Skip to main content
. 2021 May 10;7:e533. doi: 10.7717/peerj-cs.533

Table 2. Deep learning results with different combination of hidden layers.

Total trainable parameters (DNN Model) TPR (sensitivity) TNR (specifity) FPR FNR Precision Recall Accuracy AUC WFM Runtime (min:sec)
20152 (50,50) 0.946 0.987 0.129 0.053 0.987 0.992 0.980 0.955 0.982 00:40
195902 (300,300) 0.942 0.987 0.129 0.057 0.987 0.991 0.980 0.955 0.982 01:45
45352 (100,50,100) 0.954 0.981 0.181 0.045 0.982 0.993 0.980 0.940 0.981 00:50
166002 (300,100,300) 0.937 0.986 0.137 0.062 0.986 0.990 0.980 0.952 0.982 01:49
65502 (100,100,100,100) 0.942 0.986 0.137 0.057 0.988 0.991 0.980 0.957 0.982 00:52
376502 (300,300,300,300) 0.956 0.987 0.129 0.043 0.987 0.993 0.980 0.956 0.983 02:05
75602 (100,100,100,100,100) 0.942 0.986 0.013 0.058 0.986 0.991 0.980 0.953 0.982 00:54