Table 12. Fusion embeddings on Citeseer-M10 for link prediction (micro-F1, metric lies between (0,1) and higher value means better results).
% Train Edges | 5 % | 10 % | 30 % | 50 % |
---|---|---|---|---|
TADW - BoW | 0.50 ± 0.01 | 0.51 ± 0.02 | 0.51 ± 0.01 | 0.52 ± 0.01 |
TADW - TF-IDF | 0.51 ± 0.01 | 0.51 ± 0.01 | 0.51 ± 0.01 | 0.52 ± 0.01 |
TADW - Sent2Vec | 0.52 ± 0.01 | 0.53 ± 0.00 | 0.53 ± 0.00 | 0.54 ± 0.00 |
TADW - Word2Vec | 0.52 ± 0.01 | 0.52 ± 0.01 | 0.53 ± 0.00 | 0.53 ± 0.00 |
TADW - Ernie | 0.74 ± 0.01 | 0.75 ± 0.01 | 0.77 ± 0.02 | 0.78 ± 0.01 |
GCN - TF-IDF | 0.68 ± 0.01 | 0.69 ± 0.01 | 0.70 ± 0.01 | 0.70 ± 0.01 |
GCN - Sent2Vec | 0.59 ± 0.01 | 0.62 ± 0.01 | 0.67 ± 0.01 | 0.68 ± 0.01 |
GCN - SBERT | 0.68 ± 0.01 | 0.70 ± 0.01 | 0.72 ± 0.01 | 0.77 ± 0.01 |
GCN (Custom) | 0.61 ± 0.01 | 0.67 ± 0.00 | 0.68 ± 0.01 | 0.68 ± 0.01 |
GCN - Ernie | 0.67 ± 0.01 | 0.67 ± 0.01 | 0.76 ± 0.00 | 0.78 ± 0.01 |
GAT - TF-IDF | 0.60 ± 0.01 | 0.63 ± 0.01 | 0.65 ± 0.01 | 0.64 ± 0.01 |
GAT - Sent2Vec | 0.59 ± 0.01 | 0.63 ± 0.01 | 0.64 ± 0.01 | 0.63 ± 0.01 |
GAT - SBERT | 0.61 ± 0.01 | 0.65 ± 0.01 | 0.71 ± 0.01 | 0.73 ± 0.01 |
GAT - Ernie | 0.61 ± 0.00 | 0.64 ± 0.01 | 0.69 ± 0.01 | 0.70 ± 0.01 |
GraphSAGE - TF-IDF | 0.66 ± 0.01 | 0.67 ± 0.01 | 0.73 ± 0.01 | 0.78 ± 0.01 |
GraphSAGE - Sent2Vec | 0.64 ± 0.01 | 0.66 ± 0.01 | 0.73 ± 0.01 | 0.78 ± 0.01 |
GraphSAGE - SBERT | 0.61 ± 0.01 | 0.63 ± 0.01 | 0.71 ± 0.01 | 0.83 ± 0.01 |
GraphSAGE - Ernie | 0.63 ± 0.02 | 0.72 ± 0.01 | 0.72 ± 0.01 | 0.80 ± 0.01 |
GIC - TF-IDF | 0.62 ± 0.01 | 0.66 ± 0.01 | 0.74 ± 0.01 | 0.80 ± 0.01 |
GIC - Sent2Vec | 0.62 ± 0.01 | 0.66 ± 0.01 | 0.75 ± 0.01 | 0.81 ± 0.01 |
GIC - SBERT | 0.63 ± 0.01 | 0.66 ± 0.01 | 0.75 ± 0.01 | 0.78 ± 0.01 |
GIC - Ernie | 0.63 ± 0.01 | 0.66 ± 0.00 | 0.73 ± 0.01 | 0.81 ± 0.00 |
Note:
The best values with respect to confidence intervals are highlighted in bold.