Skip to main content
. 2021 May 17;11(5):887. doi: 10.3390/diagnostics11050887

Table 2.

Performance of ML algorithms for predicting ADAOO in the E280A pedigree. RMSE = root mean squared error, lower is better; MAE = mean absolute error, lower is better; R2 = coefficient of determination, higher is better. Best results are shown in bold.

ML Algorithm Performance Measure
RMSE R 2 MAE
Training Testing Training Testing Training Testing
glmboost 3.51 3.73 0.62 0.65 2.41 2.86
bstTree 3.67 6.75 0.59 0.08 3.00 4.52
gbm 4.90 6.68 0.27 0.09 3.86 4.52
glmnet 3.59 3.85 0.62 0.64 2.51 2.89
knn 4.53 6.35 0.39 0.05 3.56 4.13
mlp 6.30 6.62 0.07 0.43 5.64 5.78
qrf 1.35 7.24 0.95 0.03 0.69 4.65
rf 2.14 6.17 0.91 0.12 1.70 3.93
rpart 4.73 6.36 0.31 0.07 3.95 4.51
rpart1SE 4.18 5.89 0.46 0.18 3.35 4.11
rpart2 4.28 6.02 0.43 0.15 3.43 4.11
svmLinear 4.74 6.80 0.43 0.07 2.97 4.21
svmLinear2 4.74 6.80 0.43 0.07 2.97 4.21
svmPoly 3.46 7.30 0.66 0.14 1.86 5.13
svmRadial 5.21 6.50 0.35 0.02 3.43 3.96
treebag 4.26 6.02 0.45 0.16 3.47 4.20
xgbLinear 0.85 7.14 0.98 0.06 0.37 4.28
xgbTree 1.79 7.12 0.90 0.08 1.28 4.65