Skip to main content
. 2021 May 11;7:e526. doi: 10.7717/peerj-cs.526

Table 6. Fusion methods on Citeseer-M10 for node classification (micro-F1, metric lies between (0,1) and higher value means better results).

% Labels 5% 10% 30% 50%
BoW + DeepWalk 0.73 ± 0.01 0.76 ± 0.00 0.81 ± 0.01 0.83 ± 0.01
Sent2Vec + DeepWalk 0.73 ± 0.01 0.75 ± 0.00 0.79 ± 0.01 0.80 ± 0.01
TADW - TF-IDF 0.47 ± 0.02 0.51 ± 0.01 0.57 ± 0.01 0.59 ± 0.01
TADW - Sent2Vec 0.57 ± 0.01 0.60 ± 0.00 0.65 ± 0.01 0.66 ± 0.01
TADW - Ernie 0.41 (±0.01) 0.46 (±0.01) 0.53 (±0.01) 0.56 (±0.01)
TriDNR 0.63 ± 0.01 0.68 ± 0.00 0.74 ± 0.01 0.77 ± 0.01
GCN - TF-IDF 0.71 ± 0.01 0.76 ± 0.01 0.81 ± 0.01 0.83 ± 0.01
GCN - Sent2Vec 0.73 ± 0.01 0.80 ± 0.00 0.84 ± 0.01 0.87 ± 0.01
GCN - Ernie 0.71 ± 0.01 0.75 ± 0.00 0.78 ± 0.00 0.79 ± 0.00
GAT - TF-IDF 0.72 ± 0.01 0.76 ± 0.01 0.82 ± 0.00 0.84 ± 0.01
GAT - Sent2Vec 0.75 ± 0.01 0.79 ± 0.00 0.81 ± 0.00 0.83 ± 0.00
GAT - Ernie 0.70 ± 0.02 0.74 ± 0.00 0.77 ± 0.00 0.78 ± 0.01
GraphSAGE - TF-IDF 0.72±0.01 0.77 ± 0.01 0.83 ± 0.00 0.85 ± 0.01
GraphSAGE - Sent2Vec 0.75 ± 0.01 0.80 ± 0.01 0.85 ± 0.00 0.86 ± 0.00
GraphSAGE - Ernie 0.58 ± 0.1 0.63 ± 0.01 0.65 ± 0.01 0.68 ± 0.01
GIC - TF-IDF 0.66 ± 0.00 0.70 ± 0.01 0.80 ± 0.00 0.83 ± 0.01
GIC - Sent2Vec 0.74 ± 0.01 0.78 ± 0.00 0.83 ± 0.00 0.84 ± 0.00
GIC - Ernie 0.49 ± 0.05 0.57 ± 0.02 0.57 ± 0.02 0.63 ± 0.00

Note:

The best values with respect to confidence intervals are highlighted in bold.