Table 2.
ML Algorithm | Performance Measure | |||||
---|---|---|---|---|---|---|
RMSE | R 2 | MAE | ||||
Training | Testing | Training | Testing | Training | Testing | |
glmboost | 3.51 | 3.73 | 0.62 | 0.65 | 2.41 | 2.86 |
bstTree | 3.67 | 6.75 | 0.59 | 0.08 | 3.00 | 4.52 |
gbm | 4.90 | 6.68 | 0.27 | 0.09 | 3.86 | 4.52 |
glmnet | 3.59 | 3.85 | 0.62 | 0.64 | 2.51 | 2.89 |
knn | 4.53 | 6.35 | 0.39 | 0.05 | 3.56 | 4.13 |
mlp | 6.30 | 6.62 | 0.07 | 0.43 | 5.64 | 5.78 |
qrf | 1.35 | 7.24 | 0.95 | 0.03 | 0.69 | 4.65 |
rf | 2.14 | 6.17 | 0.91 | 0.12 | 1.70 | 3.93 |
rpart | 4.73 | 6.36 | 0.31 | 0.07 | 3.95 | 4.51 |
rpart1SE | 4.18 | 5.89 | 0.46 | 0.18 | 3.35 | 4.11 |
rpart2 | 4.28 | 6.02 | 0.43 | 0.15 | 3.43 | 4.11 |
svmLinear | 4.74 | 6.80 | 0.43 | 0.07 | 2.97 | 4.21 |
svmLinear2 | 4.74 | 6.80 | 0.43 | 0.07 | 2.97 | 4.21 |
svmPoly | 3.46 | 7.30 | 0.66 | 0.14 | 1.86 | 5.13 |
svmRadial | 5.21 | 6.50 | 0.35 | 0.02 | 3.43 | 3.96 |
treebag | 4.26 | 6.02 | 0.45 | 0.16 | 3.47 | 4.20 |
xgbLinear | 0.85 | 7.14 | 0.98 | 0.06 | 0.37 | 4.28 |
xgbTree | 1.79 | 7.12 | 0.90 | 0.08 | 1.28 | 4.65 |