Skip to main content
. 2021 May 11;7:e526. doi: 10.7717/peerj-cs.526

Table 3. Text methods on DBLP for node classification (micro-F1, metric lies between (0,1) and higher value means better results).

% Labels 5% 11% 30% 50%
BoW 0.75 ± 0.00 0.77 ± 0.00 0.79 ± 0.00 0.80 ± 0.00
TF-IDF 0.74 ± 0.01 0.76 ± 0.01 0.79 ± 0.01 0.80 ± 0.00
LDA 0.54 ± 0.00 0.55 ± 0.00 0.55 ± 0.00 0.56 ± 0.00
SBERT pretrained 0.69 ± 0.00 0.72 ± 0.00 0.75 ±0.01 0.75 ± 0.01
Word2Vec pretrained 0.72 ± 0.01 0.73 ± 0.01 0.74 ± 0.00 0.74 ± 0.01
Word2Vec (d = 300) 0.76 ± 0.00 0.76 ± 0.00 0.77 ± 0.00 0.77 ± 0.01
Word2Vec (d = 64) 0.76 ± 0.01 0.76 ± 0.00 0.76 ± 0.00 0.77 ± 0.00
Doc2Vec pretrained 0.73 ± 0.00 0.75 ± 0.00 0.76 ± 0.00 0.76 ± 0.00
Doc2Vec (d = 300) 0.55 ± 0.01 0.56 ± 0.00 0.57 ± 0.00 0.58 ± 0.00
Doc2Vec (d = 64) 0.54 ± 0.01 0.54 ± 0.00 0.55 ± 0.00 0.55 ± 0.00
Sent2Vec pretrained 0.73 ± 0.00 0.75 ± 0.00 0.77 ± 0.01 0.77 ± 0.01
Sent2Vec (d = 600) 0.77 ± 0.00 0.78 ± 0.00 0.79 ± 0.00 0.79 ± 0.01
Sent2Vec (d = 64) 0.77 ± 0.01 0.78 ± 0.00 0.78 ± 0.00 0.78 ± 0.00
Ernie pretrained 0.70 ± 0.01 0.71 ± 0.00 0.71 ± 0.00 0.73 ± 0.00

Note:

The best values with respect to confidence intervals are highlighted in bold.