Table 6.
Results for the optimization of the KNN and RF models, for different values of K, Manhattan distance and number of trees (T). Values in bold represent the best results for each model. Grey rows represent the selected parameters.
| Arousal | Valence | ||||||
|---|---|---|---|---|---|---|---|
| Model | Par. | PCC | MAE | RMSE | PCC | MAE | RMSE |
| KNN |
K = 1 | 0.794 | 0.062 | 0.163 | 0.795 | 0.066 | 0.172 |
| K = 3 | 0.725 | 0.120 | 0.175 | 0.725 | 0.128 | 0.185 | |
| K = 5 | 0.684 | 0.137 | 0.185 | 0.689 | 0.146 | 0.194 | |
| K = 7 | 0.655 | 0.147 | 0.192 | 0.663 | 0.156 | 0.201 | |
| K = 11 | 0.622 | 0.156 | 0.199 | 0.633 | 0.166 | 0.208 | |
| K = 21 | 0.579 | 0.166 | 0.208 | 0.595 | 0.176 | 0.217 | |
| RF |
T = 50 | 0.740 | 0.137 | 0.176 | 0.839 | 0.119 | 0.156 |
| T = 100 | 0.748 | 0.136 | 0.175 | 0.845 | 0.119 | 0.155 | |
| T = 500 | 0.755 | 0.135 | 0.174 | 0.852 | 0.118 | 0.153 | |
| T = 750 | 0.755 | 0.135 | 0.174 | 0.852 | 0.118 | 0.153 | |
| T = 1000 | 0.756 | 0.135 | 0.174 | 0.853 | 0.118 | 0.153 | |