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Abstract: In order to deliver an aerosolized drug in a breath-triggered manner, the initiation of the
patient’s inspiration needs to be detected. The best-known systems monitoring breathing patterns
are based on flow sensors. However, due to their large dead space volume, flow sensors are not
advisable for monitoring the breathing of (preterm) neonates. Newly-developed respiratory sensors,
especially when contact-based (invasive), can be tested on (preterm) neonates only with great effort
due to clinical and ethical hurdles. Therefore, a physiological model is highly desirable to validate
these sensors. For developing such a system, abdominal movement data of (preterm) neonates are
required. We recorded time sequences of five preterm neonates’ abdominal movements with a time-
of-flight camera and successfully extracted various breathing patterns and respiratory parameters.
Several characteristic breathing patterns, such as forced breathing, sighing, apnea and crying, were
identified from the movement data. Respiratory parameters, such as duration of inspiration and
expiration, as well as respiratory rate and breathing movement over time, were also extracted. This
work demonstrated that respiratory parameters of preterm neonates can be determined without
contact. Therefore, such a system can be used for breathing detection to provide a trigger signal for
breath-triggered drug release systems. Furthermore, based on the recorded data, a physiological
abdominal movement model of preterm neonates can now be developed.

Keywords: abdominal movement; time-of-flight camera; preterm neonate; optical detection of
breathing movements

1. Introduction

Preterm neonates’ respiratory parameters differ greatly from those of adults. In
contrast to adults, who have a tidal volume of approximately 500 mL, a respiratory rate of
15 breaths per minute and an inhalation-exhalation ratio (I:E) of 1:1, preterm neonates have
a significantly lower tidal volume of 4–8 mL/kg, a higher respiratory rate of up to 60/min
and an I:E of up to 1:3, depending on gestational age [1–3]. Therefore, the determination of
respiratory parameters in preterm neonates is very challenging, and not every monitoring
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system is suitable for this task. However, the respiratory cycle must be known with high
precision for the safe and effective operation of breath-triggered drug release systems for
neonates. One of the primary drawbacks of inhalation therapy using a continuous drug
delivery system is the substance loss during exhalation [4,5]. This loss mainly depends on
the patient’s I:E. In addition, pharmaceutical aerosols can only reach the alveoli during
the first half of the inspiratory phase [6], which may result in an increased aerosol loss of
up to 90% in preterm neonates without breath-triggered administration. This high loss is
in accordance with previous reports of low deposition in infants [7–10], in some cases of
less than 1% of the nominal dose [11]. Therefore, breath-triggered drug release is highly
desirable. It allows for the patient-specific delivery of pharmaceutical aerosols and thus
has the following advantages over continuous drug release:

1. The previously mentioned loss during exhalation is theoretically reduced to zero, as
the pharmaceutical aerosol is only released during inhalation. This leads to higher
drug utilization and substantial cost savings [12–14].

2. Different lung regions can be targeted, as the pharmaceutical aerosol can be released
as a bolus at different, pre-defined instants during the inhalation phase. A release at
the beginning of inhalation mainly targets peripheral lung regions, while a release
towards the end of inhalation mainly targets central lung regions. This also results in
a more time-efficient treatment and a reduced distribution of the drug in the body,
which reduces side effects [15–20].

Currently, there are several approaches to breath-triggered drug release:
For example, a breath-actuated pMDI (pressurized metered-dose inhaler), such as

the Autohaler (3M Drug Delivery Systems, St. Paul, MN, USA) or the Tempo inhaler
(formerly MAP Pharmaceuticals, Mountain View, CA, USA, now Allergan, Irvine, CA,
USA), can be integrated into the ventilation circuit in combination with a spacer. In this
case, however, the drug is only released as a single dose via active actuation of the pMDI,
by the patient himself or by a third party [21]. Aradigm’s AERx Pulmonary Drug Delivery
System (Hayward, CA, USA) follows a similar strategy. This system also releases a single
dose, but only if the patient inhales at a flow rate within a pre-defined range [22,23].

Alternatively, an aerosol generator can be coupled to the ventilation circuit by means
of an adapter, for example a T-connector [24]. Triggering is achieved via the detection
of a pressure change in the ventilation tube, whereupon aerosol production is activated
or deactivated; this method is implemented, e.g., in the Aerogen device (Aerogen Ltd.,
Galway, Ireland) with an integrated control module (Synchro-Neb) [25].

A controlled drug release can also be implemented by means of a pressure measure-
ment at the mouthpiece and an associated evaluation algorithm that considers an average
value of the last three breath cycles. A commercial device using this approach is the I-Neb
AAD (Philips Respironics, Murrysville, PA, USA). This system releases the pharmaceutical
aerosol on the basis of a moving average, which means that the aerosol cannot be released
optimally in the event of an aperiodic breathing behavior [26].

In addition, there are pre-calibrated systems, such as the AKITA JET (Vectura Group
plc, Chippenham, UK). For such systems, pulmonary parameters must be determined
beforehand. The identified parameters are programmed into the system in order to guar-
antee an optimal aerosol delivery. The system then provides a constant inhalation air
flow, delivered by an integrated pump, and starts aerosol production when the patient
begins to inhale. As soon as a certain aerosol inhalation volume has been achieved, aerosol
production is stopped while the pump continues to provide an inhalation air flow until a
defined gas volume is reached. This has the advantage that a particularly large amount of
aerosol is deposited in the deeper airways [27].

Moreover, the Fraunhofer Institute for Toxicology and Experimental Medicine (Han-
nover, Germany) developed a system for the specific requirements of preterm neonates,
which manages the breath-triggered drug delivery via a miniaturized valve [28]. This
aerosol valve contains an elastomeric membrane that opens and closes symmetrically in
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less than 25 ms [29]. Due to its miniaturized size, the valve can be integrated directly into a
patient interface and is controlled by the detected respiratory signals.

As previously mentioned, breath-triggered drug release devices require breath de-
tection systems that are able to identify the onset of inhalation with high precision and
provide appropriate trigger signals. Such systems for breathing detection can be divided
into contact-based (either invasive or non-invasive) and non-contact-based (non-invasive)
devices [30,31].

There are numerous contact-based methods for measuring respiratory parameters. Ac-
cording to the literature, the best-known contact-based systems are transthoracic impedance
measurement, inductive plethysmography, the measurement of abdominal expansion us-
ing respiratory belts or the neurally adjusted ventilatory assist method (NAVA) [32–35].
Transthoracic impedance measurement is a method to derive the respiratory rate by mea-
suring the impedance changes of the chest wall during respiration and is widely used for
neonatal respiratory monitoring [36,37]. Respiratory inductive plethysmography, requiring
two coils placed in the abdominal and the chest region, respectively, detects changes in
self-inductance due to the cross-sectional change of the abdomen during breathing [38–40].
The change in inductance is proportional to the lung volume and is successfully used for
the detection of respiratory movements in preterm neonates [34,41,42]. Respiratory belts,
such as the Graseby capsule (Smiths Medical, Minneapolis, MN, USA) or strain gauges,
register the respiratory movement of the abdominal wall by means of pressure sensors,
impedance sensors or piezoelectric sensors, which are usually integrated in a single point
of measurement on the belt [43,44].

In general, all these systems have a lack of operational reliability because the quality
of the measurement strongly depends on the correct placement of the sensor. The ap-
plied sensor can cause irritation and damage of the skin or tissue, or, as with NAVA, the
placement of the sensor is invasive [32,43–46]. However, sensor arrays on flexible [47]
and even stretchable [48] foils were developed that can be attached to the skin, yielding a
higher tolerance to positioning uncertainties. The reliability of these systems is increased
by incorporating a high number of individual sensors. The changing shape of the foil
can be reconstructed by sophisticated algorithms [49]. Using this stretchable foil, trigger
signals were also generated in experiments with neonate models, demonstrating the future
potential use to detect inspiration of preterm neonates [50].

Contact-less systems offer some advantages, especially for long-term application, as
they do not have to be in permanent and direct contact with the patient. This avoids a
stressful situation and pain, which may lead to an increase in the respiratory rate [31]. The
best-known contact-less systems for respiratory parameter monitoring are based on flow or
pressure sensors at the patient interface [36,51]. However, due to the large technical dead
space volume and the susceptibility to aerosol, these sensors are not suitable for monitoring
the breathing of (preterm) neonates. In addition, the sensors only function when the patient
is intubated and invasively ventilated [52,53]. Therefore, these systems cannot be used for
non-invasive ventilation.

Contact-less systems include optical (time-of-flight cameras [54,55], stereo triangu-
lation [56,57] and structured light methods [58–62]), radar [63–68], microwave [69–71],
thermal [60,72–74] and laser [75,76] technologies. However, these systems have hardly
been clinically tested in preterm neonates. A more suitable respiration monitoring system
for (preterm) neonates would be highly desirable. The development and regulatory ap-
proval of a breathing detection system for the vulnerable patient group of preterm neonates
requires extensive functional tests of the system [77].

An essential challenge in the development of new respiratory sensors, especially
contact-based, is that they can only be tested on (preterm) neonates with great effort
(including the submission of ethics applications).

For example, a sensor patch for the contact-based registration of a neonate’s breathing
cycle was recently developed by Koch et al. [47]. So far, this sensor array foil was tested
for mechanical functionality by means of bending experiments. Investigations were also
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carried out on a ventilated, simple, non-physiological preterm neonate demonstrator in
comparison with the measured ventilation flow. However, due to the aforementioned
hurdles, no investigations have yet been carried out on preterm neonates in a clinical
study. A physiological phantom of the neonatal abdomen enabling simulation of neonatal
respiratory patterns would therefore be very useful for rapid, efficient testing and validation
of surface-based respiratory sensors. Ethical hurdles would not have to be overcome, and
costs could be saved.

To develop such a model, abdominal movement data of preterm neonates are required.
Time-of-flight (ToF) cameras are capable of recording depth maps in real time by detecting
the phase shift between illumination and reflection and converting it into a distance
value [78–80]. Furthermore, ToF cameras offer a high spatial resolution and high frame
rates and are readily available at a relatively low cost. Therefore, they are well suited for
the purpose described above.

It is thus the purpose of the present contribution to introduce and clinically evaluate
an optical, non-invasive measurement system enabling the spatial reconstruction of the
abdominal movement of a preterm neonate over the course of the respiratory cycle. The
obtained 3D recordings, provided as a data set together with this manuscript, represent
a valuable starting point for the development of a physiological model of a neonate’s
abdominal area which could then be used to circumvent the obstacles described above. This
would be an important step towards a clinically available, breath-triggered aerosolization
device for the treatment of preterm neonates.

In the following, we demonstrate the feasibility of the derivation of a preterm neonate’s
respiratory parameters by recording their abdominal movement using a ToF camera.

2. Materials and Methods

According to the regulations for conducting a clinical study at Hannover Medical
School, an ethics application was submitted, and the conduct of the study was approved
(approval ID: 8584_BO_S_2019).

We used the CamBoard pico flexx (pmdtechnologies AG, Siegen, Germany) ToF
camera to record the abdominal movement data. This ToF camera contains a vertical-cavity
surface-emitting laser with a wavelength of 850 nm; it is classified as laser class 1 and is
therefore eye-safe [81]. At an object distance of 0.1 m to 1 m and a frame rate of 45 fps, the
depth resolution of the camera is ≤2% of the object distance [82]. Preliminary tests showed
an optimum distance of 0.2 m between the target region and the camera. For the clinical
study, the ToF camera was thus positioned at a distance of 0.2 m above the abdomen of the
preterm neonate using a support arm system (Vario Lock, W. Krömker GmbH, Bückeburg,
Germany) as shown in Figure 1. The recorded abdominal movement data were transferred
to a data acquisition notebook.

In the clinical study, five frame sequences at a duration of 90 s each were acquired
with each of five preterm neonates (a total of 25 sequences) at a frame rate of 45 fps (see
Table 1 for the clinical parameters of the included neonates).

Python (version 3.8) and the main packages NumPy, SciPy, Pandas and Matplotlib
were used for data pre-processing, analysis and evaluation. The initial pre-processing was
done in two steps:

First, irrelevant image sections were removed by segmentation. In this process, the
center of the ROI was manually selected, and irrelevant sections were removed by means
of a cut-off threshold based on the distance to the camera.

Second, faulty pixels and artifacts were removed using a noise reduction method. This
method employed a 3D median filter that included a 3× 3 pixel neighborhood in the image
and five consecutive frames (3 × 3 × 5 filter mask). By comparing the standard deviation
of all pixels in the ROI over all time points, outliers were automatically removed.

The results of this procedure are pre-processed depth image files that can then be
further analyzed and evaluated.
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Figure 1. Measurement setup for clinical data recording, exemplified by a preterm neonate demonstrator (NENASim
Preemie, Medical-X, Rotterdam, The Netherlands).

Table 1. Clinical parameters of neonates included in this study.

ID Gender
Gestational
Age at Birth

[Weeks]

Postmenstrual Age
at Recording

[Weeks]

Weight at
Birth [g]

Weight at
Recording [g]

Therapy
Form

1 Male 25 32 1/7 800 1580
High-flow

nasal
cannula

2 Male 32 1/7 33 1/7 755 720 Spontaneous
breathing

3 Male 27 3/7 33 1/7 585 1245
High-flow

nasal
cannula

4 Female 27 3/7 33 1/7 930 1920 Spontaneous
breathing

5 Male 27 3/7 33 1/7 860 1550 Spontaneous
breathing

3. Results and Discussion

Figure 2 shows the placement of the ToF camera above a preterm neonate and the re-
sulting non-pre-processed grayscale and color-coded depth image. The selected ToF camera
is particularly suitable for the clinical environment due to its small overall size compared to
other systems with similar specifications, such as the Microsoft Kinect 2.0 [83,84] (Microsoft
Corp., Redmond, WA, USA), the BlasterX Senz3D [85,86] (Creative Labs (Europe) Ltd.,
Dublin, Ireland) or the Argos3D-P100 [87] (BECOM Electronics GmbH, Hochstraß, Austria).
While the Kinect has a better spatial resolution and a better signal-to-noise-ratio, the ToF
camera we used offered a higher frame rate and a better depth resolution, especially at
a distance of less than 0.3 m [88,89]. A high frame rate and a high depth resolution are
necessary for the accurate detection of breathing movements of preterm neonates because
of their high respiratory rate on the one hand and the low amplitude of their abdominal
movement in the vertical direction on the other hand. Furthermore, the pico flexx device, at
a price of approximately $390, belongs to the low-cost depth cameras, which allows setting
up a measuring system for breathing detection economically [89].
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Figure 2. Representation of the measurement setup (left) as well as an exemplary 8-bit grayscale
(center) and 24-bit color-coded (lowest distance to camera: red, largest distance: blue) depth image
(right) recorded by the ToF system.

The grayscale image contains 256 intensity levels. Highly reflective areas are displayed
whitish, and areas of low reflections are shown darker. The depth image was processed
with a color map, so that the intensity spectrum contains the entire color scale of human
vision from blue (largest distance to the camera) to red (lowest distance to the camera). The
highly reflective zones, which are displayed with high intensity in the grayscale image,
appear as black artifacts in the depth image, as no valid depth measurement could be
performed in these areas. By observing consecutive depth images during the abdominal
movement, characteristic distance changes over time, and thus respiratory patterns, can be
visualized (see Figure 3).
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Figure 3. Respiration curve of a preterm neonate, recorded with a pico flexx ToF camera.

After filtering the raw data as outlined in Section 2, the temporal evolution of the
abdominal movements can be detected very well. The displayed local maxima (maxi-
mum abdomen-camera distance) represent the transition from exhalation to inhalation,
whereas the local minima (minimum abdomen-camera distance) represent the transition
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from inhalation to exhalation. The respiratory parameters derived from Figure 3 are
60 breaths/min and an I:E of 1:2.3, which correspond very well with values mentioned in
the literature [2,90–92]. The average abdominal movement in the vertical direction between
maximum inspiration and maximum expiration was (2.3 ± 0.2) mm. Different breathing
patterns can be reconstructed from the abdominal movement data (see Figure 4).
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After applying a median filter for noise reduction, however, a slight temporal offset
could be detected. According to Haju et al., this temporal offset is caused by a phase shift
of N−1

2 = 2 frames [93] (N: window size of median filter).
The extracted breathing patterns shown in Figure 4 correspond very well with those

described by te Pas et al., e.g., the decrease of the I:E ratio to 1:1 during forced breathing
(see Figure 4a) [91]. Besides, spontaneously breathing newborns represent very irregular
respiratory patterns such as periodic breathing [94], apneas [95] and sighs [96] in order
to recruit lung volume. Figure 4b depicts a sigh, followed by an apneic pause and subse-
quently a slower respiratory rate, whereas Figure 4c shows an apneic phase of about 5 s.
Crying is defined by a strong inhalation followed by an interrupted exhalation [97], which
can be observed in Figure 4d.

Another common breathing pattern seen in preterm neonates is paradoxical breathing,
in which the chest pulls inward on inhalation and outward on exhalation. This often
occurs when the thorax is unstable. Because the bony thorax of preterm neonates is
very elastic and gives way during forced breaths, this breathing pattern is commonly
seen [98]. However, as (preterm) neonates are obligate abdominal breathers, the present
study is focused on recording abdominal movements. We are confident that by focusing
on abdominal movements, our system allows for the reliable detection of the inspiratory
phase, even if a paradoxical thoracic movement should occur.

Further, we can confirm that the proposed method is not suitable for the detection
of obstructive events, as it does not evaluate gas flow. However, we believe that this is of
limited clinical relevance because apneic episodes (central, obstructive, as well as mixed)
occur regularly in preterm neonates, leading to temporary gas flow interruption.

Using the recorded movement data, it is now possible to develop a physical abdominal
model, for example on the basis of an actuated pin matrix [99,100]. These are also known
as Tangible User Interfaces. The concept consists of a matrix of pins, each controlled
individually or as a group by an actuator. Figure 5 (left) shows a servo motor driving a



Pharmaceutics 2021, 13, 721 8 of 13

connecting rod that is attached to an individual pin. As a result, this setup requires slightly
more space than the setup on the right in Figure 5, in which a continuous motor drives a
threaded rod, thereby changing its height by ∆z.
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Figure 5. Example of shifting individual pins by ∆z by means of a servo motor (left) and by means
of a continuous motor (right) to simulate abdominal movement [101].

By controlling the individual pins independently, three-dimensional shapes can be
represented, and movements can also be reproduced in a desired form. Thus, using the
abdominal movement data generated with the ToF camera, breathing patterns such as
crying and sighing can be exactly simulated. This allows the initial testing of newly-
developed (contact-based) sensors on such a model before being made available for clinical
purposes. After validation, such sensor systems can be used for real-time breath detec-
tion, making it suitable for the application of breath-triggered drug release for (preterm)
neonates [28,29,102].

Further, we believe that our depth-sensing approach may be advantageous in estimat-
ing the functional residual capacity (FRC), as it provides a three-dimensional representation
of the neonatal abdomen. However, our data processing algorithm would have to adapted
to obtain an estimation of the temporal evolution of the abdominal volume. The Time-
of-Flight sequences of our study may serve as a data set to develop and evaluate future
algorithms for FRC estimation.

4. Conclusions

We showed that recording respiratory parameters, as well as respiratory monitoring,
is possible without any patient contact using a ToF camera in preterm neonates. Therefore,
the proposed optical measuring system is deemed suitable for a wide range of neonatal
applications, for example, general patient monitoring or, in particular, breathing detection.
In principle, the contact-less recording by a ToF camera offers strong advantages over a
contact-based method: The preterm neonate is neither affected by the ToF camera, nor
does this measurement technique require patient interaction. Therefore, such a system is
suitable as a source of a trigger signal for the application of breath-triggered drug release
in (preterm) neonates.

Furthermore, the acquired abdominal movement data are also suitable for the develop-
ment and control of an abdominal movement model. Sensors for the detection of abdominal
movements could first be tested on such a model before being used in a clinical setting.

5. Outlook

The present work constitutes the first step towards the efficient and ethical evaluation
of novel breath phase sensors for inspiration-triggered drug delivery systems using an
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actuated phantom of the patient’s abdominal area. The spatial movement data acquired
in the present contribution could be mapped onto a pin matrix, as described in Section 3.
The shape of the surface formed by the individual pins could be adapted to the surface
topography of the abdomen, identified during the acquisition of the abdominal motion, to
obtain an even higher accuracy of the simulated breathing activity.

In the future, a multi-body system, inspired by the anatomy of the neonatal abdomen,
could be developed and used to validate the physiology of the phantom’s motions over a
breathing cycle.

In conclusion, in the progress in the fields of high-precision breath cycle detection,
controlled aerosol delivery and drug discovery will contribute to the establishment of more
effective and targeted strategies for the treatment of preterm neonates by inhalation therapy.
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