Skip to main content
. Author manuscript; available in PMC: 2021 May 27.
Published in final edited form as: Ear Hear. 2020 Aug 7;42(1):180–192. doi: 10.1097/AUD.0000000000000916

TABLE 1.

Mathematical formulation for three regression models.

Model Regularization Optimization problem Hyperparameters
Linear Elastic net minβ, β0[1Ni=1N(βTxi+β0yi)2+λ(j=1p12βj2+|βj|)] λ=0.128
SVM L2 norm minβ, β0,s[j=1p12βj2+Ci=1Nsi]
such that
|(βTxi)a+β0yi|ϵ+si and si0
C=0.001
ϵ=0.005
a=2.699
Logistic Elastic net minβ, β0[1N(i=1Nyiln(f)(1yi)ln(1f))+λ(j=1p12βj2+|βj|)]
where
f=(1+eβTxiβ0)1
λ=0.013

SVM, support vector machine; β=[β1 β2 β12], vector of model parameters; β0, model intercept term; N=56, number of observations in training data set; x, vector of electrically-evoked compound action potential (eCAP) parameters; y, output vector; λ, regularization parameter; p=12, number of eCAP parameters; s, vector of slack parameters; C, box constraint; ϵ, error margin; a, kernel scaling factor.