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Abstract: Physical fatigue is a recurrent problem in running that negatively affects performance
and leads to an increased risk of being injured. Identification and management of fatigue helps
reducing such negative effects, but is presently commonly based on subjective fatigue measurements.
Inertial sensors can record movement data continuously, allowing recording for long durations and
extensive amounts of data. Here we aimed to assess if inertial measurement units (IMUs) can be used
to distinguish between fatigue levels during an outdoor run with a machine learning classification
algorithm trained on IMU-derived biomechanical features, and what is the optimal configuration to
do so. Eight runners ran 13 laps of 400 m on an athletic track at a constant speed with 8 IMUs attached
to their body (feet, tibias, thighs, pelvis, and sternum). Three segments were extracted from the run:
laps 2–4 (no fatigue condition, Rating of Perceived Exertion (RPE) = 6.0 ± 0.0); laps 8–10 (mild fatigue
condition, RPE = 11.7 ± 2.0); laps 11–13 (heavy fatigue condition, RPE = 14.2 ± 3.0), run directly after
a fatiguing protocol (progressive increase of speed until RPE ≥ 16) that followed lap 10. A random
forest classification algorithm was trained with selected features from the 400 m moving average of
the IMU-derived accelerations, angular velocities, and joint angles. A leave-one-subject-out cross
validation was performed to assess the optimal combination of IMU locations to detect fatigue and
selected sensor configurations were considered. The left tibia was the most recurrent sensor location,
resulting in accuracies ranging between 0.761 (single left tibia location) and 0.905 (all IMU locations).
These findings contribute toward a balanced choice between higher accuracy and lower intrusiveness
in the development of IMU-based fatigue detection devices in running.

Keywords: fatigue estimation; biomechanics; IMU; machine learning; human movement; running

1. Introduction

Running is an increasingly popular sport, with multiple health benefits. Fifty million
Europeans engage in running according to a recent estimate [1]. Health benefits can be
psychological, such as a sense of accomplishment [2], or physical, such as a decreased
chance of developing chronic diseases and higher longevity [3]. However, running comes
with associated risks, in particular pain and injuries [4]. To maximize health benefits
and minimize chances of being injured, load should be carefully managed. For instance,
overloading and training stress are associated with increased injury risk [5,6]. Accurate,
continuous detection of fatigue during a high intensity or long duration running activity
can be used to provide feedback to runners in order to avoid excessive training stress and
overloading which can lead to lower limb injuries.

Fatigue is a multi-factorial phenomenon. A model developed by Kluger et al. [7]
divides fatigue in two distinct components that have the capacity to influence each other:

Sensors 2021, 21, 3451. https://doi.org/10.3390/s21103451 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2269-298X
https://www.mdpi.com/article/10.3390/s21103451?type=check_update&version=1
https://doi.org/10.3390/s21103451
https://doi.org/10.3390/s21103451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103451
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3451 2 of 18

perception of fatigue, caused by homeostatic and psychological factors, and performance
fatigability, which is influenced by central and peripheral factors. During running, the
human body undergoes shocks due to impacts with the ground. Performance fatigability
can be assessed e.g., by means of changes in biomechanical quantities that are related to
coping with such shocks. However, fatigue identification and management are commonly
based solely on subjective estimates of fatigue that measure perception of fatigue. Subjective
estimates of fatigue are very easy to use in practice, but they lack any assessment of
performance fatigability.

Inertial measurement units (IMUs) are non-intrusive sensors widely adopted to mea-
sure biomechanical changes in human movement. IMUs can record biomechanical pa-
rameters continuously, which can show changes due to physical fatigue [8,9]. Extensive
research has been performed to detect biomechanical changes due to fatigue in running.
Hip flexion at initial contact was found to decrease between the start and the end of a
fatiguing run [8,10]. Maximum knee flexion angle can decrease [8] or increase [11] with
fatigue depending on different running settings and subject characteristics. Maas et al. [12]
showed that running experience could influence knee flexion, among other biomechani-
cal parameters. Peak tibial (PTA) and peak sacral (PSA) accelerations are also recurring
parameters studied in association with fatigue. Reenalda et al. [13] and Schutte et al. [14]
found an increase in PTA due to fatigue, while Ruder et al. [15] found a decrease. Reenalda
et al. further investigated shock attenuation between the tibia and the pelvis, finding
an increase due to fatigue although both PTA and PSA increased as a consequence of
fatigue [13]. Assessment of asymmetry in ankle, knee, and hip kinematics between a rested
and fatigued state in running resulted in internal rotation of the knee showing the largest
increase in asymmetry with fatigue [16]. Although significant changes in biomechanics
have been repeatedly found when measuring running mechanics with IMUs, it is not clear
yet whether these changes are sufficient to reliably detect fatigue over time in real-world
applications.

While fatigue detection in running has been based on non-automized detection of
changes in biomechanical parameters, machine learning algorithms could have the benefit
of rapid and easy application to identify fatigue. Machine learning algorithms could use
as an input well-established biomechanical variables, as well as a wide range of statistical
variables. Translation of biomechanical changes due to fatigue into machine learning
fatigue detection algorithms has been performed in other fields. A clear example of such
practice is in the area of industry work. Feeding a wide range of biomechanical parameters
into a support vector machine classification algorithm led to a fatigue detection accuracy
of 90% in working tasks [17]. Yet, few studies have focused on the detection of a fatigue
condition in sports and running, especially in out-of-the-lab environments. Gholami
et al. used machine learning techniques to detect the perceived exertion of runners on a
treadmill using textile wearable sensors and assessed the importance of each sensor location,
with the hip contributing more than the knee and the ankle to the final coefficient of
determination of 0.96 [18]. Buckley et al. located IMUs at the shanks and lumbar spine and
compared three different locations and various machine learning classifiers to detect fatigue
in outdoor running, obtaining a 75% accuracy with a single IMU placed at the lumbar
spine [19]. While minimal sensor setups present the unequivocal advantage of being easy
to wear, they might be missing substantial biomechanical information to improve fatigue
detection accuracy.

Here we aimed to assess the optimal combination of IMU locations at the lower limbs
and trunk to detect fatigue levels in an outdoor run with a machine learning classification
algorithm. We segmented IMU data into gait cycles and extracted biomechanical and
statistical features, labeling data points with fatigue levels identified by means of subjective
assessment of fatigue and heart rate (HR). IMU combinations of interest were selected
and their fatigue detection performance was compared. It was hypothesized that larger
biomechanical changes reported in the literature such as peak tibial accelerations would
reflect in the combinations of sensor with higher fatigue detection accuracy. However, we
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expected statistical features derived from biomechanical quantities to also have a positive
impact in the performance of the classifier. Findings of this study aim to assist translating
current state-of-the-art knowledge of the biomechanical changes due to fatigue in running
into detection of fatigue in real-world scenarios.

2. Materials and Methods

The machine learning-based method that we implemented to detect fatigue in this
study is summarized in Figure 1. Our workflow consisted of three main stages: data
collection and processing (highlighted in yellow), development of the fatigue detection
classifier (highlighted in blue) and performance evaluation of the classifier (highlighted in
green). Each step in the workflow will be described in more detail in this section.
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Figure 1. Machine learning fatigue detection algorithm workflow.

2.1. Experimental Design

Eight healthy runners were recruited (3 males 5 females, 24.3 ± 1.0 years, 174.8 ± 9.5 cm,
71.1 ± 8.8 kg, Table 1). Inclusion criteria consisted of the absence of major injuries in the previ-
ous year and having run at least 10 km per week in the previous six months. The experimental
protocol was approved by the Medical Ethical Review Committee ‘CMO Arnhem-Nijmegen’
and all participants signed an informed consent form prior to participation.
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Table 1. Runners characteristics.

Subject Age
(Years)

Body
Mass (kg)

Height
(cm)

Speed
(km/h)

Running
Experience

(Years)
Sex

S001 25 69 182 13.0 5 M
S002 24 55 164 10.5 3 F
S003 23 69 167 9.1 9 F
S004 24 64 168 9.6 7.5 F
S005 25 78 174 9.4 2 F
S006 26 77 187 11.6 1.5 M
S007 23 75 169 9.9 1.5 F
S008 24 82 188 11.6 6 M

Mean(±1STD) 24.3 ± 1.0 71.1 ± 8.8 174.8 ± 9.5 10.6 ± 1.4 4.4 ± 2.8 -

Subjects underwent a fatiguing protocol consisting of three distinct consecutive runs:

1. The first run consisted of a 4000 m run (ten laps of the athletic track) at a constant
speed, determined as the average speed of the subject during the best performance in
the previous year on a 5 to 10 km race;

2. The second run was performed according to a fatiguing protocol. The speed in this
fatiguing protocol started at the same level of the first run and increased progressively
by 0.2 km/h every 100 m. Perceived fatigue was assessed by means of a Borg Rating
of Perceived Exertion (RPE) Scale (min-max score 6–20) [20], asked to the runner
every 100 m. The fatiguing protocol was terminated once the RPE was equal to 16
(RPE between ‘hard’ and ‘very hard’) or higher, or, if such requirement was not met,
after 1200 m;

3. The third run consisted of a 1200 m run (three laps of the athletic track), in which
speed was kept constant and equal to the first 4000 m run.

Speed was controlled throughout the whole experimental protocol using a cyclist,
proceeding at constant speed approximately 2 m in front of the runner. Except for the
fatiguing protocol, half of each run was performed in clockwise direction and the other half
in counterclockwise direction, in a randomized fashion to eliminate the effect of running
direction on the biomechanics of the left and right leg.

2.2. Measurement Setup

Xsens MTx IMUs (Xsens Technologies B. V., Enschede, The Netherlands) were attached
with kinesiotape to eight body locations of the runner throughout the whole running
experiment: left and right foot, left and right tibia, left and right thigh, pelvis and sternum
(Figure 2). Double-sided tape was also attached between the IMU and the skin to limit skin
artefacts. 3D accelerometer range of the IMUs is 16 g, 3D angular velocity range is 1200 ◦/s,
sampling frequency is 240 Hz. Running speed and HR were recorded simultaneously using
a GPS watch (Garmin Forerunner 210, Garmin, Wichita, KS, USA). The bicycle speed was
measured with a bicycle computer (Sigma BC 16.16 STS, Sigma, Neustadt, Germany) and
shown in real time to the cyclist on a display.

2.3. Data Acquisition

MVN Analyze (v2019.2.1, Xsens Technologies B. V., Enschede, The Netherlands)
was used for data acquisition. A Kalman filter fusing accelerometers, gyroscopes and
magnetometers data were used to estimate joint angles (left and right ankle, left and
right knee, left and right hip) and segmental accelerations and angular velocities (left and
right foot, left and right tibia, left and right thigh, pelvis and sternum) together with a
biomechanical model [21].
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2.4. Data Analysis

Three segments were extracted from the runs: laps 2–4 from the first run, identified
as no fatigue condition (RPE = 6.0 ± 0.0); laps 8–10 from the first run, identified as mild
fatigue condition (RPE = 11.7 ± 2.0); laps 1–3 from the third run, identified as heavy fatigue
condition (RPE = 14.2 ± 3.0). The second run served only as a fatiguing protocol and
differed in length per subject, therefore was not included in the analysis. As per Figure 3,
mean RPEs increased throughout the first run, and decreased during the last run after the
fatiguing protocol (although considerably higher than the RPEs pre-fatiguing run), while
HR kept increasing throughout the runs.

2.5. Data Processing

MATLAB R2019a (The MathWorks Inc., Natick, MA, USA) was used for data process-
ing. Running gait segmentation was performed based on the pelvis velocity. First, the start
and the end of each run were detected with the zero-crossing of the pelvis velocity in the
sagittal plane. Then, downward peaks in pelvis velocity were calculated by means of a peak
detection algorithm [22]. Left and right initial contact timepoints were determined based on

the right knee angle. Joint angles, segmental acceleration magnitudes (a =
√

a2
x + a2

y + a2
z )

and angular velocities in all three dimensions were cut into gait cycles starting at each
initial contact and normalized at 150 data points.
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The first run lasted 4000 m and was performed at a speed level controlled by a cyclist; the second (fatiguing) run was performed
at increasingly higher speed and lasted between 400 m and 1200 m, until a RPE of 16 or higher was reached; the third run
lasted 1200 m and was performed at a speed level controlled by a cyclist and equal to the first run. The three identified fatigue
conditions are highlighted in green (400–1600 m), yellow (2800–4000 m) and red (0–1200 m post fatiguing run).

2.6. Feature Extraction and Processing

A total of 157 features were extracted from each gait cycle for all subjects. Features
were extracted from eight body segments (Table 2: left and right foot, left and right tibia,
left and right thigh, pelvis, and sternum) and six joint angles (left and right ankle, left
and right knee, left and right hip). The 157 features consist of 43 biomechanical features
(based on reported changes in biomechanics due to fatigue in running [8–16]), 110 statistical
features and four spatiotemporal features, computed as follows:

• The 43 biomechanical features were extracted from body segments and joint angles.
18 features were extracted from the body segments: eight peak segmental acceleration
magnitudes, one per segment; eight peak pitch angular velocities (in the sagittal
plane), one per segment; two shock attenuation features (defined as in [13]), between
the left/right tibia and the pelvis. Five features were extracted from the lower limb
joints: 22 joint angles maxima and minima; three symmetry features were computed
between the left and right joint angle at each joint level (ankles, knees, hips).

• The 110 statistical features were extracted from joint angles, segmental accelerations
and angular velocities. Mean, standard deviation (STD), inter-quartile range (IQR),
skewness and kurtosis were selected in order to assess gait variability.

• The four spatiotemporal features consisted of stride time and stride length, extracted
from the left and the right gait cycle.

A moving average over one full lap was applied to all features. The sliding window
length of 400 m (one full lap on the athletic track) was chosen in order to minimize the
effects of running direction on the biomechanical features. Z-score normalization of features
was performed for each subject since speed has an effect on biomechanical parameters, in
particular tibial acceleration [23].
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Table 2. Features extracted for each body location. Features were extracted from acceleration and angular velocities of eight
body segments (top) and from the angles of six joints (bottom). Additionally, shock attenuations were computed between
the left tibia and pelvis, and between the right tibia and pelvis.

Body Segments

Left Foot Right Foot Left Tibia Right Tibia Left Hip Right Hip Pelvis Sternum

Biomechanical features

Peak
acceleration

Peak
acceleration

Peak
acceleration

Peak
acceleration

Peak
acceleration

Peak
acceleration

Peak
acceleration

Peak
acceleration

Peak ang. Vel 1 Peak ang. vel Peak ang. vel Peak ang. vel Peak ang. vel Peak ang. vel Peak ang. vel Peak ang. vel
Shock

attenuation
(with pelvis)

Shock
attenuation

(with pelvis)
Statistical features

Mean
acceleration

Mean
acceleration

Mean
acceleration

Mean
acceleration

Mean
acceleration

Mean
acceleration

Mean
acceleration

Mean
acceleration

STD
acceleration

STD
acceleration

STD
acceleration

STD
acceleration

STD
acceleration

STD
acceleration

STD
acceleration

STD
acceleration

IQR
acceleration

IQR
acceleration

IQR
acceleration

IQR
acceleration

IQR
acceleration

IQR
acceleration

IQR
acceleration

IQR
acceleration

Skew.
acceleration

Skew.
acceleration

Skew.
acceleration

Skew.
acceleration

Skew.
acceleration

Skew.
acceleration

Skew.
acceleration

Skew.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Kurt.
acceleration

Mean ang. vel. Mean ang. vel. Mean ang. vel. Mean ang. vel. Mean ang. vel. Mean ang. vel. Mean ang. vel. Mean ang. vel.
STD ang. vel. STD ang. vel. STD ang. vel. STD ang. vel. STD ang. vel. STD ang. vel. STD ang. vel. STD ang. vel.
IQR ang. vel. IQR ang. vel. IQR ang. vel. IQR ang. vel. IQR ang. vel. IQR ang. vel. IQR ang. vel. IQR ang. vel.

Skew. ang. vel. Skew. ang. vel. Skew. ang. vel. Skew. ang. vel. Skew. ang. vel. Skew. ang. vel. Skew. ang. vel. Skew. ang. vel.
Kurt. ang. vel. Kurt. ang. vel. Kurt. ang. vel. Kurt. ang. vel. Kurt. ang. vel. Kurt. ang. vel. Kurt. ang. vel. Kurt. ang. vel.

Joint angles
Left ankle Right ankle Left knee Right knee Left hip Right hip

Biomechanical features
IC 1 (peak) IC (peak) IC (peak) IC (peak) IC (peak) IC (peak)

Mid Stance (peak) Mid Stance (peak) Mid Stance (peak) Mid Stance (peak) Toe off (peak) Toe off (peak)
Toe off (peak) Toe off (peak) Toe off (peak) Toe off (peak) Mid Swing (peak) Mid Swing (peak)

Left-right difference Mid Swing (peak) Mid Swing (peak) Left-right difference
End Swing (peak) End Swing (peak)

Left-right difference
Statistical features

Mean Mean Mean Mean Mean Mean
STD STD STD STD STD STD
IQR IQR IQR IQR IQR IQR

Skewness Skewness Skewness Skewness Skewness Skewness
Kurtosis Kurtosis Kurtosis Kurtosis Kurtosis Kurtosis

1 ang. vel. = pitch angular velocity; IQR = inter-quartile range; STD = standard deviation; Skew = skewness; Kurt = kurtosis;
IC = initial contact.

2.7. Dataset Composition

The number of possible combinations for eight IMU locations is 255 (Table 3). While
the sum of 1-IMU combinations is only eight, some of the multiple IMUs configurations
result in a high number of possible combinations that would be too complex to analyze in
this study. Among the 255 combinations, some carry more value than others. Each of the
eight IMU locations was identified with a code (Figure 4). We divided IMU combinations
of interest in four categories (Table 4): minimally intrusive, including only one IMU; quasi-
minimally intrusive, including two adjacent IMUs; 3+ IMUs, including three or four IMUs;
whole body, including all eight IMUs.
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Table 3. Possible sensor combinations with a total number of IMUs (n) = 8.

Number of IMUs in a Configuration (r) Number of Combinations (C) C(n,r) =
n!

(r!(n−r)!) , n = 8

1 8
2 28
3 56
4 70
5 56
6 28
7 8
8 1

Total 255
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Table 4. Selected sensor combinations and number of lower limb joints per configuration.

Minimally Intrusive Quasi-Minimally Intrusive 3 + IMUs Whole Body

L1 (0 joints) L2 L3 (1 joint) L2 L5 L6 (0 joints) L1 L2 L3 L4 L5 L6 L7 L8 (6 joints)
L2 (0 joints) L2 L4 (1 joint) L2 L3 L4 (2 joints)
L3 (0 joints) L3 L5 (1 joint) L2 L3 L5 (2 joints)
L4 (0 joints) L4 L6 (1 joint) L2 L4 L6 (2 joints)
L5 (0 joints) L5 L7 (1 joint) L3 L5 L7 (2 joints)
L6 (0 joints) L6 L8 (1 joint) L4 L6 L8 (2 joints)
L7 (0 joints) L3 L4 (0 joints) L3 L4 L5 L6 (2 joints)
L8 (0 joints) L5 L6 (0 joints) L5 L6 L7 L8 (2 joints)

L7 L8 (0 joints) L2 L3 L5 L7 (3 joints)
L2 L4 L6 L8 (3 joints)

2.8. Machine Learning Pipeline

Datapoints were divided in three fatigue classes (Section 2.4): those derived from
laps 2–4 were labeled as ‘no fatigue’ condition, while those derived from laps 8–10 were
labeled as ‘mild fatigue’ and those derived from laps 11–13 (post fatiguing protocol)
were labeled as ‘heavy fatigue’. Feature vectors were then used to train a random forest
classification algorithm with 100 ensemble trees. A nested leave-one-subject-out cross
validation was performed [24]. In the inner loop, the best features were learned for each
IMU configuration by permuting out-of-bag observations among the trees, each time
excluding one subject from the training set as well as the test subject (Figure 1). Then, the
random forest classifier was trained on the selected feature vectors from all subjects in the
training set. The 12 best features were selected for all IMU configurations consisting of
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two or more sensors, allowing a comparison with minimally intrusive configurations (each
consisting of 12 features). Training and test sets were then re-partitioned, each time with
the test set consisting of datapoints from a different subject and the training set consisting
of datapoints from all remaining subjects (outer loop). Confusion matrices, accuracy,
sensitivity, specificity, precision and F1 score were then used to compare performance of
the different IMU configurations. All performance metrics were computed as an average
from all eight left-out-subjects.

3. Results

Table 5 presents the performance of our random forest classification algorithm in
detection of the three fatigue levels for the sensor configuration that resulted in high-
est accuracy from each of the four IMU-setup configuration categories. For the mini-
mally intrusive category, best configuration consists of one IMU placed on the left tibia
(Accuracy = 0.761 ± 0.220). For the quasi-minimally intrusive category, best configuration
consists of two IMUs placed on the left tibia and the left thigh (Accuracy = 0.867 ± 0.112).
For the 3+ IMUs category, best configuration is represented by four IMUs on the left and
right tibias and left and right thighs (Accuracy = 0.903 ± 0.085). Whole body configuration
of eight IMUs resulted in an accuracy of 0.905 ± 0.081. Confusion matrices with aggregate
classification accuracy for all datapoints from all subjects are shown in Figure 5.

Table 5. Performance metrics for the three fatigue classes (Mean ± STD). Mean calculated over all datapoints from all
left-out-subjects.

Category Best IMU Locations Level Sensitivity Specificity Precision F1 Score

Minimally
intrusive

L6 (left tibia)
No fatigue 0.774 ± 0.318 0.895 ± 0.151 0.798 ± 0.283 0.774 ± 0.285

Mild fatigue 0.645 ± 0.387 0.855 ± 0.188 0.703 ± 0.342 0.637 ± 0.343
Heavy fatigue 0.865 ± 0.179 0.893 ± 0.140 0.836 ± 0.172 0.834 ± 0.146

Quasi-
minimally
intrusive

L4 L6 (left thigh, left
tibia)

No fatigue 0.949 ± 0.105 0.988 ± 0.035 0.979 ± 0.059 0.960 ± 0.063
Mild fatigue 0.898 ± 0.172 0.879 ± 0.118 0.809 ± 0.166 0.840 ± 0.144

Heavy fatigue 0.748 ± 0.234 0.931 ± 0.089 0.852 ± 0.168 0.783 ± 0.184

3+ IMUs
L3 L4 L5 L6 (right

thigh, left thigh, right
tibia, left tibia)

No fatigue 0.973 ± 0.050 0.986 ± 0.039 0.978 ± 0.064 0.974 ± 0.039
Mild fatigue 0.949 ± 0.069 0.894 ± 0.109 0.843 ± 0.147 0.885 ± 0.085

Heavy fatigue 0.776 ± 0.273 0.969 ± 0.033 0.931 ± 0.058 0.819 ± 0.188

Whole body L1 L2 L3 L4 L5 L6 L7
L8

No fatigue 0.999 ± 0.002 0.987 ± 0.035 0.979 ± 0.059 0.988 ± 0.032
Mild fatigue 0.885 ± 0.116 0.927 ± 0.099 0.881 ± 0.155 0.875 ± 0.113

Heavy fatigue 0.830 ± 0.192 0.942 ± 0.058 0.879 ± 0.126 0.846 ± 0.144

Full assessment of the different sensor configurations for each category is shown by
means of confusion matrices in Appendix A, respectively in Figure A1 (minimally intrusive
configuration), Figure A2 (quasi-minimally intrusive configuration), Figure A3 (3+ IMUs
configuration) and Figure A4 (full limbs and whole body configurations). Left limb sensors
outperform right limb sensors in the minimally intrusive configurations, although the
difference at the tibia segment (best location) is almost negligible. Configurations including
at least one knee joint perform better than configurations without a knee joint, both in the
quasi-minimally intrusive and 3+ IMUs configurations. Using our experimental paradigm,
we find that increasing the number of sensors generally increases performance of the
machine learning classification algorithm. However, adding one sensor could also slightly
decrease accuracy of the classifier, although this was not observed when the additional
sensor also resulted in one additional joint angle.
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Table 6 presents the five higher ranked features across participants in the leave-one-
subject-out cross validation approach. The most recurring feature is the STD of the tibial
pitch angular velocity. Each configuration that includes joint angles presents at least one
biomechanical feature derived from a joint angle. Each configuration shows at least one
biomechanical and one statistical feature in the best five features. Features from the left limb
are predominant in configurations with both limbs present. Spatiotemporal, symmetry and
shock attenuation features are not present as best features in any configuration.



Sensors 2021, 21, 3451 11 of 18

Table 6. Best features in each configuration. In bold features extracted from joint angles.

Feature Rank Left Tibia Left Tibia + Left Thigh Right Thigh + Left Thigh +
Right Tibia + Left Tibia All IMU Locations

#1 STD acceleration Toe off minimum knee
angle

STD angular velocity left
tibia

STD angular velocity
left tibia

#2 STD angular velocity STD angular velocity tibia Mid stance maximum left
knee angle

Skewness left ankle
angle

#3 Mean angular velocity STD knee angle STD angular velocity right
tibia

Mid stance maximum
left knee angle

#4 Peak angular velocity Peak angular velocity tibia STD acceleration left tibia STD acceleration left
tibia

#5 IQR angular velocity Mean angular velocity tibia Peak angular velocity right
tibia

Mid stance maximum
left ankle angle

4. Discussion

The purpose of this study was to assess the performance of a machine learning
algorithm to detect fatigue during a prolonged outdoor run using single or multiple IMUs.
We assessed the detection accuracy of selected IMU configurations of interest and the
trade-off between higher fatigue classification accuracy and sensor reduction.

4.1. Sensor Location Optimization

We demonstrated in this study how various minimal sensor setups can be able to
detect fatigue at satisfying levels when sensor location is chosen wisely. We obtained
an accuracy above 76% using a random forest algorithm with only one IMU sensor and
12 features. This is in line with previous studies performed to detect fatigue in running and
work tasks. An AUC-ROC of 0.68 [25] and an accuracy of 75% [19] were already found in
running using a single IMU sensor on the tibia, although with different fatiguing protocols
and device types. While single IMU configurations present a clear advantage of a low
intrusiveness, we used a structured approach to evaluate fatigue detection performance of
IMU setups up to eight sensor locations. We observed that increasing the number of IMU
locations from one to two leads to an improvement in accuracy up to 87%, while increasing
the number of IMU locations to four leads to an improvement in accuracy up to 90% that
remains at the same level when increasing the number of IMU locations to eight.

Fatigue detection accuracy was highest at the tibias, both in minimally intrusive and
more intrusive configurations. We expected that the tibias would generate the best fatigue
detection performance due to the documented changes in peak tibial acceleration due
to running-induced fatigue [13–15]. However, the most recurring features with highest
importance in the best configurations were linked to the variation of tibial pitch angular
velocity in the sagittal plane and acceleration magnitude. Statistical features that are
indicative of gait variability were also among the features with highest importance.

IMU configurations with an increasing number of joint angles resulted in an increase
of accuracy. For example, the left thigh and foot in minimally intrusive configurations
resulted in a low level of accuracy (respectively 60% and 59%). Still, when coupled to
the left tibia sensor in a three IMUs configuration they resulted in an accuracy of 87%.
Knee and ankle joints resulted in considerably higher accuracies in the quasi-minimally
intrusive configurations compared to minimally intrusive configurations without joint
angles. However, increasing the number of joint angles from one to two, two to three and
three to six resulted in minimal increases in accuracy. This indicates that knee and ankle
joints are more suited than hips to detect fatigue in outdoor runs using IMUs. Gholami
et al. obtained opposite results using textile wearable sensors to detect fatigue in running,
with the hip being the most reliable sensor location and the knee and ankle being less
reliable [18]. However, wearable sensors used in the study measured biomechanical
parameters only in the sagittal plane. The trade-off observed between number of sensors
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and detection accuracy in the present study suggests a sensor setup including only one
joint angle, preferably the left or right knee.

IMUs placed on the left lower limb generally resulted in higher fatigue detection
accuracy than the right lower limb (e.g., full left lower limb accuracy = 0.900, full right
lower limb accuracy = 0.809). Since only recreational runners were included, it was not
possible to reliably estimate their dominant leg in running. However, a change of direction
was included halfway through the runs in the running protocol to eliminate the effect of
running direction on the biomechanics of the left and right leg. Leg dominance had already
been found not to have effects on kinematic differences due to fatigue in running [26].
Further studies are needed to confirm whether the non-dominant leg is better suited for
sensor placement when detecting fatigue.

4.2. Machine Learning and Biomechanics

Machine learning has been successfully used in plenty of biomedical applications
in recent years. While the amount of publications involving machine learning increases
almost every year since the early 2000s [27], the field of biomechanics is still anchored
to salient features such as peak tibial accelerations and peak joint angles. Traditional
biomechanical parameters derived by IMU measurements have the advantage of being
highly interpretable. However, they might not fully capture some underlying mechanisms
such as gait variability due to fatigue. While statistical variables might not show significant
differences, they still relate to an underlying running gait variability that is expected to
increase with fatigue [28]. We observed in this study that a machine learning approach to
detect fatigue in running has benefited from both statistical and biomechanical parameters,
as already shown in studies performed in work scenarios [29].

Traditional biomechanics focus predominantly on group level averages of salient
variables. However, previous studies have shown that changes in specific variables are
extremely subject-dependent [8,9,14]. Subject-specific characteristics (e.g., running ex-
perience, body morphology, gender, speed) can influence running biomechanics, often
not allowing drawing conclusions at a subject level as well as at group level. Machine
learning applications in biomechanics have the potential to fill this gap. By applying leave-
one-subject-out cross validation, machine learning algorithms can make predictions on
subjects that were never observed before. This technique can help identifying biomechani-
cal features that best describe the predicted outcome (e.g., fatigue) on different subjects,
improving generalization of the prediction on new subjects.

4.3. Toward Real-World Applications

The deployment of a large scale IMU-based fatigue detection device remains a chal-
lenge. The current study aimed to add knowledge in the translation of biomechanical
changes due to fatigue into a real-world application. We introduced the use of a moving
average in detection of fatigue in running using IMUs. Such technique has two main
implications. First, the algorithm would not give live feedback, but a delay of the duration
of the moving average (e.g., time to complete one athletic track full lap) would be present.
Second, the classification algorithm could be specific for a run on an athletic track. How-
ever, running on a track is a very popular option for runners. Further studies should be
performed to apply this classifier to other running scenarios (i.e., different durations, inten-
sities, surfaces), although taking into account that IMUs placement and skin displacements
could affect the results.

A satisfying level of fatigue detection accuracy for real-world applications is difficult
to determine. Every runner is different, and so are runners’ expectations and interactions
with a fatigue detection device. While recreational runners could be satisfied with an
average fatigue detection score at the end of a run, elite runners would likely require more
detailed information about fatigue progression throughout a training session. While a
minimal threshold for fatigue detection accuracy cannot be universally established, it is
important to remark how a balance between sensitivity and specificity should be pursued.
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In fact, a low sensitivity would result in a system that cannot be trusted by the runner,
while a low specificity would result in many false alarms that can mine the willingness of
the runner to use the device.

4.4. Limitations

A first limitation of this study was the definition of fatigue levels. RPE scales have
been widely used as a measuring tool for perception of fatigue, since RPE has been already
found to be a reliable surrogate for exercise intensity [30], but they do not represent a gold
standard for measurement of physical fatigue. During the last, heavy fatigue condition
of our experimental protocol we observed on average a decrease of RPE, although very
subject-dependent. This was probably due to a sudden decrease in speed from the previous
fatiguing protocol and could have encumbered the classifier ability to distinguish between
a mild and heavy fatigue condition. While a change in running intensity could impact
perception of fatigue, performance fatigability might still be increasing at a muscle level.

A second limitation of this study is related to the amount of IMU combinations taken
into account. It would have been impractical to analyze all 255 combinations deriving from
the eight IMU locations chosen in the present study. However, we believe that our set of
assessed configurations includes the ones of highest relevance in real-world applications.
Configurations with five to seven IMU locations were excluded because they were not
expected to differ significantly from the whole body configuration with eight IMUs, while
less intrusive sensor setups were mostly reduced to IMU configurations including at least
one joint angle.

A third limitation regards the relatively small sample size of eight subjects that partici-
pated in the study. Although conducting a similar study with a larger population would
present benefits with respect to generalization of the results and would consent to draw
appropriate statistical conclusions, the large number of strides generated per subject and
the leave-one-subject-out cross-validation approach allowed our classification algorithm to
generalize well to unseen data.

4.5. Future Research

Objective assessment of fatigue would have direct benefits for a runner. We suggest
validating IMU-based techniques against gold standards in the detection of physical fatigue
such as electromyography (EMG) and maximal oxygen consumption (VO2 max). Fur-
thermore, performing IMU-based fatigue detection studies with larger, less homogeneous
populations could allow the application of deep learning techniques and help generalizing
a fatigue detection algorithm more widely.

5. Conclusions

We assessed the optimal combination of IMU locations at the lower limbs and trunk to
detect fatigue levels in an outdoor run. Machine learning techniques allowed to learn from
IMU-derived biomechanical and statistical parameters and detect fatigue in prolonged
running activities with increasingly higher accuracy from a single IMU location up to eight
locations. The tibias and the knees are respectively the IMU locations and joint angles
resulting in higher fatigue detection accuracy. We recommend using IMU configurations
consisting of one to four sensors that include at least one of the tibias for fatigue detection
in young recreational runners.
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Figure A3. Aggregate confusion matrices with all subjects, 3+ IMUs configurations, up to two joints. Joints present in each 
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Figure A4. Aggregate confusion matrices with all subjects, whole lower limbs and full body configurations. 
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