Skip to main content
. 2021 May 11;7:e526. doi: 10.7717/peerj-cs.526

Table 5. Fusion methods on Cora for node classification (micro-F1, metric lies between (0,1) and higher value means better results).

% Labels 5% 10% 30% 50%
BoW + DeepWalk 0.74 ± 0.01 0.80 ± 0.01 0.84 ± 0.00 0.86 ± 0.01
Sent2Vec + DeepWalk 0.76 ± 0.01 0.79 ± 0.00 0.84 ± 0.01 0.85 ± 0.01
TADW - TF-IDF 0.72 ± 0.02 0.80 ± 0.01 0.85 ± 0.01 0.86 ± 0.01
TADW - Sent2Vec 0.75 ± 0.01 0.80 ± 0.01 0.83 ± 0.00 0.85 ± 0.00
TADW - Ernie 0.57 (±0.02) 0.69 (±0.01) 0.80 (±0.00) 0.82 (±0.00)
TriDNR 0.59 ± 0.01 0.68 ± 0.00 0.75 ± 0.01 0.78 ± 0.01
GCN - TF-IDF 0.80 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.87 ± 0.01
GCN - Sent2Vec 0.77 ± 0.01 0.82 ± 0.00 0.85 ± 0.01 0.87 ± 0.01
GCN - Ernie 0.60 ± 0.01 0.67 ± 0.02 0.77 ± 0.01 0.81 ± 0.00
GAT - TF-IDF 0.82 ± 0.02 0.84 ± 0.01 0.87 ± 0.01 0.88 ± 0.00
GAT - Sent2Vec 0.78 ± 0.00 0.81 ± 0.00 0.85 ± 0.01 0.86 ± 0.00
GAT - Ernie 0.58 ± 0.02 0.62 ± 0.02 0.71 ± 0.00 0.73 ± 0.00
GraphSAGE - TF-IDF 0.80 ± 0.01 0.84 ± 0.00 0.87 ± 0.01 0.87 ± 0.01
GraphSAGE - Sent2Vec 0.75 ± 0.01 0.80 ± 0.01 0.86 ± 0.01 0.88 ± 0.00
GraphSAGE - Ernie 0.29 ± 0.04 0.33 ± 0.05 0.34 ± 0.04 0.37 ± 0.02
GIC - TF-IDF 0.74 ± 0.01 0.81 ± 0.00 0.85 ± 0.00 0.88 ± 0.00
GIC - Sent2Vec 0.66 ± 0.00 0.76 ± 0.02 0.84 ± 0.00 0.86 ± 0.00
GIC - Ernie 0.34 ± 0.03 0.37 ± 0.02 0.37 ± 0.01 0.38 ± 0.01

Note:

The best values with respect to confidence intervals are highlighted in bold.