Skip to main content
. 2021 May 17;11(5):887. doi: 10.3390/diagnostics11050887

Table 3.

Performance of ML algorithms for predicting ADAOO in the individuals with sporadic AD from the Paisa genetic isolate. Conventions as in Table 2. Best results are shown in bold.

ML Algorithm Performance Measure
RMSE R 2 MAE
Training Testing Training Testing Training Testing
bstTree 3.33 5.22 0.83 0.44 2.56 3.75
glmboost 2.32 3.08 0.92 0.84 1.96 2.47
glmnet 0.25 0.52 1.00 0.99 0.17 0.39
knn 5.37 6.75 0.48 0.16 3.90 4.98
lasso 0.40 0.52 1.00 1.00 0.31 0.42
qrf 0.87 5.86 0.99 0.30 0.40 4.57
rf 2.47 5.09 0.94 0.49 1.86 4.15
rpart 5.53 7.69 0.38 0.00 4.46 6.37
rpart1SE 5.53 7.69 0.38 0.00 4.46 6.37
rpart2 5.92 6.98 0.29 0.03 4.63 5.75
svmLinear 0.61 1.11 0.99 0.97 0.57 0.83
svmLinear2 0.61 1.11 0.99 0.97 0.57 0.83
svmPoly 0.75 1.33 0.99 0.96 0.70 1.07
svmRadial 2.57 4.70 0.93 0.51 1.57 3.64
treebag 5.22 7.02 0.48 0.02 4.13 5.54
xgbLinear 0.03 4.61 1.00 0.67 0.02 3.32
xgbTree 1.13 3.98 0.98 0.70 0.93 3.19