui  is an N × (L + 1)(L + 2)
2  basis matrix that is the element-wise 

product between the SH basis matrix Y l
m ui  and the radial basis matrix 4π

2l + 1ℎl qi , and 

E = (E1, …, EN)T is the measured signal vector, including samples from single shell or 

multiple shells. The least-squares solution is (MTM)−1MTE (Tournier et al., 2004). Due to 

the smoothness of H(qu), hl(q) decreases to zero as l increases, causing instability in 

estimating flm when l is large. Therefore, Tournier et al. (2004) proposed a low-pass Filtered 

SD (FSD) by down-weighting the high-order SH coefficients. However, FSD is known to 

result in many false-positive peaks because fODF non-negativity is not considered. In view 

3q = qu is a wave vector in q-space.
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of this, Constrained SD (CSD) (Tournier et al., 2007) attempts to iteratively suppress the 

negative values by a discrete reconstruction of each fODF estimate, i.e.

f(k + 1) = argmin
f

∥ Mf − E ∥2
2 + λCSD

2 ‖L(k)f‖2
2, (7)

where Li, j
(k) = Pi, j if  Pf(k)

i < τ, Li, j
(k) = 0 if  Pf(k)

i > τ, and P is a matrix for reconstructing 

the fODF at discretized points on S2. τ is a threshold normally chosen as 0.1 (Tournier et al., 

2007). Note that non-negativity is only imposed on a set of discretized points, not 

throughout the whole unit sphere. Although CSD reduces significantly the negative values 

compared with FSD (Tournier et al., 2004), a significant amount of negative values still 

exist, even at points where non-negativity is imposed. An implementation of CSD for single 

shell data is available via MRtrix4 (Tournier et al., 2012).

Maximum Entropy SD (MESD).—MESD is a CR-SD method that involves solving a 

non-linear least-squares problem using the Levenberg-Marquardt algorithm (Alexander, 

2005). Based on the maximum entropy principle, the fODF is represented as an exponential 

function of the mixture of fiber response functions, i.e.,

min
λj i = 0

K
∑
i = 1

N ∫
S2H qi ∣ r Φ r ∣ λj j = 0

K dr − Ei
2
, (8)

Φ r ∣ λj j = 0
K = exp λ0 + ∑

j = 1

K
λjH qj ∣ r , (9)

where N is the number of diffusion-weighted samples. The exponential representation 

naturally ensures non-negativity on S2. However, without any closed-form expression for 

spherical convolution as in Eq. (5), the spherical integration in Eq. (8) needs to be 

approximated numerically. Based on the method of Lagrange multipliers and the maximum 

entropy principle, K should ideally be equal to N and the sampling points qj j = 1
K  should 

correspond to the N sampling points of the diffusion-weighted signal (Alexander, 2005). 

However, as a trade-off between accuracy and speed, only K < N evenly distributed points 

are used5. After estimating λj j = 0
K , ad-hoc normalization of the fODF needs to be 

performed for unit integral. CT-FOD (Weldeselassie et al., 2010, 2012), which achieves non-

negativity by representing the fODF using a sum of squares of homogeneous polynomials, 

share the same limitations as MESD by relying on numerical spherical integral and ad-hoc 

normalization.

L1-NNLS.—DR-SD uses a discrete representation of the fODF: {wi = Φ(ui)} (Jian and 

Vemuri, 2007; Landman et al., 2012; Yap and Shen, 2012).

4MRtrix: http://www.brain.org.au/software/mrtrix/
5Camino: http://cmic.cs.ucl.ac.uk/camino//index.php?n=Tutorials.MultifibreReconstruction#toc5
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The SD problem in this case is typically formulated as

min
w

∥ Aw − E ∥2
2 + λL1 ∥ w ∥1 ,  s.t.  w ≥ 0, (10)

where A is a matrix with columns containing rotated versions of the fiber response function, 

and λL1 is the sparsity tuning parameter. We refer to this method as L1 regularized Non-

Negative Least Squares (L1-NNLS). The problem in Eq. (10) can be solved using efficient 

algorithms, such as those reported in (Lee et al., 2006; Kim et al., 2007). When λL1 = 0, Eq. 

(10) becomes the Non-Negative Least Squares (NNLS) (Landman et al., 2012; Jian and 

Vemuri, 2007; Dell’Acqua et al., 2007). The Richardson-Lucy SD (Dell’Acqua et al., 2007), 

another DR-SD method, was shown to converge to the solution of NNLS in the case of 

Gaussian noise (De Pierro, 1993). The sparsity of the solution increases as λL1 increases. If 

λL1 is large enough, all elements in w are zero. Landman et al. (2012) proposed to determine 

λL1 based on the so-called breakdown parameter λL1* = ‖2ATE‖∞, which is the minimal λL1 

that causes w = 0 (Kim et al., 2007). Experimentally, Landman et al. (2012) set λL1 = 0.1λL1* . 

We followed this approach for experiments performed in this paper. Since the fODF in L1-

NNLS is represented using discretized points, peak detection is restricted to these points 

instead of the whole S2, limiting the angular resolution.

QP-CSD.—We propose a quadratic programming implementation of CSD (QP-CSD) for 

imposing non-negativity in a manner that is more similar to NNLS, i.e.,

min
f

∥ Mf − E ∥2
2 ,  s.t.  f00 = 1

4π , Pf ≥ 0, (11)

where f00 = 1
4π  ensures unit integral

∫
S2Φ(u)du = ∫

S2 ∑
l = 0

L
∑

m = − l

l
flmY l

m(u)du = 1 . (12)

QP-CSD, unlike CSD, produces the global solution and guarantees non-negativity on fODF 

points specified by matrix P. Compared with L1-NNLS, QP-CSD works in a low dimension 

space thanks to the SH representation and allows peak detection to be performed on the 

continuous sphere.

2.2. Non-Negative Spherical Deconvolution (NNSD)

SH-based SD methods are able to leverage the nice property of having a closed-form 

solution to spherical deconvolution. But currently they fall short in enforcing non-negativity 

throughout the unit sphere. To address this issue, we propose a new approach called Non-

Negative Spherical Deconvolution (NNSD), which we will describe next.

2.2.1. Square Root Representation of the fODF—The square root representation 

has been proposed for the dODF (Cheng et al., 2009) and the EAP (Cheng et al., 2011), and 

it has been used for non-negative dODF and EAPs estimation (Cheng et al., 2012). In this 
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work, we propose to utilize the square root representation for non-negative fODF estimation 

by letting

Φ(u ∣ c) = ∑
l = 0

L
∑

m = − l

l
clmY l

m(u)
2

= ∑
α = 0

2L
∑

β = − α

α
∑
l, m

L
∑
l′, m′

L
clmcl′m′Qll′α

mm′β

fαβ

Y α
β(u),

(13)

where

Qll′α
mm′β = ∫

S2Y l
m(u)Y l′

m′(u)Y α
β(u)du . (14)

The notation ∑l, m
L  is a shorthand for ∑l = 0

L ∑m = − l
l . Qll′α

mm′β is a constant resulting from the 

integration of three real SH functions (Cheng et al., 2012), which can be calculated from the 

Wigner 3-j symbol and Eq. (3). Note that the sum over α is up to 2L, because when α > 2L, 

Qll′α
mm′β = 0, based on the property of the Wigner 3-j symbol6.

Note that 1) a SH representation of Φ(u) with maximum order L corresponds to a SH 

representation of Φ(u) with maximum order 2L. Therefore compared with Eq. (1), the 

square root representation Eq. (13) is more compact in representing high angular resolution 

information. This is also contributive to reducing the Gibbs ringing artifact associated with 

the truncation of the SH series (Raffelt et al., 2012); 2) the fODF is naturally non-negative 

throughout S2 due to the square root representation.

Based on Eq. (2), Eq. (5) and Eq. (13), the diffusion signal can be represented using 

convolution as

E(qu) = ∑
α = 0

2L
∑

β = − α

α 4π
2α + 1fαβℎα(q)Y α

β(u)

= ∑
α = 0

2L
∑

β = − α

α
∑
l, m

L
∑
l′, m′

L 4π
2α + 1clmcl′m′Qll′α

mm′βℎα(q)Y α
β(u)

= cTK(qu)c,

(15)

where for any fixed qu, K(qu) is a square matrix of dimension (L+1)(L+2)/2 with elements

Kll′
mm′(qu) = ∑

α = 0

2L
∑

β = − α

α 4π
2α + 1Qll′α

mm′βℎα(q)Y α
β(u) . (16)

2.2.2. Riemannian Gradient Descent—Based on Eq. (15), we propose to estimate c 

from the measured Ei i = 1
N  by minimizing

6http://mathworld.wolfram.com/Wigner3j-Symbol.html
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J(c) = 1
2 ∑

i = 1

N
cTK qiui c − Ei

2 + 1
2cTΛc,  s.t.  ∥ c ∥2 = 1 (17)

where Λ is a diagonal matrix with elements Λlm = λNNSDl2(l + 1)2 for Laplace-Beltrami 

regularization (Descoteaux et al., 2007), penalizing the high-order coefficients. The 

constraint ∥c∥2 = 1 is a result of the unit integral, i.e. ∫S2Φ(u)du = 1, and the orthogonality of 

the SH basis:

∫
S2Φ(u)du = ∑

l, m

L
∑
l′, m′

L
clmcl′m′∫

S2Y l
m(u)Y l′

m′(u)du = ∥ c ∥2
2 = 1, (18)

which is equivalent to f00 = 1
4π , as in Eq. (11). The influence of the unit integral constraint 

on NNSD will be discussed in Section 5.3.

We propose a Riemannian gradient descent method on the sphere ∥c∥2 = 1 to minimize Eq. 

(17). The Euclidean gradient of J(c) is

∂J(c)
∂c = ∑

i = 1

N
2 cTK qiui c − Ei K qiui c + Λc (19)

and the Riemannian gradient is the projection of Euclidean gradient onto the tangent space 

of c, i.e.,

∇J(c) = ∂J(c)
∂c − cT∂J(c)

∂c c . (20)

The Riemannian gradient descent associated with J(c) is

c(k + 1) = expc(k) −dt ∇J(c)
∥ ∇J(c) ∥2

, (21)

Expc(v) = ccos ∥ v ∥2 + v
∥ v ∥2

sin ∥ v ∥2 , (22)

where c(k) is the estimated c in the k-th step, dt is the step size chosen from inexact line 

search in (0, dt0], and Expc(v) is the exponential map on the sphere (Cheng et al., 2009). See 

Algorithm 1 for a summary of the whole process. We use the isotropic fODF with c(0) = (1, 

0, …, 0)T for initialization and choose dt0 = 0.1 based on experimental observations and the 

fact that ∥c∥2 = 1. We found that NNSD is robust to noise and λNNSD = 0 works well in the 

experiments. The stopping condition is described next.

2.2.3. Adaptive Stopping Condition—The stopping condition for Algorithm 1 is
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J(k) = J c(k − 1) − J c(k)

J c(k − 1) < δ . (23)

Parameter δ should be chosen as a small number such that the algorithm converges to a local 

minimum of Eq. (17). Experimentally δ = 10−2 works well in most cases. If δ is further 

reduced beyond 10−2, the fODFs in regions with high anisotropy will increase in sharpness, 

but the fODFs in regions with low anisotropy will however suffer from spurious peaks due to 

over-fitting. Therefore, we propose to adaptively stop the algorithm if GFA(c(k)) < T and 

J(k) < δ0 or if GFA(c(k)) ≥ T and J(k) < 0.01δ0, where δ0 = 10−2 and

GFA(c) = 1 −
c00

2

∥ c ∥2
2 = 1 − c00

2 (24)

is the Generalized Fractional Anisotropy (GFA) (Tuch, 2004) of the square root of the fODF 

Φ(u ∣ c), and T ∈ [0, 1] is a threshold depending on the noise level. We call the NNSD 

implementation with this adaptive stopping condition ASC-NNSD. Since gradient descent is 

initialized using the isotropic fODF, GFA(c(k)) < T is satisfied for all voxels during the early 

stage of optimization. As k increases, J(k) decreases such that for a certain step k0 we have 

J k0 < δ0. If for a voxel J k0 < δ0 and GFA c k0 < T , we consider the voxel insufficiently 

anisotropic to proceed further and hence stop the algorithm early at step k0. If J k0 < δ0 and 

GFA c k0 ≥ T , we consider the voxel anisotropic and further refine the solution by 

proceeding with gradient descent. When T = 0, ASC-NNSD becomes NNSD with δ = 

0.01δ0 = 10−4; when T = 1, ASC-NNSD becomes NNSD with δ = δ0 = 10−2. Both NNSD 

and ASC-NNSD converge quickly, normally in a dozen of steps. Based on our C++ 

implementation, if L = 6, 1000 fODFs can be estimated within 5 seconds using an ordinary 

laptop, significantly faster than MESD as implemented in Camino (Alexander, 2005).

3. Methods

3.1. Estimation of Fiber Response Function

SD methods require an estimate of the fiber response function, which is essentially the 

diffusion signal profile of a single-directional highly-coherent fiber bundle. Anderson (2005) 

computed a SH representation of the fiber response function using the diffusion signal 

generated from a tensor model. Tournier et al. (2007) proposed to first fit the tensor model to 
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the data of voxels with high Fractional Anisotropy (FA) and then rotate the diffusion-

weighted measurements such that the principal directions coincide with the z-axis. From the 

rotated measurements, the SH coefficients of the fiber response function are computed. 

Although these two methods described above were originally proposed for single-shell data, 

they can be generalized for multi-shell data using two different approaches:

• First fit diffusion models, such as DTI (Basser et al., 1994) or Spherical Polar 

Fourier Imaging (Assemlal et al., 2009; Cheng et al., 2010b), to high-anisotropy 

diffusion signal E(q) in ℝ3. Then, reconstruct the signal in each shell and 

compute the SH representation (Anderson, 2005; Cheng et al., 2010b).

• If a sufficiently large number of measurements are collected for each shell, the 

fiber response function can be estimated independently for each shell using the 

approach described in (Tournier et al., 2007).

Both approaches were used in the experiments (see Section 4.1).

3.2. Peak Detection

At each voxel, fiber orientations are given by the peaks or local maxima of each fODF. For 

L1-NNLS, the peaks are determined based on the local maxima of 321 points evenly 

distributed on a hemisphere, generated by subdividing the faces of an icosahedron. We 

discard local maxima with low fODF value and consider only peaks with fODF values 

greater than the mean of the minimal and maximal fODF values. We assume that the fiber 

crossing angle is no smaller than θΔ = 15° and within this angle only one peak with the 

greatest fODF value is retained. The choice θΔ = 15° is motivated by the fact the angle is 

approximately twice the minimal angular separation (i.e., 7.9°) between the 321 points.

For all CR-SD methods, including NNSD, CSD, QP-CSD, and MESD, we first determine 

candidate local maxima from the same 321 points. Then, using the continuous representation 

associated with these methods, a gradient ascent method, also implemented in MRtrix 

(Tournier et al., 2012), is performed to give a set of refined peaks.

3.3. Synthetic Data Simulation and Evaluation

For evaluation, synthetic data were generated by a mixture of tensor models:

E(qu) = S(u)
S(0) = ∑

k = 1

K
pkexp −q2uTDku , b = q2, (25)

where Dk is a 3 × 3 matrix representing a diffusion tensor and K = 1, 2 corresponds to the 

single-direction case and the crossing case, respectively. The baseline signal is S(0) = 1 and 

b is the diffusion weighting (Johansen-Berg and Behrens, 2009). For the crossing case, the 

tensors share the same eigenvalues (λ1, λ2, λ2) and are equally weighted with p1 = p2 = 0.5. 

We generated Rician noise corrupted signal by

Ei = E qiui + s1
2 + s2

2 (26)
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where s1 and s2 are the Gaussian distributed noise with zero mean and standard deviation σ. 

The signal-to-noise ratio (SNR) is defined as 1
σ  (Descoteaux et al., 2007). The methods used 

for comparison might not necessarily detect the correct number of peaks (2 in this case). 

Therefore, we report the success ratio, which tells us the proportion of trials that correctly 

detect the number of peaks. The Mean Difference of Angles (MDA) (Descoteaux et al., 

2007) is then computed only for the successful trials.

3.4. Real Data Evaluation via Peak Consistency

Real data evaluation is challenging due to the lack of ground truth. To make comparison 

possible, we gauge the correctness of the fiber directions at each voxel based on the 

agreement of different datasets and methods. We assume that if a certain direction is widely 

agreed upon, then there is a high possibility that the direction reflects the true direction. 

Based on this assumption, we propose here a novel measure, called Peak Consistency (PC), 

to evaluate peak estimation accuracy. Assuming we have N datasets (e.g., resulting from 

different sampling schemes) pertaining to the same subject, then M methods will yield MN 
fODFs at each voxel, resulting in more than MN peaks (at least one peak for each fODF).

Two peaks are said to be consistent if the angle between them is no more than threshold θC. 

Our choice of angular threshold θC = 5° is based on the empirical observation that, for 

moderate Rician noise, the peak detection error of the algorithms is around 2°. This angular 

threshold gives a good tolerance to cover the variability caused by noise.

For voxel x, we denote pi, k
x  as the k-th peak from the i-th fODF (i ∈ [1 : MN], [a : b] denotes 

{a, a + 1, …, b}). Since θC < θΔ, for peak pi, k
x , at most one consistent peak can be found 

from peaks pj, l
x

l = 1
Kjx  for a given j ∈ [1 : MN], j ≠ i, where Kj

x denotes the number of peaks 

for the j-th fODF at voxel x. The maximum number of possible matches for all j ≠ i is hence 

MN − 1. For each peak, we define the Single-Peak Consistency (SPC)

SPC(i, k, x) = |Γ(i, k, x)|
MN − 1 , (27)

where Γ(i, k, x) = {j | j ≠ i, j ∈ [1 : NM], l ∈ 1:Kj
x , d pi, k

x , pj, l
x ≤ θC , d pj, l

x , pi, k
x  is the angle 

between the two peaks, and | · | denotes the number of elements in a set. SPC = 0 indicates 

that no peak is consistent with the reference peak pi, k
x . SPC = 1 indicates that the reference 

peak pi, k
x  is fully consistent with all other MN − 1 peaks. For concurrent consistency 

evaluation of multiple peaks, we define the Multi-Peak Consistency (MPC) as

MPC(i, x) =
∩k ∈ 1:Kix Γ(i, k, x)

MN − 1 . (28)

See Fig. 1 for a visual summary of the single- and multi-peak consistency measures. Given a 

field of fODFs with voxels {x|x ∈ Ω}, we define for a threshold PCT ∈ (0, 1) (0.5 in the 

current work) the overall single- and multi-peak consistency measures as
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SPC(i) =
∑x ∈ Ω | k ∣ SPC(i, k, x) ≥ PCT, k ∈ 1:Ki

x |
∑x ∈ ΩKi

x (29)

and

MPC(i) =
∑x ∈ Ω | x ∣ MPC(i, x) ≥ PCT |

|Ω| . (30)

4. Experiments

4.1. Parameters

We compared NNSD and ASC-NNSD with CSD, QP-CSD, MESD, and L1-NNLS, using 

both synthetic and real data. For CSD, MRtrix (Tournier et al., 2012) was used in all 

experiments involving single-shell data (Tournier et al., 2007), and an in-house 

implementation of CSD was used in experiments involving multi-shell data. The default 

parameters specified in (Tournier et al., 2007) and 321 orientations evenly distributed in a 

hemisphere were used to generate L(k) in Eq. (7) for CSD (Tournier et al., 2007) and P in 

Eq. (11) for QP-CSD. Accelerated MESD with K = 16 in Eq. (8) was used as suggested in 

Camino. Following (Landman et al., 2012), we set λL1 = 0.1λL1*  for L1-NNLS. To 

demonstrate the robustness of NNSD, we intentionally set λNNSD = 0 to switch off Laplace-

Beltrami regularization and set T = 0.5 for ASC-NNSD. For the synthetic data experiments, 

the fiber response function for all methods was set according to the signal from the tensor 

model with eigenvalues [1.7, 0.2, 0.2] × 10−3 mm2/s. For the real data experiments, the 

response function was estimated by MRtrix (Tournier et al., 2012) using voxels with FA 

greater than 0.7.

4.2. Synthetic Data

Evaluation with SNR=1000.—We would like to investigate how the different methods 

behave when the anisotropy of the signal changes and when there is a mismatch between the 

fiber response function and the data. Diffusion signal was first generated from the mixture of 

tensor models in Eq. (25) with b = 1500s/mm2, crossing angle 60°, mean diffusivity 0.7 × 

10−3 mm2/s, and different FA values (Johansen-Berg and Behrens, 2009) by varying tensor 

eigenvalues (λ1, λ2, λ3 = λ2). Fig. 2 (SNR=1000) shows the estimated fODFs when λ1 

increases from 0.7 × 10−3 mm2/s (left with FA= 0) to 1.7 × 10−3 mm2/s (right with FA= 

0.87). For all methods, the fiber response function was the tensor model with eigenvalues 

[1.7, 0.2, 0.2] × 10−3 mm2/s. Therefore, the response function matches the data on the far 

right but not on the left. The results indicate that CSD, QP-CSD and L1-NNLS result in 

many spurious peaks for data with low anisotropy, even when the SNR is high. NNSD and 

ASC-NNSD work well when the signal is anisotropic or less so. The fODFs estimated by 

NNSD with δ = 10−2 are a little smoother than the fODFs estimated by NNSD with δ = 

10−4. Note that for isotropic signal, the fODFs given by NNSD and ASC-NNSD are close to 

being isotropic.
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Evaluation with SNR=30.—The estimation results when the noise level is increased are 

shown in Fig. 2 (SNR=30). Despite the noise, both NNSD and ASC-NNSD obtain 

significantly smoother results for signal that is more isotropic when compared with other 

methods. ASC-NNSD works best among all methods in obtaining sharper fODFs for 

anisotropic signal and smoother fODFs for isotropic signal. The results given by ASC-

NNSD can be seen as a combined outcome of NNSD with δ = 10−2 for the less anisotropic 

signal and NNSD with δ = 10−4 for the anisotropic signal.

Evaluation of Non-Negativity and Anisotropy.—1000 Rician-noise realizations of 

isotropic signal with eigenvalues [0.7, 0.7, 0.7] × 10−3 mm2/s and anisotropic signal with 

eigenvalues [1.7, 0.2, 0.2] × 10−3 mm2/s were generated at SNR=15 and 30 for b = 

1500s/mm2 and 60 evenly distributed directions. From the estimated fODFs, we recorded 

the GFA values (Tuch, 2004) and the proportion of directions (among 5121 points uniformly 

distributed on the unit sphere) with negative fODF values. We ignored negative values close 

to zero and only took into consideration negative values with absolute values larger than 1% 

of the maximal fODF value. The top subfigure in Fig. 3 indicates that CSD is still 

susceptible to negative values despite its non-negativity constraint. QP-CSD results in a 

significantly lower number of negative values than CSD because it enforces a stricter non-

negativity requirement than CSD. ASC-NNSD and MESD guarantee non-negativity 

throughout S2. Note that the fODFs estimated by L1-NNLS are non-negative on the 321 

points used during optimization; however, since fODF values on the other points are 

unknown, we cannot compute the proportion of negative values for L1-NNLS. The bottom 

subfigure indicates the GFA values of the fODFs given by CSD, QP-CSD, MESD and L1-

NNLS are high even for isotropic signal, indicating overestimation of the number of fiber 

directions. Only ASC-NNSD yields significant contrast between anisotropic and isotropic 

signals.

Evaluation of Peak Accuracy – Single Shell.—Noise-corrupted signals were 

generated from a two-tensor model with b = 1500s/mm2, eigenvalues [1.7, 0.2, 0.2] × 10−3 

mm2/s, different crossing angles in the range of [30°, 90°], and at SNR=10 and 20. For 

peaks detected from the fODFs estimated by each method, we recorded the success ratio and 

the MDA as described in Section 3.3. The results are shown in Fig. 4 for both SNR=10 and 

SNR=20. When SNR=10, MESD, CSD, and NNSD with L = 10 give low success ratios for 

small crossing angles, but high success ratios for the large crossing angles. With L = 6, when 

the crossing angle is larger than 55°, ASC-NNSD generally gives higher success ratio than 

CSD and lowest MDA among all methods. When SNR=20, MESD, CSD, and NNSD with L 
= 10 give higher success ratios for both small and large crossing angles. CSD, QP-CSD 

NNSD with L = 10 give better performance than their counterparts with L = 6. This implies 

that, if SNR is high, CSD and NNSD benefit from using a higher order representation. It is 

interesting to see that the success ratio of L1-NNLS is high for small crossing angle but low 

for large crossing angle. This indicates that L1-NNLS has high sensitivity, but low 

specificity due to false-positive peaks. Partially due to limited angular resolution, L1-NNLS 

yields larger MDA values than CSD and NNSD. The MDA performance of MESD can 

potentially be improved by increasing parameter K.
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Evaluation of Peak Accuracy – Multiple Shells.—We performed an evaluation 

similar to the previous section using multi-shell data. Since the results reported in the 

previous section indicate that CSD and NNSD generally give better performance than QP-

CSD, MESD, and L1-NNLS, we focus our comparison in this section on CSD and NNSD. 

We chose L = 8, which is good a trade-off between angular resolution and robustness. This 

is also suggesed in MRtrix (Tournier et al., 2012). The data were generated by sampling 

from a mixture of tensor models (Caruyer et al., 2011) using b = 1500s/mm2, 3000s/mm2 in 

30 staggered directions per shell. Fig. 5 shows the success ratios and MDA values given by 

CSD and NNSD using samples respectively from the outer b = 3000s/mm2 shell (30 

samples) and from two shells (60 samples) concurrently. When SNR=10, ASC-NNSD and 

CSD give similar success ratios, but ASC-NNSD generally gives lower MDA than CSD for 

both single- and two-shell cases. For both ASC-NNSD and CSD, the two-shell data 

generally result in higher success ratios and lower MDA values than single-shell data. When 

SNR=20, ASC-NNSD gives better performance than CSD both in terms of success ratio and 

MDA. For both ASC-NNSD and CSD, the two-shell data result in success ratios similar to 

the single-shell data with b = 3000s/mm2, but lower MDA values.

4.3. Real Data

4.3.1. Single-Shell Data—Evaluation was performed using real human data with b = 

2000s/mm2, 120 gradient directions, 2mm isotropic resolution, and TR/TE=12400/116ms. 

We set L = 8 for CSD, QP-CSD, NNSD, and ASC-NNSD. MRtrix was used for the 

estimation of the fiber response function from voxels with FA > 0.7 (Tournier et al., 2004, 

2007). The results are shown in Fig. 6. NNSD with δ = 10−4 and ASC-NNSD with T = 0.5 

give similar results, implying that the result is insensitive to T for this data. For each method, 

the GFA map computed from the estimated fODFs is displayed as the background image. 

Consistent with the results in Fig. 3, the results in Fig. 6 for CSD, QP-CSD, MESD, and L1-

NNLS show a significant amount of false-positive peaks, which are especially evident in the 

regions with low anisotropy, as indicated by the high GFA values in gray matter and 

cerebrospinal fluid regions. NNSD and ASC-NNSD dramatically reduced the spurious peaks 

of the estimated fODFs. See for example the region marked by the yellow circles in Fig. 6. 

Compared with CSD, NNSD and ASC-NNSD yield sharper fODFs in anisotropic regions 

and more isotropic fODFs in isotropic regions. This gives high GFA contrast between these 

regions. Note that existing work (Tournier et al., 2004, 2007; Jian and Vemuri, 2007; 

Landman et al., 2012; Weldeselassie et al., 2012) attempts to avoid such low GFA contrast 

by computing FA or GFA using some other models, such as the tensor model.

4.3.2. High Spatial Resolution Multi-Shell HCP Data—Evaluation was also 

performed using a high-resolution dataset (1.25mm in all dimensions) obtained from the 

Human Connectome Project (HCP)7. fODF estimation from this dataset is challenging 

because the SNR is low due to the small voxel size. This dataset was acquired using three 

shells, with 90 staggered directions per shell, and at b = 1000, 2000, 3000s/mm2.

7http://www.humanconnectome.org/documentation/Q1/
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First, we performed a single-shell evaluation (b = 2000s/mm2) using NNSD with δ = 10−4, 

ASC-NNSD with T = 0.5, CSD, QP-CSD, MESD, and L1-NNLS. L = 8 was used in all SH-

based methods. The results shown in Fig. 7 demonstrate the effectiveness of NNSD and 

ASC-NNSD. In isotropic regions, only NNSD and ASC-NNSD give isotropic fODFs, while 

other methods result in a significant amount of false-positive peaks. See for example the 

region marked by the yellow circles. In anisotropic regions, NNSD and ASC-NNSD yield 

the sharpest fODFs. In particular, the fODFs estimated by CSD are not as sharp as those 

estimated by NNSD, ASC-NNSD, and MESD. This can be seen in the region marked by the 

yellow squares. Spurious peaks can be observed for L1-NNLS, as indicated by the high 

anisotropy values, even in regions with isotropic diffusion.

Second, we included the two other shells (b = 1000, 3000s/mm2) in the estimation, totaling 

up to 90 × 3 samples. The results are shown in Fig. 8. For ASC-NNSD, the b = 1000s/mm2 

data give fODFs that are not as sharp as the results given by the two other b-values. The b = 

3000s/mm2 data give fODFs that are the sharpest but with more false-positive peaks. The b 
= 2000s/mm2 data seem to yield more moderate results than among all b-values.

Third, we detected the peaks from the fODFs estimated using the 4 sampling schemes (the 

individual shells and all three shells) and 5 methods8(ASC-NNSD, CSD, QP-CSD, MESD, 

and L1-NNLS) and then computed the corresponding peak consistency values defined in 

Section 3.4. Note that fODF peaks detected in isotropic regions are not reliable and are 

hence not included in the evaluation. Only voxels with GFA greater than 0.5, estimated 

based on ASC-NNSD using all three shells, were used for consistency evaluation. The 

detected peaks, color-coded with SPC values, are shown in Fig. 9, indicating that 1) peak 

consistency is high anisotropic and single directional regions; 2) peak consistency is low in 

fiber crossing regions; and 3) the lowest peak consistency occurs at boundaries between 

white matter and gray matter or cerebrospinal fluid regions. It can also be observed that for 

ASC-NNSD, CSD, and QP-CSD, the multi-shell data result in higher SPC than single-shell 

data. For both single- and multi-shell data, ASC-NNSD yields higher SPC values than other 

methods. These observations are confirmed by the overall peak consistency values (SPC and 

MPC) shown in Table 1.

5. Discussion

5.1. Multi-Shell SD

Existing fODF estimation methods such as CSD only can be applied to single-shell data. We 

have generalized SD to work with multi-shell data by defining the fiber response function in 

ℝ3. Data with low diffusion weighting have high SNR but low angular resolution, whereas 

data with high diffusion weighting data have low SNR but high angular resolution. Our 

method takes advantage of the whole spectrum of the data. Evaluation based on both 

synthetic and real data, as shown in Figs. 5, 6, 8, 9, and Table 1, indicate that multi-shell data 

improve peak estimation accuracy compared with single-shell data.

8Multi-shell versions of MESD and L1-NNLS were not implemented. For peak consistency evaluation, we therefore have 4 × 5 − 2 = 
18 fODFs per voxel.
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It should be noted that for the HCP data, the multi-shell SD methods use all 90 × 3 

diffusion-weighted images for estimation. This is 3 times the number of samples used by 

single-shell SD methods. It will be interesting to fix the total number of samples and 

evaluate the advantages of the two different sampling schemes, e.g., a multi-shell sampling 

scheme with 90 samples per shell against a single-shell scheme with 270 samples. However, 

choosing a good sampling scheme (Cheng et al., 2014) with proper consideration of the 

tradeoff between angular resolution and SNR is still an open problem beyond the scope of 

this paper. The proposed multi-shell SD framework can be used as a tool to evaluate 

different sampling schemes in the future.

5.2. Non-Local NNSD (NL-NNSD)

In practice, denoising methods such as non-local mean (Buades et al., 2005; Descoteaux et 

al., 2008; Yap et al., 2014) and spatial regularization (Goh et al., 2009) can significantly 

improve SNR and hence fODF estimation accuracy. Our initial implementation of a non-

locally regularized (Buades et al., 2005) version of NNSD, called non-local NNSD (NL-

NNSD) (Cheng et al., 2013a), supports this idea. In the ISBI 2013 HARDI Reconstruction 

Challenge9, which considered DTI, HARDI, and DSI-like sampling schemes and 

SNR=10,20,30, NL-NNSD was ranked the best technique in terms of local fiber orientation 

estimation for all sampling categories and all SNRs10.

5.3. Unit Integral Constraint

Unlike NNSD, existing SD methods, such as FSD, CSD, MESD and L1-NNLS, do not 

explicitly incorporate the unit integral constraint. In Appendix A, we show that the solutions 

given by FSD in Eq. (6) with and without the constraint differ only by the isotropic 

component, and under some conditions the results given by NNSD with and without the 

constraint also differ only by the isotropic component. The constraint is beneficial for fODF 

estimation as explained below:

1. As a probability distribution function of orientations, fODF should naturally have 

unit integral.

2. The constraint helps mitigate the representation error inherent in SD-based fODF 

estimation methods. Based on Eq. (5) and Eq. (15), the spherical means of E(qu) 

and H(qu) are respectively

E(q) = 1
4π∫S2E(qu)du = f00ℎ0(q), H(q) = 1

4πℎ0(q) . (31)

The value of f00 should ideally be adaptive to the values of these means in order 

to minimize the representation error. For example, if the diffusion signal and 

fiber response function have the same spherical mean, then one should set 

f00 = 1
4π  to avoid representation error. This requirement is obvious for q = 0, 

where we expect E(0) = H(0) = 1 and ℎ0(0) = 4π, especially when the fiber 

9http://hardi.epfl.ch/static/events/2013_ISBI/
10http://hardi.epfl.ch/static/events/2013_ISBI/_static/talk_Max.pdf
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response function is based on the tensor model. If the spherical means differ, our 

analysis in Appendix A shows that under some conditions setting f00 = 1
4π  will 

result in an fODF with the same anisotropic component.

3. Due to the constraint, the solution space of SD methods with the constraint is one 

dimension smaller than the solution space of SD methods without this constraint. 

This reduces the feasible solutions to a smaller space, effectively reducing the 

complexity of the associated non-convex optimization, and focuses the 

optimization on the anisotropic components of the fODF.

NNSD without the constraint can be solved by traditional gradient descent with inexact line 

search. The stopping condition Eq. (23) and its adaptive version can be used to terminate the 

algorithm. Our experiments indicate that δ = 10−4 gives the best results. Fig. 10 shows the 

fODF results given by NNSD without the constraint using the synthetic data shown in Fig. 2. 

The glyphs are normalized by ∥c∥ = 1 for visualization. Compared with the results given by 

NNSD in Fig. 2 with δ = 10−4, the fODFs given by NNSD without the constraint are 

generally similar, but not as sharp. It should be noted that when δ varies, the fODFs given by 

NNSD without the constraint vary more dramatically than NNSD with the constraint, 

indicating that the latter is more robust to the choice of δ.

6. Conclusion

The contribution of this paper is threefold. First, by introducing a ℝ3 fiber response function, 

we have generalized the existing single-shell SD framework to cater to multi-shell data. The 

experimental results indicate that, compared with single-shell data, multi-shell data give 

lower MDA, higher success ratios and more consistent peaks. Second, we have proposed a 

novel SD method, called Non-Negative SD (NNSD), which utilizes a square root 

representation to impose non-negativity. Comparisons with existing SD methods, including 

CSD, MESD, and L1-NNLS, demonstrate the advantages of NNSD: 1) NNSD guarantees 

non-negativity with unit integral of the fODF throughout the whole S2; 2) NNSD 

significantly reduces false-positive peaks and yields high GFA contrast between isotropic 

and anisotropic regions; 3) Due to the SH representation, NNSD is efficient and allows 

accurate peak detection on S2. Third, we have proposed a new metric called peak 

consistency for evaluation of the different methods in the absence of ground truth. Using this 

metric, we demonstrated that NNSD gives better estimates of peak orientations in real data. 

Improvements in fODF estimation obtained with NNSD will be helpful for applications such 

as fiber tractography (Yap et al., 2011b,c), fiber clustering (Wang et al., 2013), and brain 

connectomics (Yap et al., 2010, 2011a; Wee et al., 2010, 2012; Shi et al., 2012).
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Appendix A.: fODF estimation with and without the unit integral constraint

Since for each shell the matrix Y l
m ui  has orthonormal columns, Eq. (6), in continuous 

form, is equivalent to

min
f

∑
s = 1

S ∫
S2 ∑

l, m

L 4π
2l + 1flmℎl qs Y l

m(u) − E qsu
2
du (A.1)

The minimization is quadratic with respect to flm and the optimal coefficients can be found 

at the point where the derivative vanishes as

flm* = 2l + 1
4π

∑s = 1
S ℎl qs elm qs

∑s = 1
S ℎl qs

2 , (A.2)

where elm(qs) is the SH coefficients of E(qsu). With the unit integral constraint, we have 

f00* = 1
4π , but this does not alter flm*  for l > 0. Thus the difference between the fODFs with 

and without the constraint is only the isotropic component.

The NNSD formulation can be seen as an extension of FSD because based on Eq. (15) we 

can write E(qiui) = cTK(qiui)c = M(qiui)f, where M(qiui) is the row in basis matrix M 
corresponding to the sample qiui. Without taking unit integral constraint into consideration, 

the unconstrained version of NNSD solves the following problem:

min
c

∑
s = 1

S ∫
S2 ∑

α, β

2L 4π
2α + 1fαβℎα qs Y α

β(u) − E qsu
2
du (A.3a)

 s.t.  fαβ = ∑
l, m

L
∑
l′, m′

L
clmcl′m′Qll′α

mm′β . (A.3b)

Note that by setting α = β = 0 in Eq. (A.3b) we have f00 = ∥ c ∥2
4π . Without loss of generality, 

we let, for optimal solution c*, 1
4π c* 2 = f00* = 1

4π + Δ. The problem given by Eq. (A.3a) 

and Eq. (A.3b) then becomes

min
c

∑
s = 1

S ∫
S2 ∑

α, β

2L 4π
2α + 1fαβℎα qs Y α

β(u) − E qsu
2
du (A.4a)

 s.t.  fαβ = ∑
l, m

L
∑
l′, m′

L
clmcl′m′Qll′α

mm′β, f00 = 1
4π + Δ . (A.4b)
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If Δ = 0, then Eq. (A.4a) is just the NNSD with unit integral in Eq. (17). If Δ ≠ 0, we let 

f00
1 = 1

4π , and fαβ
1 = fαβ for α > 0. Then Eq. (A.4a) is equivalent to

∑
s = 1

S ∫
S2 Δℎ0 qs + ∑

α, β

2L 4π
2α + 1fαβ

1 ℎα qs Y α
β(u) − E qsu

2
du

= ∑
s = 1

S ∫
S2 ∑

α, β

2L 4π
2α + 1fαβ

1 ℎα qs Y α
β(u) − E qsu

2
du

+ 2 ∑
s = 1

S
Δℎ0 qs 4π ℎ0 qs − e00 qs + ∑

s = 1

S
4πΔ2ℎ0 qs

2 .

(A.5)

Since e00(qs), {hα(qs)} and Δ are known constants, the problem given by Eq. (A.4a) and Eq. 

(A.4b) is equivalent to

min
c

∑
s = 1

S ∫
S2 ∑

α, β

2L 4π
2α + 1fαβ

1 ℎα qs Y α
β(u) − E qsu

2
du (A.6a)

 s.t.  fαβ
1 = ∑

l, m

L
∑
l′, m′

L
clmcl′m′Qll′α

mm′β, f00
1 = 1

4π (A.6b)

which is exactly the NNSD with unit integral constraint. The conditions for this equivalence 

are (a) minu ∈ S2∑lmflm* Y l
m(u) ≥ Δ

4π  and (b) L is large enough. Condition (a) is to ensure 

that the fODF as represented by flm
1  is nonnegative; this can be satisfied if Δ ≤ 0. 

Condition (b) is to ensure representation of this nonnegative fODF using clm*  without error. 

With these two conditions satisfied, the difference between the fODF solutions given by 

NNSD with and without the unit integral constraint is an isotropic component. In practice, 

since obtaining the solutions involves non-convex optimization, local minima might cause 

differences even in the anisotropic component.
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Highlights

1. Improved fODF estimation with non-negative and unit integral constraints.

2. Significantly increased anisotropy contrast between WM and GM/CSF 

regions.

3. Improvements over state-of-the-art methods, such as constrained spherical 

deconvolution.
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Figure 1: Peak Consistency.
The peaks detected from each fODF are indicated by identically colored arrows. The cones 

cover peak orientations subtending an angle θC with the white arrows. The white peaks are 

said to be consistent with the peaks within these cones. In this case, SPC = 3/5 and SPC = 

2/5, respectively for the vertical and horizontal white peaks, and MPC = 2/5.
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Figure 2: Synthetic Data.
fODF estimation results given by different methods under different parameter settings for 

synthetic data with varying anisotropy.
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Figure 3: Nonnegativity and Anisotropy.
Proportions of negative values and GFA values of fODFs estimated from isotropic (ISO) and 

anisotropic (ANI) data. The error bars indicate standard deviations.
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Figure 4: Peak Accuracy – Single Shell.
Success ratios and MDA values for different crossing angles at SNR=10 and SNR=20.
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Figure 5: Peak Accuracy – Multiple Shells.
Success ratios and MDA values for different crossing angles at SNR=10 and SNR=20.
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Figure 6: Real Data – Single Shell.
Coronal views and close-up views of the fODF fields generated by various methods. The 

background is the GFA map.
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Figure 7: HCP Data – Single Shell.
Coronal views and close-up views of the fODF fields generated by various methods from 

single shell data with b = 2000s/mm2. The background is the GFA map.
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Figure 8: Single Shell vs. Multiple Shells.
Estimation results for different methods using data from each shell (90 samples) and 

concurrently from the three shells (90 × 3 samples). See Fig. 7 for the b = 2000s/mm2 

results.
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Figure 9: Single Peak Consistency.
Single Peak Consistency (SPC) for different methods and different sampling schemes. Cool 

and warm colors indicate low and high SPC, respectively.
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Figure 10: NNSD without unit integral constraint.
Estimation results for NNSD without unit integral constraint for mixture of tensor models 

with varying anisotropy.
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Table 1:

SPC and MPC values for fODF fields estimated by different methods for different sampling schemes.

b = 1000 s/mm2 b = 2000 s/mm2 b = 3000 s/mm3 Multi-Shell

SPC MPC SPC MPC SPC MPC SPC MPC
ASC-NNSD 0.2411 0.2503 0.2839 0.2931 0.2857 0.2995 0.3845 0.3745

CSD 0.1533 0.1870 0.2245 0.2569 0.2359 0.2793 0.2779 0.3236

QP-CSD 0.1811 0.2319 0.2158 0.2720 0.1938 0.2593 0.2597 0.3218

MESD 0.1347 0.1752 0.1399 0.1815 0.1600 0.2102

L1-NNLS 0.1080 0.1571 0.1148 0.1650 0.1030 0.1653
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