Skip to main content
. 2021 May 16;21(10):3464. doi: 10.3390/s21103464

Table 2.

Results of compressing ResNet20, ResNet56, VGG16 on Cifar-10 and ResNet18 on Cifar-100. SOP represents the set of operators used in the reconstructed CNN. TOP1 refers to the TOP1 accuracy of the model on the test set. MA is the architecture of the compressed model, as shown in Figure 5, Figure 6 and Figure 7. Paras represents the number of parameters in the CNN, containing the number of parameters of all convolutional layers except the first convolutional layer and the last fully connected layer.

Model Method SOP λ PCR FCR Paras TOP1 (%) MA
ResNet20 He. [45] - - 0 0 0.27 M 91.25 -
Ours SOP2 0 2.87 2.56 0.11 M 91.6 C.1
SOP1 1.5×103 4.91 4.19 0.06 M 90.35 C.2
SOP2 1.5×103 6.48 5.61 0.047 M 90.15 C.3
ResNet56 He. [45] - - 0 0 0.85 M 93.03 -
Li. [18] - - 1.16 1.38 - 93.06 -
Dug. [52] - - - 2.12 - 92.72 -
Ours SOP3 0 3.51 3.09 0.24 M 93.75 C.7
SOP1 0 4.4 3.37 0.19 M 92.5 C.6
SOP1 1.5×103 5.25 5.96 0.17 M 91.96 C.5
SOP2 1.5×103 6.59 7.94 0.14 M 91.22 C.4
VGG16 Simon. [53] - - 0 0 16.3 M 93.25 -
Li [18] - - 2.78 1.52 - 93.4 -
Dug. [52] - - 17.12 3.15 - 92.85 -
Ours SOP5 0 2.82 3.71 5.79 M 94.65 C.8
SOP4 0 3.85 2.61 4.23 M 93.95 C.9
SOP6 1.5×103 15.1 15.6 1.08 M 92.35 C.10
ResNet18 He. [45] - 0 0 11 M 75.05 -
Ours SOP7 0 2.39 2.23 4.61 M 74.5 C.11
SOP7 1.5×103 2.44 2.31 4.5 M 74.2 C.12
SOP8 0 5.27 2.97 2.08 M 74.85 C.13
SOP8 1.5×103 4.66 3.98 2.36 M 73.6 C.14