Skip to main content
. 2021 May 11;7:e526. doi: 10.7717/peerj-cs.526

Table 11. Fusion embeddings on Cora for link prediction (micro-F1, metric lies between (0,1) and higher value means better results).

% Train Edges 5% 10% 30% 50%
TADW - BoW 0.72 ± 0.02 0.72 ± 0.01 0.73 ± 0.01 0.73 ± 0.01
TADW - TF-IDF 0.73 ± 0.02 0.74 ± 0.01 0.74 ± 0.01 0.75 ± 0.01
TADW - Sent2Vec 0.70 ± 0.01 0.70 ± 0.01 0.71 ± 0.00 0.73 ± 0.00
TADW - Word2Vec 0.64 ± 0.01 0.68 ± 0.00 0.71 ± 0.01 0.72 ± 0.01
TADW - Ernie 0.51 ± 0.01 0.53 ± 0.01 0.54 ± 0.01 0.54 ± 0.01
GCN - TF-IDF 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.80 ± 0.01
GCN - Sent2Vec 0.69 ± 0.01 0.71 ± 0.01 0.73 ± 0.01 0.75 ± 0.01
GCN - SBERT 0.67 ± 0.01 0.69 ± 0.01 0.71 ± 0.01 0.73 ± 0.01
GCN (Custom) 0.72 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01
GCN - Ernie 0.62 ± 0.01 0.63 ± 0.00 0.63 ± 0.00 0.68 ± 0.01
GAT - TF-IDF 0.71 ± 0.01 0.73 ± 0.01 0.75 ± 0.01 0.75 ± 0.01
GAT - Sent2Vec 0.61 ± 0.01 0.61 ± 0.01 0.65 ± 0.01 0.68 ± 0.01
GAT - SBERT 0.65 ± 0.01 0.69 ± 0.01 0.72 ± 0.01 0.74 ± 0.01
GAT - Ernie 0.56 ± 0.01 0.56 ± 0.02 0.59 ± 0.01 0.62 ± 0.01
GraphSAGE - TF-IDF 0.75 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.80 ± 0.01
GraphSAGE - Sent2Vec 0.66 ± 0.01 0.70 ± 0.01 0.74 ± 0.01 0.75 ± 0.01
GraphSAGE - SBERT 0.58 ± 0.01 0.62 ± 0.01 0.69 ± 0.01 0.64 ± 0.01
GraphSAGE - Ernie 0.50 ± 0.01 0.50 ± 0.01 0.53 ± 0.01 0.56 ± 0.01
GIC - TF-IDF 0.73 ± 0.01 0.75 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
GIC - Sent2Vec 0.74 ± 0.01 0.75 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
GIC - SBERT 0.74 ± 0.01 0.76 ± 0.01 0.78 ± 0.01 0.80 ± 0.01
GIC - Ernie 0.65 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.74 ± 0.01

Note:

The best values with respect to confidence intervals are highlighted in bold.