
micromachines

Article

High-Efficiency Parallel Cryptographic Accelerator for
Real-Time Guaranteeing Dynamic Data Security in
Embedded Systems

Zhun Zhang , Xiang Wang *, Qiang Hao, Dongdong Xu, Jinlei Zhang, Jiakang Liu and Jinhui Ma

����������
�������

Citation: Zhang, Z.; Wang, X.; Hao,

Q.; Xu, D.; Zhang, J.; Liu, J.; Ma, J.

High-Efficiency Parallel

Cryptographic Accelerator for

Real-Time Guaranteeing Dynamic

Data Security in Embedded Systems.

Micromachines 2021, 12, 560.

https://doi.org/10.3390/mi12050560

Academic Editor: David Li

Received: 13 April 2021

Accepted: 11 May 2021

Published: 15 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
microzhun@buaa.edu.cn (Z.Z.); haoqiang1994@buaa.edu.cn (Q.H.); xudongdong1994@buaa.edu.cn (D.X.);
zhangjinlei@buaa.edu.cn (J.Z.); ljiakang@buaa.edu.cn (J.L.); sy2002514@buaa.edu.cn (J.M.)
* Correspondence: wxiang@buaa.edu.cn; Tel.: +86-10-8231-3686

Abstract: Dynamic data security in embedded systems is raising more and more concerns in nu-
merous safety-critical applications. In particular, the data exchanges in embedded Systems-on-Chip
(SoCs) using main memory are exposing many security vulnerabilities to external attacks, which
will cause confidential information leakages and program execution failures for SoCs at key points.
Therefore, this paper presents a security SoC architecture with integrating a four-parallel Advanced
Encryption Standard-Galois/Counter Mode (AES-GCM) cryptographic accelerator for achieving
high-efficiency data processing to guarantee data exchange security between the SoC and main
memory against bus monitoring, off-line analysis, and data tampering attacks. The architecture
design has been implemented and verified on a Xilinx Virtex-5 Field Programmable Gate Array
(FPGA) platform. Based on evaluation of the cryptographic accelerator in terms of performance
overhead, security capability, processing efficiency, and resource consumption, experimental results
show that the parallel cryptographic accelerator does not incur significant performance overhead
on providing confidentiality and integrity protections for exchanged data; its average performance
overhead reduces to as low as 2.65% on typical 8-KB I/D-Caches, and its data processing efficiency
is around 3 times that of the pipelined AES-GCM construction. The reinforced SoC under the data
tampering attacks and benchmark tests confirms the effectiveness against external physical attacks
and satisfies a good trade-off between high-efficiency and hardware overhead.

Keywords: cryptographic accelerator; dynamic data security; AES-GCM; hardware security; SoC

1. Introduction

Modern embedded systems are gaining popularity in numerous security-sensitive
sectors with great intrinsic reliability, high performance, and good functional adaptation,
which are ideal control platforms for executing intensive real-time data processing tasks,
such as in automotive, aerospace, avionic, and railway systems. The widespread usages
of embedded systems in safety-critical fields have made hardware system security as a
prominent issue. Furthermore, the growing demands of embedded systems are pushing
System-on-Chip (SoC) towards the dramatic improvements in performance and multiple
function; these welcome upswings are inevitably accompanied by the various forms of
emerging security threats [1]. Generally, the diversiform threats mainly arise from the
untrusted IPs [2], vulnerable firmware and software [3], and even insecure communications
with the other devices [4], which are the critical factors on damaging the security of
embedded systems in safety-critical applications. During operation, processors are at
the heart of embedded systems: attackers can exploit hostile data to trick the internal
interpreter into executing unintended commands or accessing unauthorized data, and then
they can get the confidential information of system and control the behavior of programs
to perform malicious actions. Therefore, the security assurance of the modern embedded

Micromachines 2021, 12, 560. https://doi.org/10.3390/mi12050560 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7726-4547
https://www.mdpi.com/article/10.3390/mi12050560?type=check_update&version=1
https://doi.org/10.3390/mi12050560
https://doi.org/10.3390/mi12050560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12050560
https://www.mdpi.com/journal/micromachines

Micromachines 2021, 12, 560 2 of 24

system involves a number of challenges; meanwhile, it is worth receiving greater attention
among hardware architecture designers.

Information leakages and function failures have been emerging as primary manifes-
tations of being attacked in process-intensive platforms, where the confidentiality and
dependability of embedded systems must be ensured. In addition, it also must be admitted
that the hardware system protections are not particularly comprehensive due to malicious
attacks that may arise from different-level sources, mainly including hardware-level attack
and system-level attack. As the hardware-level attack, a malicious logic (well-known as
hardware Trojan) hidden in internal logic might be premeditatedly designed to cause the
program execution failures at key points or could create the backdoors for both confidential
information leakages and subsequent system hijacking to attackers [5]. On the other hand,
the external physical attacks can exploit the three invasive methods of bus monitoring,
offline analysis, and data tampering to steal the sensitive information and/or activate the
built-in hardware Trojan to disorganize the program execution through external access
interfaces [6,7]. System-level attacks mainly exploit the security vulnerabilities or bugs
in software applications to disturb the instruction executions or cause buffer overflows
by injecting malicious codes for subverting the system trustworthiness and obtaining the
unauthorized control of system. Taking the stack-smashing attack as an example, we can
see that this system-level attack caused by the untrusted program exploits buffer overflow
vulnerabilities to take control over attacked operating systems and hardware platforms.
Fortunately, various techniques have been developed to defend against stack smashing
attacks, such as Write XOR eXecution (W⊕X) [8], Data Execution Prevention (DEP) [9], Ad-
dress Space Layout Randomization (ASLR) [10], in-stack canaries [11], and some software
code integrity checkers [12,13].

In response to both hardware-level and system-level attacks, several security mecha-
nisms have been proposed to protect program executions and control flow behaviors of
embedded system, in which, a great majority of the protection techniques try to modify
the instruction set architectures and compilers, which make them very hard to be trans-
planted into diverse embedded system platforms. Furthermore, the widely used system
security solutions are based on anti-virus software, which makes it difficult to prevent the
anti-virus software’s own vulnerabilities. Previous reports about the integrity protections
of program code and control flow according to the program segments, such as transfer
functions [14] and basic blocks [15], are considered to be the key marker of the system
safety status. However, the run-time data in the main memory of the embedded system
is another important factor for secure program executions. Attackers can exploit the data
in the stack and heap segment to change the program behavior of the original intention,
so that the confidentiality of system dynamic data is critically important. In addition, a
few schemes are presented to protect the security of data processing in embedded systems
since it is harder to monitor the dynamic data status during program execution without
causing significant speed degradation. Moreover, the rapid growth of detection and analy-
sis technologies make it easier for a sophisticated attacker to obtain physical access and
launch physical attacks on the insecure off-chip main memory. Attackers can monitor
the address/data bus and off-line analysis, and then tamper and inject or replay memory
blocks while the program is loading the data to processor; these may result in confidential
information leakages, changes of program control flow, and destruction of data block.

In this paper, we proposed a hardware-assisted four-parallel AES-GCM cryptographic
accelerator to provide real-time security monitoring and authenticated encryption. Consid-
ering the possible confidential data leakages and physical tampering attacks aiming at the
main memory, the cryptographic accelerator can protect the confidentiality and integrity of
data at run-time and monitor the malicious data tampering injections. During program
execution, the D-Cache line data blocks that need to be stored in memory are encrypted
and tagged through AES-GCM accelerator and verify integrity Tag to prevent the system
data blocks being corrupted or tampered from external memory. An optimal four-parallel
AES-GCM hardware architecture achieves the high-efficiency data block encryption while

Micromachines 2021, 12, 560 3 of 24

D-Cache keeps consistent with the main memory, which will not cause processor significant
speed degradation. The evaluation experiments of running ten different benchmarks have
verified the system low performance overhead. The fault injection attacks have confirmed
the monitoring effectiveness of cryptographic accelerator. Finally, the resource consump-
tion of SoC is presented and is reasonable in real applications. The specific contributions of
this article are as follows:

• An optimal four-parallel AES-GCM hardware architecture is constructed to provide
confidentiality and integrity protections for the data at run-time, any unauthorized
changes of ciphertext and signature in memory will be detected by authenticating the
integrity Tag.

• The dynamic encryption mechanism is achieved according to the D-Cache hit status
for the purpose of significantly reducing the system performance overhead induced
by cryptographic accelerator.

• Evaluation experiments of four-parallel cryptographic accelerator in terms of perfor-
mance overhead, security capability, processing efficiency, and resource consumption
confirm the SoC effectiveness against external physical attacks and reaches a good
trade-off between security capability and hardware overhead.

• The four-parallel hardware accelerator is around 3 times as the pipelined AES-GCM
contruction in data encryption efficiency, which will further help reducing perfor-
mance overhead in encryption and integrity authentication.

The remainder of this paper is organized as follows. Section 2 is dedicated to introduc-
ing the SoC assumptions and threat model considered in this work. Section 3 presents the
related works concerning design strategies against information leakages and tampering
attacks. Section 4 describes the proposed parallel hardware of AES-GCM algorithm in
detail. Our proposal SoC hardware architecture is presented in Section 5. Section 6 presents
experiments and results of performance overhead, security capability, processing efficiency,
and resource consumption. The paper is concluded in Section 7.

2. Assumptions and Threat Model

Before developing a hardware-assisted cryptographic accelerator for target embedded
system platform, its specific trustworthy assumption and target threat model should first
be determined, and the associate assumptions of design components (including IP entities)
should be classified as trustworthy and untrustworthy. Our SoC framework architecture
with integration of a cryptographic accelerator for dynamic data monitoring is shown in
Figure 1. We assume that a trustworthy system is a black-box integration of processor core,
instruction cache (I-Cache), data cache (D-Cache), system bus, cryptographic accelerator,
and common I/O interfaces. The components have been tested earlier, and it has been
validated that wherever there are no potential hardware Trojans inserted within internal
control logics, and all the adversaries, one cannot tamper the pipeline, registers, I/D-
Caches, and control signals inside the embedded processor due to the lack of access
channel. We make the boundary assumption regarding the SoC hardware architecture that
apart from the on-chip trusted domain, the whole off-chip domain is the untrustworthy
region in which peripheral devices may include the main memory, the direct memory
access controller (DMAC), the external master, and common hardware blocks. In particular,
the off-chip main memory is a weak part, and as it is untrusted, the adversaries can exploit
the external data bus to probe confidential information and then access memory to launch
physical tampering attacks with malicious data injections.

Our architecture-level solution integrates a hardware-assisted cryptographic accel-
erator to provide real-time dynamic data protections on defending both confidential in-
formation leakages and data tampering attacks. The hardware accelerator integrates a
standardized symmetric encryption engine and a hash algorithm engine to ensure the
confidentiality and integrity of data exchange and storage at run time. In practice, we make
an assumption that the attackers mainly exploit three invasive methods of bus monitoring,
offline analysis, and data tampering to steal sensitive data and disorganize the program

Micromachines 2021, 12, 560 4 of 24

execution by the external abnormal access. We aim to address the above-mentioned three
types of external physical attacks to achieve confidentiality and integrity guarantees of dy-
namic data provided by the high-efficiency cryptographic accelerator, without it incurring
significant performance overhead.

Attacker

I-Cache D-Cache

Pipe

Line

Processor Core

IF ID
E

X

M

A

W

B

QMEMIMMU DMMU

Store
buffer

Exception

CPU
Crypto. Accelerator

Confidentiality

Protection

Address Bus

Data Bus

Integrity

Protection

Spoofing Attack

Relocation Attack

Replay Attack

Bus Monitoring

Off-chip Analysis

System Bus

Physical Attacks

Main Memory

Figure 1. The overall System-on-Chip (SoC) framework with integrating a cryptographic accelerator
for dynamic data monitoring against external physical attacks.

3. Preliminaries

Our studies focus on obtaining a prompt identification of the abnormal behaviors
through the cryptographic accelerator for avoiding control system malfunction caused by
physical attacks. This section introduces the basics of security strategies against confidential
information leakages and data tampering measures and then presents the cryptographic
algorithm model and activated mechanism to establish the system architecture.

3.1. Security Policies against Sensitive Information Leakages

The sensitive information leakages from embedded architecture we considered mainly
originate from the external physical attacks aiming at the interface of main memory. In
response to external physical threats, the cryptographic algorithm requires a high-speed
hardware to complete data encryption and decryption operations that does not incur
significant performance overhead. The state-of-the-art schemes of data security protections
are mainly based on the three cryptographic methods: confidentiality scheme, integrity
scheme, and authentication of signature.

3.1.1. Confidentiality Protection Scheme

Several symmetric-key and asymmetric-key cryptographic algorithms have been
proposed to provide the confidentiality, integrity, and authentication (CIA) protections
against information leakages. The advanced encryption standard (AES) is a representation
of symmetric-key algorithm, which is the block cipher cryptosystem, and its round function
encryption consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey; supports
the input and output data blocks at the same length of 128 bits with the self-determined
key lengths of 128 bits (with 10 rounds), 192 bits (with 12 rounds), and 256 bits (with
14 rounds); and requires different lengths to be designed for hardware implementations
according to the required security strength. The AES block-cipher method has a great
security capability in confidentiality protection, while the reported stream cipher also can
provide very good security features on the data encryption [16]. Moreover, the asymmetric-
key Rivest-Shamir-Adleman (RSA) is a high-quality public key cryptographic algorithm,
which is an ideal selection for digital signature, key exchange, etc., in large set of security

Micromachines 2021, 12, 560 5 of 24

protocols for data exchange [17], but it is expensive compared to symmetric cryptography
on computationally intensive tasks, such as applied in the data block encryption.

3.1.2. Integrity Protection Scheme

Although several cryptographic algorithms enhancing data confidentiality have been
implemented for the embedded systems, it is still possible for adversaries to crack the
AES encrypted information and recover the 16-byte secret key by using the side-channel
attacks and then injects tampered data. To further improve the security of encrypted
information, the cryptographic hash function is applied as an integrity-protection algorithm
that can quickly transform a given amount of information into a fixed number of digital
signatures, and then the receiver can authenticate the digital signature to guarantee that
the information has not been modified. For instance, a reported study [18] proposed a
lightweight hash function named the LHash algorithm to perform the integrity verification
of sensitive information at different lengths. The LHash algorithm employs the kind of
Feistel-PG structure in the internal permutation for utilizing the permutation layers on
nibbles to improve diffusion speed. Another sophisticated hash algorithm is called the
GHash function [19]; by employing authenticated encryption mode of Galois/Counter
Mode (GCM), it has a great advantage in the high-speed parallel computing to provide
data flow integrity authentication with minimum latency and performance overhead, while
its implementation is accompanied by a higher hardware complexity.

3.1.3. Authentication of Data Signature

Advancements in security have been achieved by incorporating the cryptographic
algorithm and hash function; the authentication of data signature provides an evidence
that the confidential information has not been modified during transmission, where the
digital signature generated from the synthesis of ciphertext, secret key, and timestamp offer
a high confidence in authenticity.

3.2. Data Tampering Attacks on External Main Memory

Aiming at embedded processor platforms, a lot of attention has been attracted to the
analysis of physical attack methods since they will directly determine the corresponding
protection techniques. The well-known side-channel attacks are utilized to obtain cipher
keys by observing leakages of power consumption, electromagnetic emissions, or noise [20].
Simple power analysis (SPA) and differential power analysis (DPA) are the frequently-used
methods to obtain the cryptographic algorithm power signatures, then lead to the cipher
key extractions [21]. A similar solution also works with electromagnetic emissions [22]
instead of analyzing the power signature; the chip electromagnetic signature is studied
like DPA, and the ciphering key is extracted. Indeed, it is not possible to address all the
embedded system security issues in one proposition. In particular, the main memory in
embedded system architecture is a weak part: the attacker can easily probe the bus interface
between the processor and main memory to obtain confidential data while launching
physical tampering attacks on the data bus of the main memory with tampered data
injections. Therefore, the predictive analysis of data tampering attacks is essential for
designer to guarantee data processing security in embedded systems.

In order to better understand the potential data tampering threats, the hardware
architecture suffering the tampering attacks from external memory is shown in Figure 2, the
framework of which is a brief collection of three types of attacks: the spoofing attack, which
utilizes a partially changed data value to impersonate the legitimate data by replacing the
valid data block corresponding to the read-back request Address 5, causing the embedded
system into malfunction; the relocation attack, which occurs as read-back request Address
3, when one should returned data in Address 3 that are swapped artificially by the data of
memory another piece location, such as Address 2; the replay attack, which exploits one
registered memory datum targeted at a time T4 to replay the required data at read-request
time T8. Compared with the frontal spoofing attack, the relocation attack has an advantage

Micromachines 2021, 12, 560 6 of 24

of tricking the processor into accessing unauthorized data, because external memory is
encrypted with same scheme, and the attacker will be able to modify and control the
processor execution by swapping some encrypted values. In addition, the replay attack at
different time can easily overcome the protection against the relocation attacks to modify
the processor behavior. Considering the limitations of existing approaches in preventing
multiple types of data tampering attacks, the digital signature with its associated data are
stored synchronously in memory is a sagacious security strategy.

CPU

I-Cache
S

y
st

em
 B

u
s

D-Cache

Pipe

Line

Processor Core

IF ID
E

X

M

A

W

B

Read request: Addr. 5

Read request: Addr. 3

QMEMIMMU DMMU

Store
Buffer

Internal Unit Module

Addr.5: 0x68E5A4C5

Addr.4: 0x2A964D17

Addr.3: 0x364C91F8

Addr.2: 0xF10D4A12

Addr.1: 0x2C9340B4

Addr.0: 0x6A5E63B1

External Memory

T8

0x68E50000

0xF10D4A12

Read request: Addr. 1

T4: 0x4F5C1A08

T8: 0x2C9340B4

T4

Figure 2. Implemented methods of three types of tampering attacks from main memory: spoofing
attack, relocation attack, and replay attack.

3.3. AES-GCM Model and Activated Mechanism

This paper plan adopts AES-GCM algorithm as the embedded cryptographic accelera-
tor IP core and integrates it into the SoC architecture. As shown in Figure 3, we designed
the cryptographic accelerator, which consists of two encryption phases of AES engine
and Ghash engine. In these, the pipelined AES engine is specified as the confidentiality
protection module, which is utilized with an input of 128 bits seed information that is
associated with the physical address and timestamp corresponding to the data block; its
1–9 rounds encryption processes are duplicated, and with the round 10 without the Mix-
Columns transformation. In addition, the Ghash engine is implemented to provide the hash
value authentication for verifying the integrity of the data block, which, through reading
the XORed value of data plaintext and AES encrypted physical address (key stream), then
encrypts the input plaintext data block and computes an authenticated Tag through the
construction of Galois field GF(2128) multiplier. This Ghash engine based on block cipher
encryption has fixed input parameters, where the hash subkey (H) is generated by directly
applying the AES engine to encrypt the 128-bit zero block and then as the Ghash engine
input subkey H.

Hardware-assisted AES-GCM cryptographic accelerator efficiently extends achieving
the high-efficiency data processing speed with a reasonable resource overhead. However,
performing the encryption and decryption operations on all stored data is unacceptable
on processor executing intensive data processing tasks, since excessively encrypted data
block protections will cause a large performance overhead to processor program execution.
Combined with the superiority of AES engine and Ghash engine on confidentiality and
integrity protections, the dynamic data monitoring mechanism is an outstanding technique
that works by activating the security IP core only when the D-Cache addressing misses
(under the Write-Back mechanism). Making full use of the locality principle of D-Cache
on mapping the main memory, we adopted the Write-Back mechanism in memory access,
which does not write data blocks to the main memory synchronously when CPU writes to
the D-Cache (D-Cache hit); here, the D-Cache values are inconsistent with the data in the
main memory, such that external attacks can not cause target SoC information leakages
or function failure before the main memory is overwritten. If D-Cache misses, the central
processing unit (CPU) will directly access the main memory and write back according to
the access address, while the D-Cache will keep consistent with the main memory. In this

Micromachines 2021, 12, 560 7 of 24

consistent process, many data blocks from D-Cache will write back to the main memory at
one time with AES-GCM hardware accelerator encryption.

Data blocks

 to Memory

Confidentiality

Protection

P

X Register

GF(2
128

)
Multiplier

AAD

AC Reg. H Reg.

MUX1

SubBytes

ShiftRows

MixColumns

AddRoundKey

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

R1

R10

Tag

Cipher
text

128

H

Integrity

Protection

Data plaintext

Embedded Cryptographic Accelerator IP Core

 GF(2
128

) finite
field multiplier

Embedded

Processor Core

Phase-1 AES Engine

Phase-2 GHash Engine

Encryption

Process

(AES engine is utilized

with input of 128 bits seed

information associated

with data block address in

memory and timestamp.)

Cache Miss

Activation

(Ghash engine is utilized

to provide the hash check

value authentication for

verifying the integrity of

data block.)

16 S-Boxes

Cipher key

Round 1
encryption

Addi.auth.data

Round key 1

Round key 10

Hash Value

Round 10
encryption

Hash subkey

Ciphertext

Confidentiality defend

Bus monitoring

Off-line analysis

Integrity defend

Relay attack

Spoofing attack

Relocation attack

 Register

Rounds 2-9
Rounds 2-9
encryption

AESK

0

Figure 3. The AES-GCM cryptographic algorithm model for data encryption.

4. Parallel Hardware Architecture Based on AES-GCM

In this section, we present the details of the parallel hardware architecture imple-
mentation based on the AES-GCM algorithm, which contains four main components: the
hardware structure of AES encryption, the optimized composite field implementation of
S-Boxes, Galois/Counter mode of Galois Hash, and AES-GCM parallel architecture.

4.1. Hardware Multiplexing Structure of AES Encryption

We employed the AES-128 encryption algorithm as the symmetric key block cipher
cryptosystem engine. Considering the AES-GCM cryptographic accelerator in terms of
speed, area, and power consumption, the rollback multiplexing structure of AES engine
is utilized to complete the 10 rounds encryption and the key expansion process, as illus-
trated in detail in Figure 4. In initial round, the 128 bits state array is generated with the
input bitwise XOR values of 128 bits plaintext and cipher key and then begins to execute
one round of the encryption process consisting of the four transformations of SubBytes,
ShiftRows, MixColumns, and AddRoundKey. In this context, SubBytes is a non-linear function
that substitutes all the bytes of state array from a lookup table of 16× 16 bytes array, named
S-Box; ShiftRows is completed by using hardware dislocation wire connections of signals;
MixColumns is realized through a constant matrix and state matrix multiplicative inversion
under the irreducible polynomial of P(x) = x8 + x4 + x3 + x + 1 over the finite field GF(28)
that each byte of a column in state matrix is mapped into a new value; AddRoundKey utilizes
a state array in column XORed with the expanded key that results from the key expansion
process. Including the first round of encryption, two inputs of the multiplexer module are
implemented to perform the 10 rounds encryption in the multiplexing structure, where the
MixColumns transformation is bypassed in the 10th round.

Micromachines 2021, 12, 560 8 of 24

We designed a key expansion hardware structure to represent the main functionality
of the key expansion operations, which consists of four subtransforms: RotWord takes
one 128 bits cipher key as the initial array, which is similar with ShiftRows to rotate the
column C4 upward one lattice; SubWord is similar to SubBytes, substituting the 4 bytes of
rotational column from the lookup table of S-Box; RconGen uses a constant vector generator
to create a round constant hexadecimal bytes column “Rcon(n), 0, 0, 0”, where 1 ≤ n ≤ 10;
KeyXOR executes two XOR operations between the first column C1 of cipher key array,
S-Box substituted column, and Rcon(1) constant column, and finally replaces the C1 bytes
with the new XORed values. Meanwhile, the columns C2, C3, and C4 are replaced with
new C3, C4, and C1, respectively, to constitute a new round(n + 1) key array after the same
transformation scheme. This key expansion module has overcame a large overhead in
terms of power consumption and resource utilization and is suitable for the application in
target embedded system.

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

S-Box #0

S-Box #1

S-Box #2

S-Box #3

S-Box #4

S-Box #5

S-Box #6

S-Box #7

S-Box #8

S-Box #9

S-Box #A

S-Box #B

S-Box #C

S-Box #D

S-Box #E

S-Box #F

5'

0'

A'

F'

9'

4'

E'

3'

D'

8'

2'

7'

1'

C'

6'

B'

MixColumns

#0

MixColumns

#1

MixColumns

#2

MixColumns

#3

32 bit
32

8 bit 8 bit
SubBytes ShiftRows MixColumns AddRoundKey

RoundKey

Column #0

RoundKey

Column #1

RoundKey

Column #2

RoundKey

Column #3

128

32

32

32

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

128

New 128 bit State128 bit State

Round N
128

New state from

the last round

128 bit

Plaintext

(a)

C1 in

Rkey(n+1)

S-Box #1

S-Box #2

S-Box #3

S-Box #4

K23

K13

K33

K03

RotWord

Rcon(n)
Generator

K00 K01 K02 K03

K10 K11 K12 K13

K20 K21 K22 K23

K30 K31 K32 K33

C1 C2 C3 C4

(b)

C2 in

Rkey(n+1)
C3 in

Rkey(n+1)
C4 in

Rkey(n+1)

32 bit

in Column

One round of the encryption process

8

8

8

8

SubWord

KeyXOR

Figure 4. Hardware multiplexing structure of AES encryption algorithm: (a) round encryption
process; (b) key expansion process.

4.2. Optimized Composite Field Implementation of S-Boxes

Among the hardware implementation of full AES encryption, the S-Box is known as
non-linear transformation in SubBytes, which occupies the most hardware resources and
consumes around three quarters of its power [23]. Fortunately, the S-box implementation
with the composite field arithmetic is an efficient optimization technology to reduce the
SubBytes hardware realization complexity instead of to look up the table; it is suitable
to achieve both low area and low delay in a resource-limited embedded system. For
actualizing the S-Box non-linear transformations with input and output bytes in the cir-
cuit structure, the irreducible polynomial of P(x) = x8 + x4 + x3 + x + 1 is utilized to
construct the finite field GF(28). Normally, the S-Box construction can be decomposed
into the composite field GF((24)2) that consists of the four stages: isomorphic mapping
matrix (T), multiplicative inversion, inverse isomorphic mapping matrix (T−1), and affine
transformation, as shown in Figure 5, in which the isomorphic mapping matrix is utilized
to transform the input vector from finite field GF(28) to composite field GF((24)2), the
multiplicative inversion calculates the inverse element over GF(28), the inverse isomorphic
mapping matrix is used to revert the computing results back to finite field GF(28), and

Micromachines 2021, 12, 560 9 of 24

affine transformation outputs the bytes of S-Box. The implementation of AES S-Box based
on affine transformation is expressed as the following.

S(X) = AX−1 + b = M × (T ×X)−1 + b (1)

where X is an 8-bit input column vector, A is an 8 × 8 constant binary matrix, X−1 is the
multiplicative inversion vector over GF(28) corresponding to X, the b is an artificial 8-bit
constant vector, M is a merged matrix of inverse isomorphic mapping matrix T−1 multiply
with affine matrix A, as M = A× T−1, and the 8-bit S(X) vector is performed after the
affine transformation to replay the corresponding elements in S-Box.

Multiplicative inversion in

composite field GF((2
4
)

2
)

Squaring

()
2

Constant multi.

(× v)

Mapping inverse

matrix (T
-1

)

Mapping

matrix (T)

Multiplication

(×)

Inversion in

GF(2
4
) ()

-1

Multiplication

(×)

Multiplication

(×)

State

[7:0]

Affine

transfor.

4

4

4

4
8 Sub_state

[7:0]

l

GF(2
4
) [3:0]

h

GF(2
4
) [7:4]

h

GF(2
4
) [7:4]

l

GF(2
4
) [3:0]

4

44

Figure 5. S-Box implementation architecture using normal basis over composite field GF((24)2).

Considering the design demands for low-complexity S-Box according to composite
field arithmetics, affine transformation can be implemented through XOR operations on
data bits, the multiplicative inversion over GF(28) should be decomposed to composite
field GF((24)2), and then the multiplicative inversion operations over GF((24)2) are di-
vided into multiplications over GF(24) and multiplicative inversion over GF(24). Figure 5
illustrates the S-Box implementation architecture using normal basis over composite field
GF((24)2). To reduce the redundant circuits of S-Box multiplicative inversion realization
over the composite field, previous research works have indicated that the common subex-
pression elimination algorithms are effective to find the best irreducible polynomials and
isomorphism mapping [24,25]. We also note that pruned-tree-search strategy is employed
to search a family of 432 possible combinations of different isomorphism matrices oper-
ations for minimal logic gate consumption and find out the best optimized basis matrix
in the reported work [26]. In the best case after the comprehensive comparisons, the
following irreducible polynomial over GF((24)2) is selected to obtain the coordinates of
multiplicative inversion outputs by using normal basis, as shown the dotted rectangle
structure in Figure 5.

GF((24)2) : f (u) = x2 + x + v (2)

where the coefficient v is (0001)2. Suppose ψ is an element over finite field GF(28), ψh, ψl
∈ GF(24); then ψ can be represented by using normal basis as ψhX16 + ψlX. Therefore,
the multiplicative inversion output η equals to ψ−1, which can be mapped into composite
field GF((24)2) and represented as follows. Its corresponding architecture is illustrated as
Figure 5.

η = (ψ)−1 = ((ψh + ψl)
2v + ψhψl)

−1 × (ψhX16 + ψlX) (3)

For the optimal resource consideration, we constructed the hardware module of the
best case reported in Reference [26] to implement the S-Box. The very compact implemen-
tation of S-Box only needs 80 XOR, 34 NAND, and 6 NOR, and it maintains a low critical
path delay in target AES engine implementation.

Micromachines 2021, 12, 560 10 of 24

4.3. GF(2128) Multiplier Implementation of Galois Hash

After expatiating the 128-bit AES hardware implementation, in the authenticated
encryption and decryption procedures combined with Galois/Counter Mode (GCM), the
construction of GF(2128) multiplier in Ghash engine is the key point in performing the
high-speed AES-GCM cryptographic accelerator. We have considered the commonly used
GF(2128) multiplier algorithms in previous works, such as the Mastrovito multiplier [27]
and the Karatsuba-Ofman (KO) multiplier [28]. According to the experiential latency
expression n

q + log2(q) of implemented architecture, the increasing number of parallel
structures (q) will result in lower time cycles and a higher throughput during processing the
input n data blocks. To reduce the hardware complexity of GF(2128) multiplier in the Ghash
function, we utilized the efficient realization of the KO bit-parallel GF(2128) multiplier to
keep a lower timing complexity. The GF(2128) multiplier architecture implementation by
using the KO multiplier is shown in Figure 6.

Ah Al

ah al bh bl

Bh Bl

32-bit
mult.

32-bit
mult.

32-bit
mult.

ch cl dh dl

32-bit
mult.

32-bit
mult.

32-bit
mult.

eh el fh fl

32-bit
mult.

32-bit
mult.

32-bit
mult.

<< 64 << 32

<< 128

<< 64 << 32

<< 64

<< 64 << 32

XOR network

Binary field reduction

A B
128 128

64 64 64 64

32 32 32 3232 32 32 32 32 32 32 32

255

128

R

63 63 63 63 63 63 63 63 63

127 127

127

Figure 6. GF(2128) multiplier architecture implementation by using the Karatsuba–Ofman multiplier.

According to the literature, it is known that the KO algorithm adopts the recursive
method to decrease the multiplicative and additive complexities in polynomial multipli-
cation [29]. At the first stage, the m-bit inputs A and B are split evenly into four m

2 -bit
terms of Ah, Al , Bh, and Bl through the KO algorithm, assuming that a(x) and b(x) are two
elements in GF(2m); both these elements can be represented polynomially as follows.

a(x) = xm/2(xm/2−1 · am−1 + · · ·+ am/2)+
(xm/2−1 · am/2−1 + · · ·+ a0) = xm/2 Ah + Al

b(x) = xm/2(xm/2−1 · bm−1 + · · ·+ bm/2)+
(xm/2−1 · bm/2−1 + · · ·+ b0) = xm/2Bh + Bl

(4)

Then, the polynomial product R(x) = a(x) · b(x) mod g(x) can be represented as
follows.

R(x) = xm AhBh + xm/2(AhBl + Al Bh) + Al Bl
= xm AhBh + xm/2[AhBh + (Ah + Al)·
(Bh + Bl) + Al Bl] + Al Bl

(5)

Deduced from the Equation (5), the implementation of hardware architecture of
GF(2128) multiplier is subdivided into nine 32-bit multipliers through two recursions, and
every three 32-bit multiplier can perform a 64-bit multiplier module, as depicted in Figure 6.

Micromachines 2021, 12, 560 11 of 24

This two-step parallel multiplier of KO algorithm has a good balance between the hardware
complexity and computing speed.

4.4. AES-GCM Parallel Architecture Mechanism

We have presented the Ghash 128-bit multiplier architecture over the binary Galois
field that provides fast hash computation. The proposed AES-GCM hardware architecture
is based on the combination of the AES engine and the Ghash engine to support a high rate
of data-authenticated encryption, since it can take advantages of the parallel processing
technique. Therefore, avoiding the AES-GCM accelerator might cause larger overheads
in power consumption and resources utilization in the embedded system compared to
eight-parallel AES-GCM in Reference [19]. We constructed q = 4 parallel structures for
GCM, as shown in Figure 7. This combinational architecture is based on four AES subcores
and four Ghash subcores. The latter GCTR consists of four KO multipliers. Inside, GCTR
(Galois Counter with key K) achieves the confidentiality of data with the block cipher in
counter mode, and Ghash realizes high-speed integrity and authentication in the embedded
system, which avoids the possibility that the confidentiality approaches cannot be fully
protected. In this parallel architecture, the realization of four pipelined AES cores utilize
the AES multiplexing structure that was described in Section 4.1, and its input blocks are
set with the initial counter block (ICB) and one-increments (CBi). Moreover, the plaintext
blocks (Pi − Pi+3) are used as the input data blocks XORed with the AES key streams to
generate the ciphertext blocks. We assume that the n blocks are a multiple of parallelism q
and that there is no AAD; when n is not a multiple of q, a mask gate is set to append zero
blocks to the q-mod(n, q) blocks.

Round1

Round2

K
ey

 e
x

p
a

n
si

o
n

Round10

Round1

Round2

Round10

Round1

Round2

Round10

Round1

Round2

Round10

KO

mult.

R1

KO

mult.

R2

KO

mult.

R3

KO

mult.

R4

XOR network

Pi Pi+1 Pi+2 Pi+3

H
4

H
4

H
2

H
4

H
4

H

H
4

1

H
4

H
4

H
2

H

ICB INC CB2 CB3 CB4INC INC

Tag

GCTR

Ghash

AAD Enc

Mask

A1A5 A9 A2 A6 A10 A3 A7 A8A4

Figure 7. The 4-parallel AES-GCM architecture based on the combination of four AES cores and four
KO multipliers.

In the low-complexity Ghash module using four-parallel KO multipliers, the produced
results of GF(2128) multiplications are associated with the input parameters of Hash

Micromachines 2021, 12, 560 12 of 24

subkey (H), which is generated by applying the AES engine to a 128-bit zero block as
H = Enc(K, 0128). Ghash function addition–multiplication operation is calculated as follows.

Xi = (Ai ⊕ Xi−1) · H (6)

where Ai is expressed as the ciphertext block that is input to the Ghash engine and Xi is
the intermediate variable of hash computation. In addition, the procedures of multipli-
cations and exponentiations over GF(2128) are constructed by the irreducible polynomial
g(x) = x128 + x7 + x2 + x + 1. We note that the related research work indicates that the
10 data blocks are recommended for four-parallel architecture [30]. Then, the X10 can be
expressed as follows.

X10 = A1 · H10 ⊕ A2 · H9 ⊕ · · · ⊕ A9 · H2 ⊕ A10 · H (7)

For improving the pre-calculated term subkey H computations, the X10 in Equation (7)
can be further expressed by using classical squaring method as follows.

X10 = ((A1 · H4 ⊕ A5) · H4 ⊕ A9) · H2

⊕ ((A2 · H4 ⊕ A6) · H4 ⊕ A10) · H
⊕ ((A3 · H4 ⊕ A7) · 1 ⊕ 0) · H4

⊕ ((A4 · H4 ⊕ A8) · H2 ⊕ 0) · H

(8)

Equation (8) describes that for the four-parallel 128-bit KO multipliers, in the first
cycle, four ciphertext blocks A1, A2, A3, A4 are multiplied simultaneously by the same
subkey H4, and the intermediate results are stored in registers, respectively. Similarly in
the next cycle, A5, A6, A7, A8 data blocks are first XORed with the intermediate results
of registers; then, subsequent results are multiplied by the H4, H4, 1, H2 and overwritten
stored in registers, respectively. In the last cycle, A9, A10, 0, 0 data blocks are XORed with
the register results of the last cycle, then subsequent results are multiplied by the H2, H,
H4, H and overwritten in registers for generating the integrity Tag.

5. SoC Architecture against External Physical Attacks

In this section, we describe the hardware implementation of SoC security architecture
with the proposed AES-GCM cryptographic accelerator for preventing the sensitive data
leakages and external data tampering attacks. We will also expatiate the dynamic data
monitoring mechanism with low performance overhead.

5.1. Embedded System Architecture for Security Monitoring

Our implementation of target embedded system adopts an open-source reduced
instruction set computer (OpenRISC) processor with a Harvard micro architecture, and
this softcore processor OR1200 has a five-stage pipeline in the sequential executions,
which consists of the instruction-fetching (IF) stage, the instruction decode (ID) stage, the
execution (EX) stage, the memory accessing (MA) stage, and the writing back (WB) stage.
Moreover, the CPU core can be easily extended with the hardware-assisted cryptographic
accelerator through the Wishbone system bus communication protocol. The system bus
also connects internal hardware components by using separated data and address bus.
Figure 8 shows the overall hardware security architecture that integrates the processor
core, cryptographic accelerator, and external main memory, in which hardware accelerator
is applied between the store-buffer and external memory to provide data confidentiality
and integrity protections during program execution.

In the process of CPU loading/storing the data, first, the CPU sends an effective
address for reading/writing data, the data memory management unit (DMMU) translates
the effective address into a physical address and sends it to the addressable quick memory
(QMEM), and the QMEM judges whether the physical address is within the address range
of QMEM—if it is, read and write the specified address directly, and if it is not within the
address range of QMEM, send the address to D-Cache. The D-Cache checks whether the

Micromachines 2021, 12, 560 13 of 24

target address has been cached, if the D-Cache hit, then it directly sends the corresponding
data to QMEM and forwards it to CPU; if the D-Cache missed, it will access the external
memory to read and write data through the store-buffer and data WB_BIU modules, where
WB_BIU is not shown in Figure 8 for the sake of brevity. Because the external memory is
located in the untrusted domain and faces the risk of being attacked maliciously, we set the
hardware accelerator to be activated only when D-Cache misses. The Write-Back mechanism
of D-Cache plays an important role in achieving low system performance overhead.

Trusted Domain

I-Cache

Wishbone Bus

D-Cache

Pipe

Line

Processor Core

IF ID
E

X

M

A

W

B

QMEMIMMU DMMU

Store
buffer

Internal Unit Module

GHash
engine

AES

engine
IV generator

Integrity

check

Key

manage.

XOR

encryption

&

decryption

Counter

XOR &
Control

Timestamp

 memory

Signatures

Zone
Cryptographic Accelerator

Tag-decry.

Data validation

Tag

External
Memory

Same ?

Data Zone

Addr.

Data

H
k

En. Sig.

En. Data

Cipher

text

Write-back

Data-load

Reused-wire

Cipher

text

Tag-encry.

Key stream

P

H
k

memory

Exception

Key stream
Register B1

Figure 8. The overall hardware security architecture for dynamic data monitoring with AES-GCM
cryptographic accelerator.

The extended hardware-assisted cryptographic accelerator mainly includes the AES
engine, Ghash engine, Counter, Key management unit, and Integrity check module. Inside,
the AES engine and Ghash engine with four-parallel subcores are utilized to provide confi-
dentiality and integrity protections for data storage off-chip. Moreover, the integrity check
module is used to verify the data validation and send normal/abnormal signal to the CPU
Exception interrupt module during read-load operation. Timestamps are generated by in-
creasing the counter with one-increment, and the count values are stored in the timestamp
memory and associated with the physical addresses of data blocks and as the inputs of
the initialization vector (IV) generator. It is noteworthy that the possible situation of the
counter overflow will generate a repeated timestamp with previously stored value in the
timestamp memory so that the time uniqueness of the key seed cannot be guaranteed and
the confidentiality of ciphertext will be reduced; therefore, the sizes of counter and times-
tamp memory should be configured according to the application requirements for avoiding
the counter flow. In order to ensure the security of timestamps, the timestamp memory
is located in the on-chip trusted domain on which stored timestamps are considered as
immune to the above-mentioned external attacks. We distinguish the write-back and the
data-load procedures with red arrows and blue arrows, respectively, while the reused
signal wires with black arrows are utilized in both encryption and decryption processes. In
order to improve the confidentiality of dynamic data, we adopt the data blocks’ (plaintext)
corresponding physical address as part of IV seed for ensuring the spatial uniqueness of
key stream, and the timestamp is utilized to ensure the time uniqueness of IV seeds. Hence,
this encrypted method has the superior capabilities in resisting spoofing attack, relocation
attack, and replay attack.

5.2. Data Blocks Write-Back Procedure of Memory Access

The innovation of our hardware security mechanism is integrating a high through-
put four-parallel AES-GCM cryptographic accelerator, which can effectively reduce the

Micromachines 2021, 12, 560 14 of 24

encryption- and decryption-required clock cycles while processing large numbers of data.
In normal operations, the working process in the embedded system in protecting the
dynamic data is divided into two stages: the calculated data from D-Cache write back
to the external memory, and the data from external memory are loaded into the on-chip
D-Cache for awaiting the processor’s next computing. Moreover, the locality principle of
D-Cache mapping main memory plays an important role in decreasing external memory
accessing times and performance overhead caused by data integrity checking. Figure 9
shows the operation details of dynamic data writing back to the external memory; we
consider the size of data-protecting granularity is compatible with AES-GCM accelerator
that is an integer multiple of 128 bits, so we configure the lengths of plaintext and ciphertext
blocks as 128 bits (four 32-bit data sub-blocks), and D-Cache line size is also set as 128 bits
(16 types), so that the data blocks can be expressed as n×128 bits, where n denotes the
number of 128 bits data blocks from D-Cache. The physical addresses of external memory
are aligned to four bytes, and the lower two bits are fixed to 2’b00 for 4 sub-blocks offsetting
in each 128-bit storage block.

Trusted Domain

I-Cache D-Cache

Pipe

Line

Processor Core

IF ID
E

X

M

A

W

B

QMEMIMMU DMMU

Store
buffer

Internal Unit Module

IV generator
Key

manage.

XOR
encryption

&
decryption

Counter

XOR &
Control

Timestamp

 memory

Signatures

Zone

Cryptographic Accelerator

Tag

External
Memory

Data Zone

Addr.

Data

H
k

En. Sig.

4×128 bits encrypted data

Cipher

text

Ciphertext

Key stream

P

H
k

memory

Exception

Key stream
Register B1

GHash
sub-core

Addr.1: Data1

Addr.2: Data2

Addr.3: Data3

Addr.a: Sign.1

Addr.b: Sign.2

Addr.c: Sign.3

Addr.4: Data4

Addr.5: Data5

Addr.n: Data n

Addr. :Sign.
AES

sub-core

32 bits

128 bits

n

4

n

4

Figure 9. The embedded system details of D-Cache data blocks write-back procedure.

5.2.1. Hash Subkey Hk Pre-Calculation

We have allocated the four-parallel hardware architecture with the Hash subkeys
Hk (k = 0, 1, 2, 4) for implementing high-efficiency multiplications in the Ghash engine,
in which the hash subkey exponentiations k = 2 and k = 4 require squaring operations,
and it is known that the squaring operation in binary extension fields leads to a linear
structure. In the hardware realization of hash subkey Hk pre-calculation process, three
extra multipliers are divided into two levels that are configured between the AES engine
and the Hk memory; among it, two parallel multipliers at the first level connect the outputs
of four-parallel AES sub-cores, and the other one multiplier at the second connects the
two multiplier outputs of the upper level. Then, the subkey H can be derived directly by
applying an AES sub-core to a 128-bit zero block, and the hash subkey exponentiations
H2 and H4 are obtained from the outputs of the multiplier at the first and second levels,
respectively. Finally, these pre-calculated hash subkeys of 1, H, H2, H4 are stored in the Hk

memory for the Ghash engine subsequent computations. Compared with many cascaded
squaring operations, this complexity-reduction technique uses four-parallel multiplexing
method decreasing the number of gates and has the lowest critical path delay while its
hardware complexity is reasonable.

5.2.2. Dynamic Monitoring Mechanism with D-Cache

As mentioned above, D-Cache plays an important role in dynamically activating the
data monitor for data encryption and decryption. The implementation structure of D-Cache
is shown in Figure 10. When the CPU requests to write back a 32 bits data sub-block to
external main memory, the 32-bit physical address (ADDphy) of data sub-block in the

Micromachines 2021, 12, 560 15 of 24

address bus consists of three parts, its high 19-bit ADDphy[31:13] is compared to the high
19-bit identification tag in the indexed cache line appointed by the ADDphy[12:4] if their
comparative result is equal; meanwhile, the mark bit of Validity (V) in cache line is “1”,
which indicates a D-Cache hit, the physical address can exactly access its target address
according to ADDphy[3:0] (block offset address), and the data sub-block of target address is
overwritten by the write-back sub-block. Once the cache line completes an overwriting and
has changed (where main memory not updated), its Dirty bit turns “0” to “1”. Otherwise,
D-Cache misses when their comparative result is unequal, which indicates the write-back
target address was not cached in D-Cache, or the physical address is allocated to the
invalid cache line (V = “0”), in which the original data block is invalid. Then, D-Cache
directly flushes the free cache line with four data sub-blocks from the target addresses on
the main memory with the direct mapping method, and CPU completes the overwriting
operation, line Dirty bit marked with “1”. Finally, D-Cache synchronizes the data blocks
(Dirty marked with “1”) to the main memory with encryption protections at store status. It
is noteworthy that the encrypted data blocks are the D-Cache 128 bits line blocks and their
Dirty is marked with “1”, to stay consistent with the main memory.

0x3
Block offset

address

High 19 bits V 16 bytes data

High 19 bits V 16 bytes data

High 19 bits V 16 bytes data

High 19 bits

Equal ?

Physical

address

Line 0

High 19 bits V 16 bytes data

Line 1

Line 2

Line 3

Line 511

034

Identification

121331

Line list

Data required

Mark bits

Cache

miss

No or
V=0

Yes & V=1

Data block

Dirty

Dirty

Dirty

Dirty

V 16 bytes dataDirty

Figure 10. The internal implementation structure of D-Cache with the size of 8-KB.

5.2.3. Write-Back Procedure of D-Cache Data Blocks

When D-Cache addressing misses, the D-Cache prepares to write back the data blocks
to the memory addresses, while the cryptographic accelerator is activated immediately.
Algorithm 1 describes the encryption procedure of writing back the data blocks into the
external memory, and the corresponding hardware details of this procedure are shown in
Figure 9. Afterward, the appended cryptographic accelerator starts obtaining the plaintext
data blocks and their corresponding storage addresses from the D-Cache module. The
counter is configured to generate the count values with one increment, and as the times-
tamps are one-to-one associated with the data blocks physical addresses, the timestamps
are stored in on-chip timestamp memory in the trusted domain. Then, the IV seeds are
composed with input—both the first 32-bit physical address and the 32-bit timestamps
through the IV generator—and one 128-bit IV seed is appended with 64 bits zero block
(IV_seed[95:32]) between the high 32-bit physical address (IV_seed[127:96]) and the low
32-bit timestamp (IV_seed[31:0]). To better match the four-parallel AES-GCM sub-cores
hardware architecture and improve its processing efficiency, n data blocks are assigned into
n
4 rounds multiplied by four data blocks, and 4× 128 bits data plaintext blocks with the
16 related physical addresses are participated in every cryptographic computing operation.
In the case that n is not a multiple of four or 1 ≤ n ≤ 3, zero blocks are appended to the
remainder computing sub-cores.

Micromachines 2021, 12, 560 16 of 24

Algorithm 1 Write-back operation of data blocks being stored into external main memory

Inputs: Data, Address
Outputs: Timestamps, Ciphertext, Signature
1: Data← set of data blocks to write back datai, 1 ≤ i ≤ n.
2: address← set of memory physical addressd, 1 ≤ d ≤ n.
3: pre-calculation H = AESk(0128), squaring operations, hash subkeys 1, H, H2, H4 are

pre-stored in Hk memory;
4: D-Cache miss, mapping address to physical address;
5: begin inputting four physical address blocks, counter generates timestamps (Ts), Ts++,

are stored in Ts memory;
6: IV_seed = {address [127:96], 064, timestamp [31:0]};
7: repeat: the four IV seed blocks are generated;
8: Using AES engine to generate key_stream, and storing the first block key_stream_B1 in

register B1;
9: Ciphertext = Data XOR key_stream, then input ciphertext blocks to the GHash engine;

10: output: ciphertext blocks at another branch path are stored into the data zone of
external memory;

11: until ciphertext blocks are computed in the GHash engine, signature = Tag XOR
key_stream_B1;

12: output: integrity digital signature is stored into the signatures zone of external memory;

The key management unit is used to provide a 128-bit initial key for AES engine key
expansion process and rolled-pipelined 10-round operations. While the four-parallel AES
engine sub-cores outputting 4× 128 bits encrypted key stream to the XOR and Control
module, we select the 128-bit first block key stream (B1) of AES engine sub-cores as the
subsequent XOR cryptographic operand, which is temporarily stored in the key stream
register B1 to await the accomplishment of Ghash engine computations. This method not
only solves the special 1 ≤ n ≤ 3 situations well, but also does not cause extra hardware
consumption in the implementation of four data blocks mapping to the same encrypted
digital signature. Then, the four ciphertext blocks are generated through the four input
data blocks XORed with the key stream. In a branch path, the ciphertext in the format of
4× 128 bits encrypted data blocks are stored in the data zone of target external memory,
which satisfies the confidentiality requirement against sensitive data leakages. For the
external memory data zone and signatures-zone-related configuration, we set the bit widths
of the storage units as 16 bytes, and a storage unit corresponds to a physical address with
step 4 (lower 2 bits are fixed to 2’00); therefore, the four encrypted data blocks occupy
Addr.1 to Addr.4 addresses in the data zone. In another branch path, these ciphertext blocks
are also input into the GHash engine that contains four-parallel KO multipliers, and a
128-bit authentication tag is computed for ensuring that the integrity of ciphertext data
are not maliciously tampered with. Ultimately, the authenticated Tag is XORed with the
previously stored key stream B1 to generate a encrypted digital signature, which is stored
into the Addr.a of signatures zone; this final XOR operation can establish the correspondence
between one digital signature and four ciphertext blocks.

5.3. Data Blocks Read-Load Procedure of Memory Access

In the procedure of read-load operation from the external main memory, the request
physical address of CPU is first asserted and sent to the D-Cache. If the ADDphy[31:13] is
equal to the high 19-bit identification tag of the appointed cache line, while the line mark
bit of V is “1”, then D-Cache hits, the cached data sub-block corresponding to the physical
address, is sent to the processor directly. Otherwise, if D-Cache misses, the D-Cache will
read-load the data sub-blocks from external main memory, and their physical addresses
will be first asserted and sent to cryptographic accelerator and external main memory. It
is noteworthy that the hardware monitor architecture is designed for four-parallel blocks
synchronously processing, and four ciphertext blocks and a corresponding digital signature
are read-loaded to the hardware monitor even if CPU sends a read request addressd of

Micromachines 2021, 12, 560 17 of 24

one ciphertext block; meanwhile, the physical addresses corresponding to four ciphertext
blocks are buffered immediately in D-Cache through the Wishbone address bus. This
operation method has adapted the locality principle of D-Cache mapping memory, which
can increase the locality intensity on the D-Cache hit ratio and its access effectiveness for
improving the system performance. According to the input four physical address blocks,
timestamp memory pops out the buffered timestamps, which correspond to the physical
address blocks as described in the above write-back operation. Algorithm 2 describes the
read-load operation of data blocks from the external main memory, and the corresponding
hardware architecture details of the read-load procedure are shown in Figure 11.

Trusted Domain

I-Cache D-Cache

Pipe

Line

Processor Core

IF ID
E

X

M

A

W

B

QMEMIMMU DMMU

Store
buffer

Internal Unit Module

Timestamp

 memory

IV generator
Key

manage.

XOR
encryption

&
decryption

XOR &

Control

Cryptographic Accelerator
Addr.

Data

H
k

4×128 bits

Cipher

text

Ciphertext

Key stream

P

H
k

memory

Exception

GHash
sub-core

AES
sub-core

32 bits

128 bits

Integrity

check

Key stream

Register B1

Data validation

Same ?

Tag-decry.

Tag-encry.

Signatures

Zone

External
Memory

Data Zone

Addr.1: Data1

Addr.2: Data2

Addr.3: Data3

Addr.a: Sign.1

Addr.b: Sign.2

Addr.c: Sign.3

Addr.4: Data4

Addr.5: Data5

Addr.n: Data n

Addr. :Sign.
n

4
n

4

Figure 11. The hardware monitoring architecture details of loading the ciphertext data blocks.

Algorithm 2 Data-load operation with hardware security checking from external memory

Inputs: Address, Ciphertext, Signature
Outputs: Data, Exception
1: Data← set of data blocks to write back datai, 1 ≤ i ≤ n.
2: signature← Integrity signatures set of data blocks and corresponding addresses, 1 ≤

s ≤ n
4 .

3: assert the target address, map address to physical address;
4: assign addressi ← q×mod(d, q) + 1, i=1, i++, 1 ≤ i ≤ 4,

signature← mod(d− 1, q) + 1, where q = 4;
5: Input four physical address blocks and a corresponding signature to cryptographic

accelerator;
6: begin timestamps memory pops four timestamps, Ts++;
7: IV_seed = {address [127:96], 064, timestamp [31:0]};
8: repeat: the four IV seed blocks are generated;
9: Using AES engine to generate key_stream, and storing the first block key_stream_B1 in

register B1;
10: Data = Ciphertext XOR key_stream, then Ciphertext = Data XOR key_stream input to the

GHash engine;
11: until ciphertext blocks are computed in the GHash engine, the authenticated Tag of

Tag-decry. is output;
12: Tag-encry. = Signature XOR key_stream_B1
13: if Tag-decry. = Tag-encry. then

Exception = NULL /* integrity valid */
else Exception = assertion; /* integrity invalid */

In the cryptographic accelerator, the IV generator module outputs four IV seed blocks
into the AES engine, and the four-parallel sub-cores in AES engine are utilized again to
generate the key stream. The first block 128-bit key stream (B1) is stored in a register.

Micromachines 2021, 12, 560 18 of 24

In the meantime, the read-load operation feeds back the encrypted data blocks and the
corresponding encrypted signature from the external memory. The plaintext (P) blocks
are obtained by employing ciphertext blocks XORed with the new key stream and next
input to the store buffer. Furthermore, the created plaintext blocks continue to XOR with
the new input 4× 128 bits key stream under inside control logics, and then the GHash
engine computes the authenticated Tag in the decryption period (Tag-decry). In addition,
the authentication Tag in encryption period (Tag-encry) is calculated by utilizing the input
digital signature XORed with the key stream (B1) in configured XOR encryption and
decryption module. Finally, the decrypted Tag-decry will be compared with the previous
encrypted Tag-encry in the integrity checking module, and the exception signal of data
invalidation will be sent to the processor exception unit if any violation is detected.

6. Experiments and Results

Experiments and results are presented in this section to expatiate the effectiveness
and performance characteristic of the proposed cryptographic accelerator. We first describe
the setup of experimental setup and verification platform. Then, the system performance
overhead, security capability, and processing efficiency are evaluated. Finally, the resource
consumption of SoC is presented in detail.

6.1. Experimental Setup

We implement the hardware-assisted AES-GCM cryptographic accelerator into open-
source processor OR1200 embedded system for guaranteeing intensive data processing
security, in which the basic frequency of scalar Reduced Instruction Set Computer (RISC)
processor is set @100 MHz, and clock cycles satisfy the synchronization with the crypto-
graphic accelerator. In the processor component configurations, the independent I-Cache
and D-Cache modules both support the different size configurations of 2-KB, 4-KB, 8-KB,
and 16-KB, and we first configure the softcore processor with a typical configuration
of 8-KB I-Cache and 8-KB D-Cache, whose internal structures consist of 512 cache line
blocks. We designed the whole embedded system with the cryptographic accelerator in
Verilog hardware description language (HDL) and performed the logic synthesis and im-
plementation with Xilinx ISE Design Suite 14.7. This SoC hardware architecture integrating
cryptographic accelerator is finally evaluated on a Xilinx Virtex-5 FPGA platform, and the
GNU Cross Compilation Toolchain or32-elf-gcc matching with OR1200 core matched is
utilized to generate CPU execution codes. We employed both 18-MB Synchronous Static
Random-Access Memory (SSRAM: IS61LPS51236A) and 32-MB Synchronous Dynamic
Random-Access Memory (SDRAM) as the external memory of the FPGA evaluation plat-
form. The external memory should be initialized during the system initialization stage
(Boot Process): first, the bitstream is duplicated from the external flash memory to FPGA at
power-up; meanwhile, the RAM blocks of inner FPGA are instated with the bootloader
(U-Boot), which duplicates the kernel from flash memory to the external RAM Memory
and establishes the mapping of memory space, and then loader branches to the proper
RAM area of kernel and system boots to execute programs.

6.2. Performance Overhead Evaluation

While the embedded system executing program operational codes and activating the
hardware security monitor, the proposed cryptographic accelerator will inevitably result in
a performance overhead to processor. In the system architecture design, we have made
some efforts to reduce system performance overhead during the authenticated encryp-
tion procedures, for example, the design optimizations of the D-Cache configuration and
four-parallel structure to reduce the performance overhead. In the experiments of SoC
performance evaluations, ten various scales of the embedded benchmarks from Mibench
suite [31] are applied to perform the realistic application workloads. These selected bench-
marks are first compiled by using the GNU Cross Toolchain or32-elf-gcc and downloaded
onto the FPGA platform for processor executing. Moreover, the number of total instructions

Micromachines 2021, 12, 560 19 of 24

of each benchmark are counted. Considering that the hit rate of I-Cache and D-Cache may
influence the performance overhead of SoC, we first configured the I-Cache and D-Cache
both with 8 KB, and utilized the or1ksim [32] tool as system simulator to record the I-Cache
and D-Cache hit rates. Therefore, we can calculate the average cycles per instruction (CPI)
of processor with and without integrating AES-GCM cryptographic accelerator to evaluate
the performance overheads under the different benchmarks.

These SoC performance evaluation results are shown in Table 1; these experimental
data indicate that the SoC average performance overhead is 2.65%, ranging from 1.08%
(quicksort) to 5.03% (OpenECC). Benchmark of AES has the highest D-Cache write-hit and
read-hit rates and beyond 99.5%. The average hit rates of 8-KB I-Cache and 8-KB D-Cache
have both exceeded 98%, which are plays an important role in reducing the performance
overhead caused by cryptographic accelerator. By carefully analyzing the results, the
indicator CPI trends vary with the number of benchmark instructions, which reflects a
larger proportion of the external memory access instructions in the binary operational
code, when more memory access instructions appearing in a benchmark CPI will be higher,
such as the benchmarks of the OpenECC, basicmath, and patricia, which executing a
large number of external memory access operations to store the temporary data, thus
having the higher CPI data than other benchmarks. We can also learn that the processor
performance overhead depends on the responding speed of the external memory; therefore,
we employed the SSRAM as the external memory, which provides a faster memory access
speed than other types of memory to reduce the performance overhead.

Table 1. Performance overhead of processor configured with cryptographic accelerator (8 KB I-Cache and 8 KB D-Cache).

Benchmark Total
Instructions I-Cache Hit D-Cache

Read Hit
D-Cache
Write Hit

CPI without
AES-GCM

CPI with
AES-GCM

Performance
Overhead

AES 22,170 98.97% 99.84% 99.65% 3.52 3.62 2.84%
basicmath 26,515 98.08% 98.63% 98.57% 2.64 2.73 3.41%
bitcount 19,684 97.95% 96.47% 95.92% 1.67 1.71 2.40%
blowfish 19,128 97.67% 97.70% 97.44% 3.54 3.60 1.69%

CRC 18,941 99.49% 98.38% 97.65% 1.72 1.76 2.33%
FFT 13,506 95.62% 98.45% 98.16% 2.39 2.43 1.67%

OpenECC 56,313 99.14% 99.12% 98.58% 3.18 3.34 5.03%
patricia 23,130 97.68% 97.06% 96.39% 1.64 1.69 3.05%

quicksort 6707 99.12% 98.89% 98.67% 1.86 1.88 1.08%
SHA1 20,455 98.65% 99.32% 99.21% 2.35 2.42 2.98%

Average - 98.24% 98.39% 98.02% 2.45 2.52 2.65%

To further explore the influences of D-Cache hit rates on performance overhead, we
continue the evaluation experiments of performance overhead with the remaining 8-KB
I-Cache unchanged; the size of the D-Cache is re-configured as 2-KB, 4-KB, and 16-KB.
Figure 12 shows the performance overheads of the selected benchmarks based on the
different sizes of D-Cache. Due to the enlargements of D-Cache addressing spaces, the
performance overhead decreases with the raise of the D-Cache hit rates. After we config-
ured the D-Cache with a size of 16-KB, the performance overhead of embedded system
had a significant reduction and ranges from 0.72% to 3.66%. The mechanism for this effects
is that when the hit rates of D-Cache increase, the number of times of the cryptographic
accelerator being invoked will decrease, such that the encryption, decryption, and authen-
tication operations will incur additional clock cycles. In summary, for the implementation
of applied embedded system, we can configure an appropriate size of D-Cache to reduce
the miss rate, thereby helping the target SoC to decrease performance overhead.

Micromachines 2021, 12, 560 20 of 24

AES basicmath bitcount blowfish CRC FFT OpenECC patricia quicksort SHA1
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d

 2 KB D-Cache

 4 KB D-Cache

 8 KB D-Cache

 16 KB D-Cache

Figure 12. The performance overheads of the selected benchmarks under different sizes of D-Cache.

6.3. Security Capability Evaluation

We implemented the monitoring mechanism of cryptographic accelerator by con-
sidering two threats: information leakages and tampering attacks. While activating the
hardware security monitor, AES engine generates the key stream according to physical
addresses and timestamps, the ciphertext blocks are easily obtained through the simple
XOR operations between plaintext blocks and key stream at run-time. Even though physi-
cal addresses and ciphertext are intercepted by adversaries during ciphertext blocks being
stored in the memory, the four unknown corresponding timestamps, 128 bits AES cipher
key, and 128× 4 bits key stream make it impossible for attackers to reversely derive the
desired plaintext blocks in limited time. This confidentiality protection method has a good
robustness by resisting bus monitoring and offline analysis attacks. Moreover, the plaintext
blocks are also input to the GHash engine and generate an integrity Tag; then the Tag
XORed with a block of key stream creates an associated digital signature, which is stored in
memory signature zone for reducing on-chip storage overhead. Whenever the ciphertext
blocks and the signature blocks are maliciously tampered with, this will be detected rapidly
in Tags integrity checking operations. Therefore, the combination of confidentiality and
integrity protections can provide a high-level security for dynamic data processing in SoC
against information leakages and external tampering attacks.

To confirm the effectiveness of hardware security monitoring, we configured the OR1K
debugging system that is combined with the Joint Test Action Group (JTAG)-TAP module
and Advanced Debug Interface (ADI). This debugging system acts as the interface to
communicate directly with the CPU and Wishbone system bus, so that we could start and
break the executions of program and read and write CPU internal registers by accessing the
CPU. We performed the data tampering experiments at run-time based on the debugging
system. During the program execution, the specific situations of D-Cache misses are created
artificially, and three types of data tampering attacks are introduced into the data path
bus to modify the ciphertext sub-blocks in external memory, respectively. Table 2 depicts
the security capability tests of SoC on integrating cryptographic accelerator under the
different data-tampering attacks. The exception results of integrity error can be printed
and displayed through error_log files in the upper machine. We can find that the hardware
monitor integrity verification can detect any malicious tampering behaviors of data blocks.
The CPU stall signal can suspend the pipeline stages and pause the program execution and
data processing and transfer the processor core to a secure mode. All the pipeline stages
are “frozen” until the integrity checking passes and the CPU stall is de-asserted.

Micromachines 2021, 12, 560 21 of 24

Table 2. Security capability tests of SoC on integrating cryptographic accelerator under different
data-tampering attacks.

Tampering Attacks Spoofing Attack Relocation Attack Replay Attack

Approaches Write addr.: 0x00002016
Read addr.: 0x00002016

Write addr.: 0x00002016
Read addr.: 0x00002012

T8: 32’h2c9340b4
T4: 32’h4f5c1a08

Data Tampering 32’h68e5a4c5
32’h68e50000

32’h364c91f8
32’hf10d4a12

32’h2c9340b4
32’h4f5c1a08

Exception Integrity Error Integrity Error Integrity Error

6.4. Efficiency Evaluation of Encryption and Decryption

For the performance overhead evaluations of the embedded system, we have pre-
sented the experimental results of benchmarking the processor performance with different
CPIs. However, the evaluation of computing the efficiency of the cryptographic accelerator
is not presented with the available reference data. Due to these uncertain activating opera-
tions, clock cycles are considered as the measurement indicator of processing efficiency,
and we first make sure that start measuring the performance penalty when D-Cache misses.
Specifically, we implemented 4× 128 bits plaintext data blocks to measure the clock cycles
of encryption and decryption operations. The timestamp counts and storage need four
clock cycles, and AES engine takes 12 clock cycles to complete the substitution and per-
mutation operations. The clock cycles for GHash engine with four-parallel KO multipliers
is represented as n

q + log2(q), where q is a parallelism constant of four, and n is the num-
ber of 128-bit data blocks, then three clock cycles are needed to complete multiplication
calculations. It is noteworthy that the clock cycles of encryption and decryption do not
include the Hash subkey Hk pre-calculations, logic XORs, etc., and input and output data
clocks, in which Hash subkeys are pre-calculated and stored in the Hk memory before
encryption operation.

Computing one round of encryption and decryption in embedded system may not
comprehensively measure the processing efficiency of the four-parallel AES-GCM hardware
accelerator. We implemented the multiple data blocks encryption and decryption experi-
ments, and provided 10–102 plaintext data blocks to verify accelerator high-throughput
performance. Figure 13 has illustrated the processing performance of 4-parallel AES-GCM
hardware accelerator, which is compared to the other similar security mechanisms as @100
MHz frequency. We note that the eight-parallel high-performance AES-GCM architecture
proposed in Reference [33] has the highest efficiency in both encryption and decryption
computations with the highest hardware complexity. Conversely, the single pipelined
AES-GCM architecture takes the most time cycles to complete the computation on the
authenticated encryption [34], even more than the competitive AES combined with the
light-weight Hash (LHash) algorithm proposed in the Reference [35]. The SoC performance
evaluations indicate that the data-processing efficiency of the four-parallel cryptographic
accelerator is around 3 times that of the pipelined AES-GCM construction, which achieves
a trade-off between high-throughout and hardware complexity. According to the equation
of throughput calculation, Throughput = Frequency × 128× frames

cycles , its data processing
throughput speed can reach 14.93 Gbps @100 MHz, whose authenticated efficiency is
better than the other efficient four-parallel AES-OTR hardware architecture presented in
Reference [36].

Micromachines 2021, 12, 560 22 of 24

0 20 40 60 80 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

 AES-GCM (pipelined)

 AES-Lhash (pipelined)

 AES-OTR (4-parallel)

 AES-GCM (4-parallel)

 AES-GCM (8-parallel)

E
n

c
ry

p
ti
o
n

 e
x
e
c
u
ti
o
n

 t
im

e
 (

s
)

0 20 40 60 80 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
 AES-GCM (pipelined)

 AES-Lhash (pipelined)

 AES-OTR (4-parallel)

 AES-GCM (4-parallel)

 AES-GCM (8-parallel)

D
e

c
ry

p
ti
o

n
 e

x
e

c
u

ti
o

n
 t
im

e
 (

s
)

Data block numbers

Figure 13. The processing performance of the four-parallel cryptographic accelerator compared to
the other security architectures.

6.5. Hardware Implementation Overhead

The advantages of hardware cryptographic accelerator are its high efficiency in au-
thenticated encryption with minimal requirement of clock cycles. This security monitor
inevitably increases the hardware resource consumption and chip area. The register-transfer
level (RTL) SoC architecture is synthesized, implemented, and verified on a Xilinx Virtex-5
(XC5VLX220T) FPGA development platform, and its hardware resource consumption is
shown in Table 3. The occupied slices for the proposed cryptographic accelerator is around
69.2% of total SoC because of its four-parallel high-efficiency hardware structure. In the
experimental platform, an 8-bit counter is utilized to generate the 32-bit timestamps for the
purpose of decreasing the requirement of on-chip memory, which leads to it occupying
about 19.8% of memory resources. The optimal hardware realizations of AES engine, S-Box
complexity with composite field arithmetic, have saved a large of resource consumption.
By comparing our results of four-parallel AES-GCM to the previous works, we show that
our hardware overhead is lower than that of Reference [37] with better security capability.
According to the hardware resource consumption on the FPGA platform, we can conclude
the chip size of our SoC after tape-out is smaller than integrating the other four-parallel
architecture [37], the eight-parallel architecture [19], and the four-parallel AES-OTR ar-
chitecture [36], but it is accompanied inevitably by a larger resource consumption than
integrating the pipelined AES-GCM architecture [34] and the pipelined AES-LHash ar-
chitecture [35]. Our OR1200 core is a five-stage pipeline softcore processor; for the other
embedded processors, like the RISC-V softcore processor, this cryptographic accelerator
can be easily transplanted and may have less of an impact on performance overhead.

Table 3. The SoC hardware resource consumptions on Virtex-5 FPGA chip.

Slice Logic Utilization SoC Processor Core AES-GCM

Slice registers 6518 1864 4923
Slice LUTs 16,610 5547 11,956

Occupied slices 10,637 3262 7512
BlockRAM/FIFO 58 13 42

BUFG/BUFGCTRLs 7 1 3

Micromachines 2021, 12, 560 23 of 24

7. Conclusions

This paper presents an integrated high-performance cryptographic accelerator to
protect dynamic data security in an embedded system. The accelerator architecture employs
a four-parallel AES-GCM hardware structure to provide authenticated encryption for
preventing sensitive information leakages and data tampering attacks caused by the off-chip
physical attacks. It helps the embedded system to build trustworthiness to guarantee the
characteristics of data confidentiality and integrity, which is an effective method to generate
integrity digital signature for security verification. We performed performance overhead
and processing efficiency evaluations; the results showed that the cryptographic accelerator
achieves a high-efficiency encryption processing while maintaining a low performance
overhead. Its average performance overhead reduces to as low as 2.65% on the typical 8-KB
I/D-Caches. The security capability evaluations confirm the monitoring effectiveness of
cryptographic accelerator against both three types data tampering attacks. Finally, the SoC
security architecture satisfies a good tradeoff between performance overhead, processing
efficiency, and hardware overhead.

Author Contributions: Conceptualization, Z.Z.; methodology, Z.Z.; software, Z.Z. and Q.H.; val-
idation, Z.Z. and D.X.; formal analysis, J.L.; investigation, Z.Z. and Q.H.; resources, X.W.; data
curation, J.Z., J.L., and J.M.; writing—original draft preparation, Z.Z.; writing—review and editing,
Z.Z.; supervision, X.W.; project administration, X.W.; and funding acquisition, X.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grants
No. 60973106 and No. 81571142), the Key Project of National Natural Science Foundation of China
(Grant No. 61232009), and the National 863 Project of China under grant No. 2011AA010404.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ray, S.; Peeters, E.; Tehranipoor, M.M.; Bhunia, S. System-on-chip platform security assurance: Architecture and validation. Proc.

IEEE 2018, 106, 21–37. [CrossRef]
2. Basak, A.; Bhunia, S.; Tkacik, T.; Ray, S. Security assurance for system-on-chip designs with untrusted IPs. IEEE Trans. Inf.

Forensics Secur. 2017, 12, 1515–1528. [CrossRef]
3. Das, S.; Liu, Y.; Zhang, W.; Chandramohan, M. Semantics-based online malware detection: Towards efficient real–time protection

against malware. IEEE Trans. Inf. Forensics Secur. 2016, 11, 289–302. [CrossRef]
4. Chen, Y.; Sun, W.; Zhang, N.; Zheng, Q.; Lou, W.; Hou, Y.T. Towards efficient fine-grained access control and trustworthy data

processing for remote monitoring services in IoT. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1830–1842. [CrossRef]
5. De, A.; Nasim Imtiaz Khan, M.; Nagarajan, K.; Ghosh, S. HarTBleed: Using hardware Trojans for data leakage exploits. IEEE

Trans. Very Large Scale Integr. VLSI Syst. 2020, 28, 968–979. [CrossRef]
6. Wang, W.; Zhang, X.; Hao, Q.; Zhang, Z.; Xu, B.; Dong, H.; Xia, T.; Wang, X. Hardware-enhanced protection for the runtime data

security in embedded systems. Electronics 2019, 8, 52. [CrossRef]
7. Kaji, S.; Kinugawa, M.; Fujimoto, D.; Hayashi, Y. Data injection attack against electronic devices with locally weakened immunity

using a hardware Trojan. IEEE Trans. Electromagn. Compat. 2019, 61, 1115–1121. [CrossRef]
8. Fiskiran, A.M.; Lee, R.B. Runtime execution monitoring (REM) to detect and prevent malicious code execution. In Proceedings of

the IEEE International Conference on Computer Design: VLSI in Computers and Processors, San Jose, CA, USA, 11–13 October
2004; pp. 452–457.

9. Ahn, Y.; Lee, Y.; Choi, J.; Lee, G.; Ahn, D. Monitoring translation lookahead buffers to detect code injection attacks. Computer 2013,
47, 66–72. [CrossRef]

10. Kanuparthi, A.K.; Karri, R.; Ormazabal, G.; Addepalli, S.K. A high-performance, low-overhead microarchitecture for secure
program execution. In Proceedings of the IEEE 30th International Conference on Computer Design (ICCD), Montreal, QC,
Canada, 30 September–3 October 2012; pp. 102–107.

11. Shehab, D.A.; Batarfi, O.A. RCR for preventing stack smashing attacks bypass stack canaries. In Proceedings of the Computing
Conference, London, UK, 18–20 July 2017; pp. 795–800.

12. Lin, H.; Fei, Y.; Guan, X.; Shi, Z.J. Architectural enhancement and system software support for program code integrity monitoring
in application-specific instruction-set processors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2010, 18, 1519–1532. [CrossRef]

13. Wang, X.; Zhao, Z.; Xu, D.; Zhang, Z.; Hao, Q.; Liu, M. An M-Cachebased security monitoring and fault recovery architecture for
embedded processor. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2020, 28, 2314–2327. [CrossRef]

http://doi.org/10.1109/JPROC.2017.2714641
http://dx.doi.org/10.1109/TIFS.2017.2658544
http://dx.doi.org/10.1109/TIFS.2015.2491300
http://dx.doi.org/10.1109/TIFS.2018.2885287
http://dx.doi.org/10.1109/TVLSI.2019.2961358
http://dx.doi.org/10.3390/electronics8010052
http://dx.doi.org/10.1109/TEMC.2018.2849105
http://dx.doi.org/10.1109/MC.2013.228
http://dx.doi.org/10.1109/TVLSI.2009.2025765
http://dx.doi.org/10.1109/TVLSI.2020.3021533

Micromachines 2021, 12, 560 24 of 24

14. Arora, D.; Ravi, S.; Raghunathan, A.; Jha, N.K. Hardware-assisted run-time monitoring for secure program execution on
embedded processors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2006, 14, 1295–1308. [CrossRef]

15. Wang, X.; Zhao, Z.; Xu, D.; Zhang, Z.; Hao, Q.; Liu, M.; Si, Y. Two-Stage Checkpoint Based Security Monitoring and Fault
Recovery Architecture for Embedded Processor. Electronics 2020, 9, 1165. [CrossRef]

16. Sen Gupta, S.; Chattopadhyay, A.; Sinha, K.; Maitra, S.; Sinha, B.P. High-performance hardware implementation for RC4 stream
cipher. IEEE Trans. Comput. 2013, 62, 730–743. [CrossRef]

17. Nagar, S.A.; Alshamma, S. High speed implementation of RSA algorithm with modified keys exchange. In Proceedings of the
6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Sousse,
Tunisia, 21–24 March 2012; pp. 639–642.

18. Wu, W.; Wu, S.; Zhang, L.; Zou, J.; Dong, L. Lhash: A lightweight hash function. In International Conference on Information Security
and Cryptology; Springer: Cham, Switzerland, 2013; pp. 291–308.

19. Mozaffari-Kermani, M.; Reyhani-Masoleh, A. Efficient and high-performance parallel hardware architectures for the AES-GCM.
IEEE Trans. Comput. 2012, 61, 1165–1178. [CrossRef]

20. Gupta, H.; Mondal, S.; Majumdar, R.; Ghosh, N.S.; Suvra, K.S.; Kwanyu, N.E.; Mishra, V.P. Impact of side channel attack in
information security. In Proceedings of the International Conference on Computational Intelligence and Knowledge Economy
(ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019; pp. 291–295.

21. Shan, W.; Fu, X.; Xu, Z. A secure reconfigurable crypto IC with countermeasures against SPA, DPA, and EMA. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2015, 34, 1201–1205. [CrossRef]

22. Singh, A.; Kar, M.; Mathew, S.; Rajan, A.; De, V.; Mukhopadhyay, S. 25.3 A 128b AES engine with higher resistance to power and
electromagnetic side-channel attacks enabled by a security-aware integrated all-digital low-dropout regulator. In Proceedings of
the IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 404–406.

23. Wong, M.M.; Wong, M.L.D.; Nandi, A.K.; Hijazin, I. Construction of optimum composite field architecture for compact high-
throughput AES S-Boxes. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2012, 20, 1151–1155. [CrossRef]

24. Hsiao, S.-F.; Chen, M.-C.; Tu, C.-S. Memory-free low-cost designs of advanced encryption standard using common subexpression
elimination for subfunctions in transformations. IEEE Trans. Circuits Syst. I Reg. Pap. 2006, 53, 615–626. [CrossRef]

25. Zhang, X.; Wu, N.; Zhou, F.; Ge, F. Optimization of area and delay for implementation of the composite field advanced encryption
standard S-Box. J. Circuits Syst. Comput. 2016, 25, 1–29. [CrossRef]

26. Canright, D. A very compact S-Box for AES. In Proceedings of the Int’l Workshop Cryptographic Hardware and Embedded
Systems (CHES’05), Edinburgh, UK, 29 August–1 September 2005; pp. 441–455.

27. Abdulrahman, E.A.H.; Reyhani-Masoleh, A. High-speed hybrid-double multiplication architectures using new serial-out bit-level
Mastrovito multipliers. IEEE Trans. Comput. 2016, 65, 1734–1747. [CrossRef]

28. Zhou, G.; Michalik, H.; Hinsenkamp, L. Complexity analysis and efficient implementations of bit parallel finite field multipliers
based on Karatsuba-Ofman algorithm on FPGAs. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2010, 18, 1057–1066. [CrossRef]

29. Machhout, M.; Zeghid, M.; Bouallegue, B.; Tourki, R. Efficient hardware architecture of recursive Karatsuba-Ofman multiplier.
In Proceedings of the 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, Tozeur,
Tunisia, 25–27 March 2008; pp. 1–6.

30. Satoh, A.; Sugawara, T.; Aoki, T. High-performance hardware architectures for Galois Counter Mode. IEEE Trans. Comput. 2009,
58, 917–930. [CrossRef]

31. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the 4th Annual IEEE International Workshop Workload Characterization, WWC-4,
Austin, TX, USA, 2 December 2001; pp. 3–14.

32. Bakiri, M.; Titri, S.; Izeboudjen, N.; Abid, F.; Louiz, F.; Lazib, D. Embedded system with Linux Kernel based on OpenRISC 1200-V3.
In Proceedings of the International Conference on Sciences of Electronics, Sousse, Tunisia, 21–24 March 2012; pp. 177–182.

33. Kermani, M.M.; Azarderakhsh, R. Reliable architecture-oblivious error detection schemes for secure cryptographic GCM
structures. IEEE Trans. Reliab. 2019, 68, 1347–1355. [CrossRef]

34. Sung, B.; Kim, K.; Shin, K. An AES-GCM authenticated encryption crypto-core for IoT security. In Proceedings of the 2018
International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018;
pp. 1–3.

35. Wang, X.; Zhou, C.; Pang, S.; Li, M. Hardware assisted protection for data validation at run-time on embedded processors.
DEStech Trans. Eng. Technol. Res. 2016, 680–685. [CrossRef]

36. Ueno, R.; Homma, N.; Iida, T.; Minematsu, K. High throughput/gate FN-based hardware architectures for AES-OTR. In
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–4.

37. Abdellatif, K.M.; Chotin-Avot, R.; Mehrez, H. Improved method for parallel AES-GCM cores using FPGAs. In Proceedings of the
2013 International Conference on Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 9–11 December 2013;
pp. 1–4.

http://dx.doi.org/10.1109/TVLSI.2006.887799
http://dx.doi.org/10.3390/electronics9071165
http://dx.doi.org/10.1109/TC.2012.19
http://dx.doi.org/10.1109/TC.2011.125
http://dx.doi.org/10.1109/TCAD.2015.2419621
http://dx.doi.org/10.1109/TVLSI.2011.2141693
http://dx.doi.org/10.1109/TCSI.2005.859052
http://dx.doi.org/10.1142/S0218126616500377
http://dx.doi.org/10.1109/TC.2015.2456023
http://dx.doi.org/10.1109/TVLSI.2009.2020088
http://dx.doi.org/10.1109/TC.2008.217
http://dx.doi.org/10.1109/TR.2018.2882484
http://dx.doi.org/10.12783/dtetr/ssme-ist2016/4026

	Introduction
	Assumptions and Threat Model
	Preliminaries
	Security Policies against Sensitive Information Leakages
	Confidentiality Protection Scheme
	Integrity Protection Scheme
	Authentication of Data Signature

	Data Tampering Attacks on External Main Memory
	AES-GCM Model and Activated Mechanism

	Parallel Hardware Architecture Based on AES-GCM
	Hardware Multiplexing Structure of AES Encryption
	Optimized Composite Field Implementation of S-Boxes
	GF(2128) Multiplier Implementation of Galois Hash
	AES-GCM Parallel Architecture Mechanism

	SoC Architecture against External Physical Attacks
	Embedded System Architecture for Security Monitoring
	Data Blocks Write-Back Procedure of Memory Access
	Hash Subkey Hk Pre-Calculation
	Dynamic Monitoring Mechanism with D-Cache
	Write-Back Procedure of D-Cache Data Blocks

	Data Blocks Read-Load Procedure of Memory Access

	Experiments and Results
	Experimental Setup
	Performance Overhead Evaluation
	Security Capability Evaluation
	Efficiency Evaluation of Encryption and Decryption
	Hardware Implementation Overhead

	Conclusions
	References

