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Background The ongoing coronavirus disease 2019 (COVID-19) pandemic has put radiologists at a higher risk of 

infection during the computer tomography (CT) examination for the patients. To help settling these problems, we 

adopted a remote-enabled and automated contactless imaging workflow for CT examination by the combination 

of intelligent guided robot and automatic positioning technology to reduce the potential exposure of radiologists 

to 2019 novel coronavirus (2019-nCoV) infection and to increase the examination efficiency, patient scanning 

accuracy and better image quality in chest CT imaging . 

Methods From February 10 to April 12, 2020, adult COVID-19 patients underwent chest CT examinations on 

a CT scanner using the same scan protocol except with the conventional imaging workflow (CW group) or an 

automatic contactless imaging workflow (AW group) in Wuhan Leishenshan Hospital (China) were retrospectively 

and prospectively enrolled in this study. The total examination time in two groups was recorded and compared. 

The patient compliance of breath holding, positioning accuracy, image noise and signal-to-noise ratio (SNR) were 

assessed by three experienced radiologists and compared between the two groups. 

Results Compared with the CW group, the total positioning time of the AW group was reduced ((118.0 ± 20.0) 

s vs . (129.0 ± 29.0) s, P = 0.001), the proportion of scanning accuracy was higher (98% vs . 93%), and the lung 

length had a significant difference ((0.90 ± 1.24) cm vs . (1.16 ± 1.49) cm, P = 0.009). For the lesions located in the 

pulmonary centrilobular and subpleural regions, the image noise in the AW group was significantly lower than 

that in the CW group (centrilobular region: (140.4 ± 78.6) HU vs . (153.8 ± 72.7) HU, P = 0.028; subpleural region: 

(140.6 ± 80.8) HU vs . (159.4 ± 82.7) HU, P = 0.010). For the lesions located in the peripheral, centrilobular and 

subpleural regions, SNR was significantly higher in the AW group than in the CW group (centrilobular region: 

6.6 ± 4.3 vs . 4.9 ± 3.7, P = 0.006; subpleural region: 6.4 ± 4.4 vs . 4.8 ± 4.0, P < 0.001). 

Conclusions The automatic contactless imaging workflow using intelligent guided robot and automatic positioning 

technology allows for reducing the examination time and improving the patient’s compliance of breath holding, 

positioning accuracy and image quality in chest CT imaging. 
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. Introduction 

The ongoing outbreak of coronavirus disease 2019 (COVID-19) pan-

emic has spread rapidly worldwide. World Health Organization (WHO)
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he high infectiousness of COVID-19 and the close proximity of techni-

ians to COVID-19 patients, many of these medical workers are getting

nfected, which also arouses more cautions to technicians during the

omputer tomography (CT) examination for patients. The current op-

rating workflow not only slows down the speed and efficiency of CT

xamination, but also adds more pressure to the overwhelmed hospital

ystem. 

Generally, the conventional workflow of CT imaging for the COVID-

9 patients includes three stages, (1) pre-examination preparation, (2)

ositioning operation, and (3) scanning and image acquisition. To im-

rove the patient’s compliance of breath holding and positioning ac-

urate, the technician must keep close contact with the patients in the

rst two stages. However, conventional imaging workflow (CW) is a

echnologist-dependent and time-consuming process, and it is often in-

onsistent and non-optimal, as well as of a high risk of viral exposure

uring COVID-19 pandemic. Thus, an automatic contactless imaging

orkflow (AW) is needed to minimize the contact. 

Artificial intelligence (AI) is a newly emerging technology which

as been widely used in the field of medical imaging [2] . Recently AI-

mpowered positioning technology was established, mainly including

he visual sensors cameras and auto-positioning devices which relies on

he deep neural network for image contouring [3] . These technologies

an automatically and accurately position the patients by identifying

heir shapes from the images acquired with visual sensors, e.g. ther-

al (Far-Infra-Red) cameras or RGB-depth input sensor [4–5] . However,

nly relying on automatic positioning technology, it is still challenging

or the technicians to provide assistance in the breath-holding training of

atients without contact and inform patients of the notes at the stage of

re-examination preparation. For patients with infectious diseases, this

nteraction still exposes the technicians to the potential cross-infection

isk. Thus, a completely contactless and automatic CT imaging workflow

s needed to minimize the contact between technicians and patients. 

Here, we adopted a remote-enabled and automatic contactless imag-

ng workflow for CT examination by the combination of intelligent

uided robot and automatic positioning technology. This workflow was

uccessfully used for diagnosing COVID-19 patients in our hospital dur-

ng the pandemic. Additionally, an analytic comparison was made be-

ween AW and conventional manual workflow (CW) involving total ex-

mination time, positioning accuracy, contact rate and image quality

f COVID-19 patients. We hope our findings may provide useful infor-

ation to inspire future practical applications and methodological re-

earch. 

. Methods 

.1. Patients and data source 

This study was approved by the Medical Ethics Committee of Zhong-

an Hospital of Wuhan University (Approval Number 2020037) and

aived from the written informed consent of patients by our institu-

ional review board. 

The patients diagnosed of COVID-19 in Wuhan Leishenshan Hospi-

al according to the guideline of 2019-nCoV (Fifth Trial Edition) issued

y the National Health Commission of China [6] were enrolled in this

tudy. Inclusive and exclusive criteria were as follows: (1) confirmed

s COVID-19 patients with common type pneumonia; (2) without com-

lications; (3) without life-supporting tubes and other equipment; (4)

atients could move freely and follow verbal command. The enrolled

atients were divided into two groups according to the chest CT exam-

nation workflow: the conventional imaging workflow (CW) group and

utomatic contactless imaging workflow (AW) group. 

The patients in AW group adopted from February 13 to April 12,

020 were prospectively enrolled in this study. Patients in CW group

or the first time between February 10 and March 9, 2020 were retro-

pective enrolled in. 
t

4 
.2. Conventional imaging workflow 

CW included pre-examination preparation, positioning operation,

nd image acquisition. In pre-examination preparation and positioning

peration, the technicians firstly guided the patients entering into the

canning room, conducted the pose guidance and breath-holding train-

ng, and informed them of the notes, then provided assistance in posing

he patients according to a chest scanning protocol, manually elevated

he couch and adjusted its height, and identified the starting position of

canning. The technician finally entered into the CT operation room to

tart the scanning ( Figure 1 A). 

.3. Automatic contactless imaging workflow 

To improve the scanning efficiency and evaluate the positioning

ccuracy, we proposed an AW to reduce the potential exposures risk

 Figure 1 B). This workflow was realized through two key technologies,

ncluding intelligent guided robot and automatic positioning technol-

gy. An intelligent robot (TAMI Intelligence Technology, Beijing, China

ttp://www.tamigroup.com ) was used to guide the patients entering

nto the preparation room, and demonstrated the process of CT ex-

mination. The robot then conducted the pose guidance and breath-

olding training for the patients by vision sensor, ultrasonic sensor, and

coustic sensor, and finally informed patients the notes from technicians

 Figure 2 A and 2 B). This robot consisted of mechanical system, driving

ystem, control system, and perception system. The driving system and

ensing system were responsible for hardware control and data acqui-

ition; while the control system was responsible for interaction, data

rocessing, and flow control. 

The automatic positioning technology used a fixed, ceiling mounted,

ff the shelf 2D/3D video camera that could determine the distances

mong various points in its field of views ( Figure 2 C). The standard

ed green blue (RGB) video images were displayed on the existing

antry ‐mounted touchscreen of CT system. The information from the

tandard output of the camera was used, along with the precise spatial

nformation of the individual CT system’s gantry and table installation

eometry, to determine the anatomical landmark location and the start

nd end locations for the scout scans. There were 8 anatomical refer-

nces for the automatic positioning technology: orbital meatal baseline

OM), sternoclavicular notch (SN), xyphoid (XY), iliac crest (IC), left

nd right knee (KN), left and right ankle joints (AJs) ( Figure 2 D). The

utomatic positioning software used two deep learning algorithms (RGB

andmarkNet network and Depth LandmarkNet network) with different

nputs that produced comparable outputs to identify all the 8 anatomi-

al landmarks on patient’s body ( https://www.gehealthcare.com ). The

GB LandmarkNet network used 2D video images as inputs and outputs

f all eight of the predefined landmark locations in X and Z. In parallel,

he Depth LandmarkNet network used the 3D depth data from the cam-

ra to also produce all eight of the predefined landmark locations. The

N and IC landmarks were used for the chest scan in this study. 

.4. Acquisition and reconstruction of CT images 

The imaging workflows for the CW and AW groups are shown in

igure 1 A and 1 B. The chest CT scanning was performed on a Revolution

axima CT scanner equipped with an AI-based automatic patient cen-

ering and positioning software (GE Healthcare, Waukesha, USA) from

he apex pulmonis to the diaphragm. In both groups, the same scan pro-

ocol was used with the following parameters, tube voltage: 120 kVp;

antry rotation time: 0.4 s; pitch: 1.375:1; scan field-of-view (SFOV):

0 cm; slice thickness: 5 mm; tube current (mA), automated tube current

odulation (ATCM) to obtain a noise index of 11.57; a standard recon-

truction algorithm with the standard kernel used for the axial images;

econstruction display field-of-view (DFOV): 35–50 cm; reconstruction

hickness: 1.25 mm. 

http://www.tamigroup.com
https://www.gehealthcare.com
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Figure 1. Schematic diagram for the operating steps of conventional imaging workflow and automatic imaging workflow. (A) Flowchart for conventional imaging 

workflow. (B) Flowchart for automatic imaging workflow. 
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.4.1. Contact rate 

During CT scan, if one patient needed help or had difficulty cooper-

ting and completing the examination, the radiologist could enter into

he CT scanning room or preparation room to help him/her. This patient

as defined as the one who contacted with radiologist. The contact rate

as calculated by the following formula: the number of patients contact

ith radiologist / the total number of patients in CW or AW group. 

.4.2. Total examination time 
The total examination time was recorded by the CT technician for

ach group; it was defined as the time from the patient entering the CT

canning room to walking out of the examination room after finishing

he CT examination. 

.4.3. Evaluation of breath-holding training and positioning accuracy 
A complete chest scan consisted of two parts, scout image scanning

nd axial thin-layer image acquisition. These two parts both required

he patients to hold breath following the voice prompts. The patient

ompliance of breath-holding training was indirectly evaluated by mea-

uring the difference of lung length between the scout image and the

xial thin-layer image, The difference of lung length was measured us-

ng an axial CT image in the following steps: (1) selecting a scout image

nd measuring the distance (d1) between apex pulmonis and basis pul-

onis ( Figure 3 A); (2) recording the distance (d2) from apex pulmonis

o basis pulmonis on the axial thin-layer image ( Figure 3 B). The differ-

nce of lung length was calculated with the formula of the difference of

ung length = | d2-d1 | . 
For the positioning accuracy, a complete coverage of axial thin-

ayer image should contain the range from the apex pulmonis to the

iaphragm. Thus, if the images of apex pulmonis and diaphragm were

ully covered, the patient positioning was considered to be successful;

therwise, it was defined as incomplete or inaccurate. 

.4.4. Assessment of image quality 
The image quality was analyzed by the same three radiologists at

 standard pulmonary display window setting (window level = − 700

nd window width = 1500). The pulmonary lesions and the location

f region-of-interest (ROI) were established by consensus. The mean

T value and standard deviation (SD) in Hounsfield Units (HU) of pul-

onary lesions were measured by placing a 50 mm 

2 ROI on the cen-

er of the lesions ( Figure 3 C). Three consecutive images were measured

n each ROI for each group, and the measurement results were aver-

ged. The pulmonary lesions mainly included ground glass opacifica-

ion, consolidation opacification and interstitial thickening. Other ra-
5 
iographic abnormalities (hydrothorax, nodule or lump, cavitation or

alcification, bronchiole or bronchiectasis and emphysema) were also

oted. The lungs were divided into five regions by referring to the pre-

ious studies [7–8] : central zone (CZ), including the main and segmen-

al bronchi within 20 mm of hila; peripheral zone (PZ), including small

ronchi and bronchioles within 20–40 mm of hila; subpleural region

SPR), within 10 mm of the chest wall; centrilobular region (CLR); and

pical zone (AZ). The signal-to-noise ratio (SNR) of the lesions was cal-

ulated based on the formula: SNR = Mean CT values/SD. The image

oise was represented using the SD value. 

.5. Statistical analysis 

The continuous variables were expressed as mean ± SD and com-

ared using unpaired-sample t tests if being normally distributed as

hown by the analysis of Sapiro-Wilk test; otherwise, the variables were

epresents as the median (Q1, Q3) and compared with Wilcoxon signed-

ank tests. The categorical variables were expressed as number (%) and

ompared by 𝜒2 test. A two-tailed P value less than 0.05 indicated a sta-

istically significance. All statistical analyses were conducted with IBM

PSS software (version 22.0, USA). 

. Results 

.1. General information 

Totally 165 patients meeting the inclusive and exclusive criteria were

rospectively enrolled in AW group, 89 men and 76 women with the

edian age of 55 (21, 81) years. A total of 584 patients underwent CW

hest CT examinations for the first time at Wuhan Leishenshan Hospital

etween February 10 and March 9, 2020, among which 146 patients

eeting the inclusive and exclusive criteria were retrospective enrolled

n this study, 77 men and 69 women with the median age of 56 (19, 78)

ears. There were no statistical differences regarding to age ( P = 0.24)

nd body mass index (BMI) ( P = 0.92) between AW and CW groups

 Table 1 ). 

.2. Evaluation of breath-holding training and positioning accuracy 

The difference of lung length was determined using the scout images

nd axial thin-layer images, and it was significantly smaller in AW group

han that in CW group ((0.90 ± 1.24) cm vs . (1.16 ± 1.49) cm, P = 0.009)

 Figure 3 D). 
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Figure 2. Schematic diagram of intelligent guided robot and automatic positioning technology. (A) Composition of intelligent guided robot. (B) Flowchart of pose 

guidance and breath-holding training by the intelligent guided robot. (C) Automatic positioning technology used a fixed, ceiling-mounted, off-the-shelf, structured 

light projector and 2D/3D video camera that could determine the distances among various points in its field of view. (D) Eight supporting anatomical references / 

landmarks. 

Table 1 Demographics and baseline characteristics of 311 enrolled COVID-19 patients. 

Groups Number of patients Age (years, M (Q1, Q3)) Ratio of male to female Body mass index (kg/m 

2 , M (Q1, Q3)) 

CW group 146 56 (19, 78) 1.11:1 24.1 (17.5, 32.6) 

AW group 165 55 (21, 81) 1.17:1 23.7 (18.1, 33.2) 

P values – 0.24 – 0.92 

CW: conventional manual workflow; AW: automatic contactless workflow. 
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.3. Total examination time 

The total examination time in the AW group was significantly less

han that in the CW group ((118.0 ± 20.0) s vs . (129.0 ± 29.0) s,

 = 0.001) ( Figure 3 E). 
6 
.4. Scanning accuracy and contact rate 

The complete coverage of axial chest images was used to evaluate the

canning accuracy. The scanning accuracy in the AW group was higher

han that in the CW group (98.0% (162/165) vs. 93.0% (136/146)
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Figure 3. Measurement and comparison of the difference of lung length, total examination time and complete coverage between conventional workflow and 

automatic workflow in CT imaging for COVID-19 patients. The difference of lung length was measured using the scout image (A) and axial thin-layer image (B) of 

the same patient, and the distance (d1 or d2) between apex pulmonis and basis pulmonis on the scout image or axial thin-layer image was recorded. (C) The lesions 

were shown along with ROI locations (green circles) used to acquire CT value (mean ± SD) in different lung regions. (D) Measurement of the difference of lung length. 

(E) Quantification of the positioning time. (F) Comparison of the complete coverage on the axial thin-layer image acquired by CW and AW (data was presented as n 

(%), where n was the number of patients with complete chest CT axial images). G: Comparison of contact rate between CW and AW. ∗ P < 0.01; CW group, n = 146; 

AW group, n = 165. 

Table 2 Distribution of image noise and SNR of CW and AW groups in different lesion locations in chest CT. 

Lesion location 

(zone) 

All lesions 

( n , CW/AW) 

Image noise (HU, mean ± SD) SNR 

CW AW P values CW AW P values 

Apical 71/86 136.3 ± 70.7 133.3 ± 71.1 0.713 6.3 ± 4.1 6.7 ± 3.1 0.120 

Central 59/72 134.1 ± 66.3 130.2 ± 67.5 0.430 6.4 ± 4.2 6.9 ± 3.9 0.188 

Peripheral 232/261 146.6 ± 66.7 135.8 ± 74.4 0.069 5.4 ± 4.3 6.8 ± 4.4 0.011 

Centrilobular 497/534 153.8 ± 72.7 140.4 ± 78.6 0.028 4.9 ± 3.7 6.6 ± 4.3 0.006 

Subpleural 197/231 159.4 ± 82.7 140.6 ± 80.8 0.010 4.8 ± 4.0 6.4 ± 4.4 < 0.001 

The data are mean ± SD, where n is the number of the pulmonary lesions with available data. CW: conventional manual workflow; AW: automatic contactless 

workflow; SNR: signal-to-noise ratio. 
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 Figure 3 F) and a significantly less contact rate was showed in the AW

roup (14%) than that in the CW group (100%) ( Figure 3 G). 

.5. Image noise and SNR of pulmonary lesions 

The pulmonary lesions were found within any lung regions in both

W and CW groups. However, they were predominantly distributed in

he peripheral, centrilobular, and sub-pleural regions of the lungs (926

f 1056 lesions (87.7%) in the CW group and 1026 of 1184 lesions

86.7%) in the AW group). Overall, the AW group had a marginally

ower image noise and higher SNR for the lesions from the view of lung

egions ( Table 2 ). But for lesions located in the centrilobular and sub-

leural regions, the AW group had a significantly lower image noise than

hat in the CW group (CLR: (140.4 ± 78.6) HU vs . (153.8 ± 72.7) HU,

 = 0.028; SPR: (140.6 ± 80.8) HU vs . (159.4 ± 82.7) HU, P = 0.010).

here was no significant difference in the noise values of other lung re-

ions between the two groups. For the lesions located in the peripheral,
7 
entrilobular, and subpleural regions, the AW group had a significantly

igher SNR than those in the CW group ( Table 2 ). 

. Discussion 

We proposed an AW for CT examination by the combination of intel-

igent guided robot and automatic positioning technology, and analyzed

nd compared the examination time and image quality for COVID-19 pa-

ients examined using CW or AW. Our results indicated that the imaging

orkflow not only improved the patient compliance of breath holding

ut also reduced the examination time and overall image noise by better

reath-holding training and positioning. 

The application of AI technology in CT imaging have been proven to

ake the scanning procedure not only more efficient but also effective

n imaging-based diagnosis [9] . Recently, AI-empowered visual sensors

nd ISO-centering technology has been introduced into CT imaging sys-

em, which makes it possible to realize the automatic contactless po-

itioning. Wang et al. [10] found that using visual sensors and deep
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onvolutional neural networks could significantly improve the scanning

fficiency. Our results showed that the use of automatic imaging work-

ow might result in a shorter time to complete the chest CT exami-

ation. In particular, the total examination time was reduced by 8.6%

n the AW group compared with the CW group. This automatic image

orkflow was also confirmed to be accurate in chest imaging. Our result

lso suggested that the accuracy of automatic imaging workflow (98%)

as higher than that of conventional imaging workflow (93%). 

Other important positioning technology (including ISO-centering

nd RGB-depth input sensor) is applied in CT positioning and imag-

ng can improve image quality by precisely adjusting the bed height

11–12] , because the CT image quality and temporal resolution nearest

o the isocenter and image noise will be decreased substantially when

he patients are accurately positioned. However, due to the barrier of

arious personal protective equipments, the normal communication be-

ween medical staffs and patients is limited, and the motion artifacts in

hest CT imaging caused by the insufficient breath-holding training of

atients are still not well solved during the epidemic period. The intelli-

ent robot and automatic positioning technique could present and per-

eive correct body posture of patient by virtue of infrared detection sys-

em and feedback system. Our results revealed that the difference of lung

ength in CT image obtained with the AW was statistically lower than

hat in CW group. These findings indirectly indicate that the patient’s

ompliance of breath holding can be improved by intelligent guided

obot. 

This result also showed that breath-holding training of robot is better

han that of technicians, and there may be two reasons for this. First,

ue to the barrier of personal protective equipment’s, communication

etween radiologists and patients was limited, which lead to insuffi-

ient breath-holding training in the CW group; second, the intelligent

obot could present correct body posture in the screen, which could help

atients better understand breath-holding training process. More impor-

antly, AW greatly reduce the contact opportunities between radiologist

nd patient. In this study, only 14% of patient (23 of 165) in the AW

roup required the radiologist enter the CT scanning room or prepara-

ion room to have close contact with patients during CT scanning. This

eveals that the AW can reduce the contact opportunity between pa-

ients and medical workers and improve the scanning accuracy in the

eanwhile. 

In this study, the image quality of AW group had significantly higher

NR and less image noise than that of CW group. The main reason that

ffected the noise and SNR of pulmonary lesions may be the patient off-

enter distance. The AI-based automatic positioning technique could ef-

ectively reduce the off-center distance and optimize image quality. Ac-

ording to some related studies, misposition will cause the degradation

f CT image quality [13–16] .The image noise in AW group particularly

or the lesions in the centrilobular and subpleural areas of the lungs

as statistically lower than that in CW group. Chung et al. [17–18] re-

orted that the lung lesions in COVID-19 patients were predominantly

istributed in the peripheral region of lungs. Hence, the patients receiv-

ng CT scan using AW may have the positive impact on image quality of

eripheral lesions. 

This study had some limitations. Firstly, the study might have a con-

ounding bias due to the relatively small number of patients. Secondly,

e only evaluated one CT scanner from one manufacturer. Additional

tudies are needed for investigating the generality of automatic imag-

ng workflow to different CT scanners. Thirdly, the patients were limited

o those without the demand for life-supporting tubes and other equip-

ent; this means they could follow the verbal commands. In addition,

ll the patient positions such as feet-first prone position, lateral position,

nd other special conditions were not included. 

In summary, this study indicates that the use of AW might lead to

igher examination efficiency, scanning accuracy, and image quality in

hest CT imaging, and reduce the cross-infection risks for diagnosing

OVID-19 patients. 
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