Table 2. Deep learning results with different combination of hidden layers.
Total trainable parameters (DNN Model) | TPR (sensitivity) | TNR (specifity) | FPR | FNR | Precision | Recall | Accuracy | AUC | WFM | Runtime (min:sec) |
---|---|---|---|---|---|---|---|---|---|---|
20152 (50,50) | 0.946 | 0.987 | 0.129 | 0.053 | 0.987 | 0.992 | 0.980 | 0.955 | 0.982 | 00:40 |
195902 (300,300) | 0.942 | 0.987 | 0.129 | 0.057 | 0.987 | 0.991 | 0.980 | 0.955 | 0.982 | 01:45 |
45352 (100,50,100) | 0.954 | 0.981 | 0.181 | 0.045 | 0.982 | 0.993 | 0.980 | 0.940 | 0.981 | 00:50 |
166002 (300,100,300) | 0.937 | 0.986 | 0.137 | 0.062 | 0.986 | 0.990 | 0.980 | 0.952 | 0.982 | 01:49 |
65502 (100,100,100,100) | 0.942 | 0.986 | 0.137 | 0.057 | 0.988 | 0.991 | 0.980 | 0.957 | 0.982 | 00:52 |
376502 (300,300,300,300) | 0.956 | 0.987 | 0.129 | 0.043 | 0.987 | 0.993 | 0.980 | 0.956 | 0.983 | 02:05 |
75602 (100,100,100,100,100) | 0.942 | 0.986 | 0.013 | 0.058 | 0.986 | 0.991 | 0.980 | 0.953 | 0.982 | 00:54 |