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Many genomic analyses start by aligning sequencing reads to a
linear reference genome. However, linear reference genomes are
imperfect, lacking millions of bases of unknown relevance and are
unable to reflect the genetic diversity of populations. This makes
reference-guided methods susceptible to reference-allele bias. To
overcome such limitations, we build a pangenome from six reference-
quality assemblies from taurine and indicine cattle as well as yak. The
pangenome contains an additional 70,329,827 bases compared to the
Bos taurus reference genome. Our multiassembly approach reveals 30
and 10.1 million bases private to yak and indicine cattle, respectively,
and between 3.3 and 4.4 million bases unique to each taurine as-
sembly. Utilizing transcriptomes from 56 cattle, we show that
these nonreference sequences encode transcripts that hitherto
remained undetected from the B. taurus reference genome. We
uncover genes, primarily encoding proteins contributing to im-
mune response and pathogen-mediated immunomodulation, dif-
ferentially expressed between Mycobacterium bovis–infected
and noninfected cattle that are also undetectable in the B. taurus
reference genome. Using whole-genome sequencing data of cat-
tle from five breeds, we show that reads which were previously
misaligned against the Bos taurus reference genome now align
accurately to the pangenome sequences. This enables us to dis-
cover 83,250 polymorphic sites that segregate within and be-
tween breeds of cattle and capture genetic differentiation
across breeds. Our work makes a so-far unused source of varia-
tion amenable to genetic investigations and provides methods
and a framework for establishing and exploiting a more diverse
reference genome.
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Awell-annotated reference genome enables systematic char-
acterization of sequence variation within and between pop-

ulations, as well as across species. The reference genome of domestic
cattle (Bos taurus taurus) was generated from the inbred Hereford
cow «L1 Dominette 01449» (1). Long-read sequencing and sophis-
ticated genome assembly methods have enabled spectacular im-
provements in the contiguity and quality of the Bos taurus reference
genome. The contig (contiguous sequence formed by overlapping
reads without gaps) N50 size (i.e., 50% of the genome is in contigs of
this size or greater) of the B. taurus reference genome has increased
from kilo- to megabases over the past 5 y (2). Recent method and
sequencing technology developments have facilitated the assembly of
multiple reference-quality genomes. The application of trio binning
(3) resulted in chromosome-scale haplotype-resolved assemblies for
three taurine (Hereford, Angus, and Highland) and one indicine
(Brahman) cattle breeds as well as for yak (Bos grunniens), a closely
related species to domestic cattle (4, 5).
DNA sequences from taurine and indicine cattle are typically

aligned to the Hereford-based reference genome to discover and
genotype variable sites. Reference-guided read alignment and var-
iant genotyping has revealed millions of polymorphic variants that
segregate within and between taurine and indicine cattle breeds
(6–8). However, using the linear reference in this alignment
approach is susceptible to reference-allele bias, particularly for
DNA samples that are greatly diverged from the reference (9,
10). Moreover, reference-guided methods are blind to variations

in sequences that are not present in the reference genome (11).
Recent estimates suggest that millions of bases are missing in
mammalian reference genomes (12, 13), indicating a high potential
for bias.
Efforts to mitigate reference-allele bias and increase the genetic

diversity of reference genomes have led to graph-based references
(14, 15). We have previously shown that a genome graph, which
integrates linear reference coordinates and preselected variants,
improves the mapping of reads and enables unbiased variant
genotyping in different breeds of cattle (16, 17). However, pre-
vious attempts focused on augmenting the B. taurus reference
genome with small variations [<50 base pairs (bp)], not the larger
class of structural variations. Despite being an important source of
genotypic and phenotypic diversity (18, 19), little is known about
the prevalence and functional impact of structural variations in the
cattle genome. The availability of reference-quality assemblies and
long-read sequencing data from different breeds of cattle now
provides an opportunity to characterize sequence diversity beyond
small variations (20, 21).
In this paper, we integrate reference-quality assemblies from

multiple taurine breeds as well as two close relatives into a mul-
tiassembly graph with minigraph (21). We detect autosomal se-
quences that are missing in the B. taurus reference genome and
investigate their functional significance using transcriptome data.
We show that the nonreference sequences contain transcripts that
are differentially expressed as well as polymorphic sites that seg-
regate within and between breeds of cattle.

Significance

Most sequence variant analyses rely on a linear reference ge-
nome that is assumed to lack millions of bases that occur in the
genomes of other individuals. To quantify the extent and
functional relevance of such missing bases, we integrate six
genome assemblies from cattle and related species into a
pangenome. This allows us to uncover more than 70 million
bases that are not included in the Bos taurus reference ge-
nome. Through complementary bioinformatics, genomics, and
transcriptomics methods, we discover putative genes from
nonreference sequences that are differentially expressed and
thousands of polymorphic sites that were unused so far. Our
work provides a computational framework, broadly applicable
to many species, to make a so-far neglected source of genomic
variation amenable to genetic investigations.
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Results
Construction of a Bovine Multiassembly Graph. We considered the
Hereford-based B. taurus reference genome and five reference-
quality assemblies from three breeds of taurine (B. t. taurus) cat-
tle (Angus, Highland, and Original Braunvieh) (2, 4, 5) and their
close relatives Brahman (Bos taurus indicus) (4) and yak (B. grun-
niens) (5). All assemblies, except for the Original Braunvieh breed,
were generated prior to this study. The reference-quality assembly for
an Original Braunvieh female calf was created with 28-fold PacBio
high-fidelity (HiFi) read coverage (SI Appendix, Note S1). The contig
and scaffold N50 values of the six assemblies ranged from 21 to 80
Mb and 86.2 to 108 Mb, respectively (Table 1).
The six assemblies were integrated into a multiassembly graph

with minigraph. We only considered autosomal sequences because
the haplotype-resolved assemblies represent either paternal or
maternal haplotypes, thus lacking either X or Y chromosomal
sequences. The Hereford-based linear reference genome
(ARS-UCD1.2) formed the backbone of the bovine multiassembly
graph. The graph was then augmented with the five additional as-
semblies, added in order of increasing Mash distance from the ARS-
UCD1.2 reference (22) (Fig. 1). Constructing this multiassembly
graph took 4.1 CPU (central processing unit) hours and 58 GB of
RAM, taking 36 min of wall-clock time when using 10 threads.

Recovery of Nonreference Sequences from the Multiassembly Graph.
Our bovine multiassembly graph represents 2,558,596,439 nucle-
otides, spread across 182,940 nodes connected by 258,396 edges.
On average, a node spans 13,985 nucleotides and is connected by
1.4 edges. Of the edges, 141,086, 113,332, and 3,978 connect two
reference nodes, a reference and nonreference node, or two
nonreference nodes, respectively.
The vast majority (2,489,385,779 or 97.29%) of nucleotides in

the multiassembly graph originate from the linear reference
backbone, covered in 123,483 nodes. These reference nodes span
23,088 bases on average, ranging from 100 to 1,398,882 bases. The
incremental integration of the Highland, Angus, Original Braunvieh,
Brahman, and yak assemblies added 8,847, 4,613, 3,555, 11,996,
and 30,446 nonreference nodes, respectively containing 14,679,286,
5,537,769, 7,013,258, 11,116,220, and 30,864,127 nonreference bases.
The resulting multiassembly graph contained 59,457 nonreference
nodes spanning 69,210,660 bases.
To determine the support of the nonreference nodes, we aligned

individual assemblies back to the multiassembly graph. Nodes were
then labeled according to which assembly path traversed them (SI
Appendix, Figs. S1 and S2). This approach enabled a straightforward
confirmation of minigraph’s mapping accuracy. Only reference
nodes should contain a Hereford label, since this assembly was used

as the backbone of the graph. Mapping was highly accurate, as
indicated by an F1 score of 99.97%.
The nonreference nodes of the multiassembly graph had a cu-

mulative length of 43,341,418, 23,644,772, 18,202,102, 14,453,112,
and 15,542,368 bases in the yak, Brahman, Original Braunvieh,
Angus, and Highland assemblies, respectively. Yak and Brahman
nonreference nodes were shorter on average compared to the tau-
rine assemblies (SI Appendix, Fig. S3). Most nonreference nodes
(41,855 or 70.40%) and nonreference sequences (42.52 Mb, 69.52%)
were either private to yak (29,854 nodes, 29.9 Mb), Brahman (7,843
nodes, 8.22 Mb), or shared by both assemblies (4,158 nodes, 3.05
Mb) (S1 Appendix, Fig. S4). The Original Braunvieh, Highland, and
Angus assemblies contributed 4.51, 2.78, and 2.39 Mb in 2,016, 1,938,
and 1,759 nodes, respectively, that were not detected in any other
assembly. The three taurine assemblies shared 668 nodes containing
0.77 Mb not detected in ARS-UCD1.2, yak, or Brahman. There
were also 1,318 nonreference nodes with a cumulative length of 4.4
Mb supported by all five additional assemblies.
The core genome of the multiassembly graph (i.e., nodes shared

by all assemblies) is contained in 67,482 nodes with a cumulative
length of 2,402,561,410 bases. About 6.10% of the pangenome

Table 1. Details of six bovine genome assemblies

Assembly (Species) Sex*
Primary data used for the

assembly†
Type of
assembly Assembler

Contig N50
(Mb)

Scaffold N50
(Mb)

Length of the
autosomes

Hereford (Bos taurus taurus) F PacBio (80-fold CLR) Primary Falcon 21 108 2,489,385,779
Angus (Bos taurus taurus) M PacBio (136-fold CLR) Haplotype-

resolved
TrioCanu 29.4 102.8 2,468,157,877

Highland (Bos taurus taurus) F PacBio (125-fold CLR) Haplotype-
resolved

TrioCanu 71.7 86.2 2,483,452,092

Original Braunvieh (Bos taurus
taurus)

F PacBio (28-fold HiFi) Primary Hifiasm 86.0 96.3 2,607,746,442

Brahman (Bos taurus indicus) F PacBio (136-fold CLR) Haplotype-
resolved

TrioCanu 23.4 104.5 2,478,073,158

Yak (Bos grunniens) F PacBio (125-fold CLR) Haplotype-
resolved

TrioCanu 70.9 94.7 2,478,308,164

*Female (F) and male (M) assemblies contain either X or Y chromosomal sequences.
†Additional data may have been used to polish the assemblies and facilitate scaffolding; CLR: continuous long reads; HiFi: high-fidelity.

Fig. 1. Phylogenetic distance between six genome assemblies. A Mash-
based phylogenetic tree derived from six bovine assemblies, including the
current Hereford-based B. taurus reference genome (bold). The yak assembly
was used as the outgroup to root the tree during building.
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(115,458 nodes containing 156,035,029 bases) is flexible (i.e., not
shared by all assemblies). Of the flexible part, 69,697 nodes
containing 97,106,100 bases are shared by at least two assem-
blies, and 45,761 nodes with 58,928,929 bases are only found in
one assembly. The profile of the multiassembly graph changes
markedly when distant assemblies (e.g., Brahman and yak) are
added (SI Appendix, Note S2).
The minigraph approach used to construct the multiassembly

graph does depend on an initial sequence forming a backbone.
The choice of backbone consequently impacts the amount of non-
reference sequence detected from each additional assembly (SI
Appendix, Note S3). However, the overall effect on the sequence
content of the multiassembly graph is relatively minor, with 68.72 ±
3.17 Mb of nonreference sequence identified across all possible
backbones.

Structural Variation Discovery from the Multiassembly Graph. Using
the bubble popping algorithm of gfatools (21), we identified 68,328
structural variations present in the multiassembly graph. To reveal
true alleles within these structural variations, we traversed all pos-
sible paths through the bubbles (i.e., alleles) and retained only those
that were supported by at least one assembly (SI Appendix, Fig. S2).
Most of the structural variations had two alleles (64,224 or 94%).
The remaining 4,104 structural variations were multiallelic, most of
which had three alleles (3,324 or 81%). We identified 141,747 al-
leles at the structural variations, including 73,506 nonreference al-
leles with a cumulative length of 74,453,929 bases.
We overlapped the breakpoints of the structural variations

with the Ensembl annotation (build 101) of ARS-UCD1.2. Almost
all structural variations were either intergenic (47,642 or 69.81%)
or intronic (20,227 or 29.64%). There were 170 and 202 exons and
coding sequences, respectively, of 338 unique genes affected by
structural variations. A Panther GO-Slim Biological Process (23)
analysis indicated that these genes are enriched for genes related
to the adaptive immune response (4.35-fold, P = 0.04), T cell
mediated immunity (6.37-fold, P = 0.04), actin filament depo-
lymerization (8.54-fold, P = 6.56 × 10−3), microtubule cytoskel-
eton organization (10.48-fold, P = 1.85 × 10−4), and iron–sulfur
cluster assembly (9.96-fold, P = 0.02).
The nonreference alleles consisted of 40,369 insertions and

33,137 deletions with an average length of 1,181 and 1,210 bases,
respectively (SI Appendix, Table S1). The cumulative length

(absolute difference between reference and nonreference allele)
was longer for insertions (47,691,942 bases) than deletions
(40,101,303 bases). This pattern was similar for biallelic varia-
tions (35,748 and 28,476 biallelic insertions and deletions, re-
spectively, encompassing 37,388,222 and 28,373,582 bases with
an average variant length of 1,045 and 996 bases). The multiassembly
graph contained more complete insertions (20,432; i.e., only non-
reference sequences present in the bubbles, thus reference length is
0) than alternate insertions (15,316; i.e., both reference and non-
reference sequences present but nonreference allele is longer). The
pattern was similar for deletions. The multiallelic structural vari-
ations had 13,299 alleles including 9,282 nonreference alleles with
4,621 insertions and 4,661 deletions, respectively, affecting
11,727,721 and 10,303,720 bases. Bubbles with multiallelic struc-
tural variations contained more mixed mutations (1,941; both
deletions and insertions detected within the same bubble) than
multiple mutations of the same type (994 and 1,082 for multiple
insertions and deletions, respectively).
When compared to the ARS-UCD1.2 backbone, the yak, Brah-

man, Original Braunvieh, Angus, and Highland assemblies contained
respectively 49,836, 22,976, 10,965, 10,735, and 10,560 nonreference
alleles (Fig. 2). Most nonreference alleles (36,443, total length: 30
Mb) were private to the yak assembly. We detected 9,267, 2,232,
2,133, and 2,037 nonreference alleles, respectively, containing 10.1,
4.9, 3.8, and 3.3 Mb that were private to the Brahman, Original
Braunvieh, Highland, and Angus assembly (Fig. 2 and SI Appendix,
Fig. S5). We also found 1,749 alleles within the 4.4 Mb of non-
reference sequence (2.1 Mb of which is nonrepetitive) shared by all
assemblies except ARS-UCD1.2.
We mapped PacBio HiFi reads from a Nellore (B. t. indicus) ×

Brown Swiss (B. t. taurus) crossbred bull to the multiassembly graph
to examine support for the nonreference alleles. Nearly one-third of
the structural variation breakpoints had support from the hybrid
cattle, while this rose to approximately three-quarters after ex-
cluding nodes with only yak labels. Since neither parental breed
is present in the multiassembly graph, this suggests that the discov-
ered structural variation may be prevalent in different breeds of
taurine and indicine cattle.

Sequence Content of the Structural Variations. In order to investigate
the functional relevance of the nonreference sequences, we extracted
45,357 nonreference alleles from the 70,329,827 nonreference bases

A B

Fig. 2. Nonreference alleles detected across assemblies. Intersection of nonreference alleles (A) and cumulative length of the alleles (B) found in five as-
semblies when compared to ARS-UCD1.2. OBV: Original Braunvieh.
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in the multiassembly graph (SI Appendix, Fig. S6). These sequences
originate from 38,906 biallelic and 6,451 multiallelic structural
variations, respectively, that have a cumulative length of 43,003,591
and 27,326,236 bases. On average, the alleles of multiallelic struc-
tural variations were 4 times longer than that of biallelic bubbles
(4,205 versus 1,104 bases).
The nonreference sequences are largely composed of repeti-

tive elements (53,690,260 bases or 76.34%, SI Appendix, Fig. S7).
LINE/L1 and LINE/RTE-BovB account for 28.04 (52.22%) and
6.77 (12.61%) Mb repetitive nonreference bases, respectively.
Repetitive sequences (both interspersed and simple repeats) are
more evenly distributed across the autosomes than nonrepetitive
sequences. Both repetitive and nonrepetitive nonreference se-
quences were detected at two regions on bovine chromosomes 18
and 23 that encompass the leukocyte receptor complex and the
major histocompatibility complex (SI Appendix, Fig. S8).
We hypothesized that the 16,639,567 nonrepetitive nonreference

bases contain transcribed sequences. A BLASTX search of these
sequences against a protein sequence database of Bos and related
species revealed hits for 403 structural variations containing 299,337
nonreference bases. As a complementary approach, we predicted
genes from the nonrepetitive sequences using the Augustus
software tool. The ab initio prediction revealed 857 gene models
from 768 distinct structural variations that had a minimum coding
sequence length of 150 bp, including 374 complete gene models with
transcription start site, start codon, exons, stop codon, and tran-
scription termination site (SI Appendix, Table S2). On average, the
transcript, coding sequence, and protein length of the complete gene
models is respectively 4,742 bp, 794 bp, and 264 amino acids.

De Novo Transcript Assembly from the Nonreference Sequences. As
the two complementary gene prediction methods indicated that
these nonreference sequences contain transcribed features, we
sought experimental evidence. We appended the 70 Mb of repeat-
masked nonreference sequences contained in 45,357 additional
contigs to the ARS-UCD1.2 reference, making an extended ref-
erence genome. This renders the nonreference sequences amena-
ble to current methods of linear mapping of transcriptome data.
Using HISAT2, we aligned liver transcriptomes from 39 cattle
across taurine (Angus, Holstein, and Jersey) and indicine (Brahman)

breeds to both the linear reference as well as the extended ref-
erence. We also aligned transcriptomes from Dominette, the
animal sequenced to assemble the B. taurus reference genome. A
greater portion of reads mapped to the extended reference
compared to the original reference for all examined samples (SI
Appendix, Fig. S9). Across the 40 samples, the overall mapping
rate increased by 0.037%, which corresponds to ∼18,000 reads
for a paired-end RNA-sequencing (RNA-seq) dataset of 25 million
reads. The mapping improvements were larger for samples with
greater genetic distance from the reference genome. Brahman had
the largest improvement (0.060%), followed by the taurine breeds:
Angus (0.032%), Holstein (0.026%), and Jersey (0.030%). As
expected, Dominette benefitted the least (0.010%) but still dem-
onstrated an improvement over using the original reference.
Next, we used StringTie2 (24), guided with gene models pre-

dicted by Augustus (see above), to assemble reads which aligned
to nonreference sequences into 1,431 nonreference genes. Of
these, 885 were expressed at transcripts per million (TPM) ≥ 1 in
at least one breed, including 405 that were originally predicted by
Augustus. We selected these 405 putative genes, supported by
both ab initio prediction and de novo transcript assembly for
further analyses.
Only 263 of the 405 putative genes were expressed at TPM ≥ 1

in Dominette, with BLASTP queries indicating they may mostly
be divergent copies of ribosomal proteins or olfactory receptors.
The remaining 142 genes were expressed at TPM ≥ 1 in Angus,
Holstein, Jersey, or Brahman cattle. Most were expressed in Brah-
man cattle (Fig. 3A), including 20 genes specific to this indicine breed.
Among the taurine breeds, Angus contributed more genes than ei-
ther Holstein or Jersey cattle. Approximately half of these genes, 68
of the 142, were common to all four nonreference breeds (Fig. 3B).
The average expression was significantly higher (P = 0.004, one-tailed
Student’s t test) for genes that were expressed in at least two breeds
(N = 106, TPM = 13.48) than genes expressed in only one breed
(N = 36, TPM = 1.64). BLASTP queries provided additional
support for 57 out of the 142 genes (SI Appendix, Fig. S10). The
top hits suggest that these genes encode proteins related to the
following: immune response (antigen-presenting glycoprotein, im-
munoglobulin, Bovine Leukocyte Antigen [BOLA], killer T cell,
interferon, Ig-like lectin, CMRF35, MHC [major histocompatibility

A B

Fig. 3. Transcribed genes detected from nonreference sequences. (A) Number of nonreference genes expressed ≥1 TPM in liver tissue from taurine (Jersey,
Holstein, and Angus) and indicine (Brahman) cattle breeds. Each point represents the number of nonreference genes detected per animal. The number of
distinct nonreference genes detected for each breed is indicated below the boxplots. (B) Expression of 142 nonreference genes in four cattle breeds.
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complex], and cytokine), signaling (G protein–signaling protein and
tyrosine phosphatase), cytoskeleton regulations (myosin, actin,
twinfilin, and KANTB1), lipid metabolism (apolipoprotein and
lipid-binding protein), and protein modifications (heat-shock
chaperone, ubiquitin conjugating enzyme, and rhoA ubiquitin).

Nonreference Sequences Contain Differentially Expressed Genes. To
investigate if the nonrepetitive sequences also encode transcripts
that are differentially expressed between individual B. taurus
cattle, we obtained publicly available peripheral blood leukocyte
transcriptome data for eight M. bovis–infected and eight nonin-
fected Holstein cattle (25). Following the transcriptome analysis
introduced earlier, the RNA-seq reads were aligned to both the
standard and extended ARS-UCD1.2 reference genome sequence.
Between 8,616,414 and 23,940,699 RNA-seq reads aligned to the
standard and between 8,631,277 and 23,977,859 RNA-seq reads
aligned to the extended reference genome. The subsequent de novo
transcript assembly from the nonreference sequences produced 949
transcripts encoded by 661 nonreference genes. We appended them
to the Ensembl ARS-UCD1.2 annotation, yielding a total of 28,268
genes. Considering only unique alignments, we detected expression
levels ≥1 counts per million (CPM) in at least eight samples for
13,085 genes, including 272 nonreference genes. We subsequently
tested these genes for differential expression, finding 3,646 genes,
including 36 nonreference genes, which were differentially expressed
(false discovery rate (FDR) ≤ 0.05) between M. bovis–infected and
noninfected cattle (Fig. 4A). The top differentially expressed genes
from our extended Ensembl ARS-UCD1.2 annotation as well as
their transcript abundances in cases and controls agreed well with the
original findings from McLoughlin et al. (25) that were based on the
previous UMD3.1 annotation (Pearson R log2 fold-change: 0.99) as
well as with those from the standard ARS-UCD1.2 reference genome
annotation (Pearson R log2 fold-change: 0.99, SI Appendix, Note S4).
Within the 36 differentially expressed nonreference genes, 28

and 8 are respectively up- and down-regulated in peripheral blood
leukocytes of M. bovis–infected cattle, with an average twofold
change compared to noninfected controls (SI Appendix, Fig. S11).
Multidimensional scaling representations of transcript abundance
estimates of the 36 differentially expressed genes separated M.
bovis–infected from noninfected cattle (Fig. 4B). BLASTX queries
against a protein reference database provided additional support
for 13 out of 36 differentially expressed genes (SI Appendix, Table

S3). The top up-regulated nonreference gene supported by the
BLASTX query (4.04-fold increase, P = 1.98 × 10−5) encodes the
Workshop Cluster (WC) 1.1-like protein [i.e., a receptor expressed
on gamma delta T cells that modulates the immune response to
M. bovis infections (26–28)].
The top down-regulated nonreference gene supported by the

BLASTX query encodes a protein with high similarity (79.80%)
to leukocyte immunoglobulin–like receptor A5 (LILRA5). LILRA5
triggers the strength of the innate immune response toMycobacterium
infections (29) and might serve as a target for pathogen-mediated
immunomodulation. Many genes of the leukocyte receptor com-
plex are missing in the assembled chromosomes of the ARS-
UCD1.2 reference (30); instead, LILRA5 (LOC100139766) is
annotated on a 236 kb long unplaced scaffold (NW_020190675).
A nonreference gene encoding a protein similar to LILRA5 is
located within a 20.4 kb insertion of the multiassembly graph at
62,471,732 bp on chromosome 18. Both taurine (Original Braun-
vieh) and indicine (Brahman) assemblies support this insertion. The
gene encoding LILRA5 is expressed at 9.59 ± 2.54 and 23.10 ± 8.30
CPM, respectively, in M. bovis–infected and noninfected cattle,
corresponding to a 2.19-fold decrease (P = 1 × 10−4) in infected
cattle (SI Appendix, Table S3).

Variant Discovery from the Nonreference Sequences. Next, we mapped
short sequencing reads, with an average of 19-fold sequencing
coverage, from 45 cattle representing five taurine breeds against
ARS-UCD1.2 and the extended ARS-UCD1.2 reference genome.
An average number of 34,342 reads per sample mapped perfectly
within 50 bp of the breakpoints of the newly added contigs, indi-
cating that the addition of 100 bp flanking sequence was sufficient
to facilitate accurate alignments. Across 45 samples, the average
mapping rate increased by 0.0176% over ARS-UCD1.2, corre-
sponding to ∼100,000 sequencing reads for a DNA sample se-
quenced at 30-fold coverage. The mapping rate increased more
noticeably for Brown Swiss (0.024%) and Original Braunvieh
(0.021%) than Holstein (0.015%) and Simmental (0.016%) cattle (SI
Appendix, Fig. S12). Similarly, to the transcriptome mapping, se-
quence reads from Dominette benefitted the least from the ex-
tended reference genome (0.006%). However, the increase in
mapping rate was greater (0.013%) for other Hereford cattle.
For all breeds, the extended reference genome also enabled
more perfect alignments (alignments without difference from the

A B

Fig. 4. Differentially expressed nonreference genes. (A) A volcano plot representing results from the differential expression analysis. The green and purple
color indicates genes that are up- and down-regulated (FDR ≤ 0.05), respectively, in peripheral blood leukocytes of M. bovis–infected cattle. The diamond
shapes indicate the 272 genes found in nonreference sequences. (B) Multidimensional scaling plot of 36 differentially expressed nonreference genes in M.
bovis–infected (blue) and noninfected (orange) Holstein cattle.
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reference), less partially mapped (i.e., clipped) reads, and less
reads with supplementary alignments. However, the proportion
of reads with unique alignment was lower for the extended than
standard reference genome (SI Appendix, Table S4).

We next investigated the alignments against the 2,115,702
nonrepetitive nonreference bases detected in all assemblies ex-
cept ARS-UCD1.2. Among these, 919,761 bases were covered by
confident alignments (≥10-fold) from Dominette. This suggests

A

B C

Fig. 5. Polymorphic sites detected from nonreference sequences in five breeds. (A) Sharing of 83,250 variants across five taurine cattle breeds (BSW: Brown
Swiss, HER: Hereford, HOL: Holstein, OBV: Original Braunvieh, SIM: Simmental). (B and C) The top three principal components (PC) of a genomic relationship
matrix constructed from nonreference sequence variants separate the animals by breed.
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that, although absent from the autosomal assembly, these se-
quences do occur in the animal used to construct the reference.
However, 1,195,941 bp were not covered with reads from Domi-
nette but instead from Brown Swiss, Holstein, Original Braunvieh,
or Simmental samples. Strikingly, reads from non-Dominette
Hereford samples covered 745,392 of the 1,195,941 bases. This
directly implies that Dominette has individual-specific deletions,
which are either rare or absent in other Hereford cattle.
Mapping against the extended reference resulted in many

reads changing alignment location to the nonreference additions.
Most (85.55%) of the reads mapping at nonreference sequences
already mapped to the original ARS-UCD1.2 reference genome,
although 5% of these mapped to unplaced contigs, while 14.45%
were previously unmapped. These mappings displayed an increase
in the average mapping quality (22 to 44), alignment score (110 to
142), and alignment identity (0.975 to 0.995). The proportion of
clipped reads decreased from 39 to 4%. The subset of these reads
which were previously unmapped showed even greater improve-
ments (SI Appendix, Fig. S13).
Using reads with mapping quality greater than 10 for reference-

guided sequence variant genotyping yielded 83,250 filtered variants
(73,709 single-nucleotide polymorphisms [SNPs], 9,541 insertion/
deletion polymorphisms [indels]) in nonreference sequences that
were identified by both SAMtools and GATK. These variants
formed 80,995 biallelic and 2,255 multiallelic sites, with a Ti:Tv
(transition:transversion) ratio of 1.91, averaging 1.18 variants per
kb. A total of 3,890 small variations (Ti:Tv ratio: 1.79) were de-
tected within 50 bp of the breakpoints of the newly added contigs.
On average, each Brown Swiss, Original Braunvieh, Holstein,
Simmental, and Hereford animal, respectively, had 31,028, 29,685,
29,851, 30,309, and 15,845 variant sites in nonreference bases
(Fig. 5A). A DNA sample from Dominette had considerably fewer
polymorphic sites at nonreference bases, only 7,531. Most variants
(32.67%) had alternate allele frequency less than 0.1, and 193 were
fixed for the alternate allele (SI Appendix, Fig. S14). The top
principal components from a genomic relationship matrix that was
built from the 83,250 nonreference variants separated the animals
by breeds (Fig. 5 B and C). Functional annotation based on the
gene models predicted from Augustus indicated that most non-
reference variants were either intergenic (83%) or intronic (7.5%).
A total of 1,138 variants (Ti:Tv ratio: 1.83) were in putative coding
sequences, of which 54 were classified as “HIGH IMPACT” vari-
ants (SI Appendix, Table S5).

Discussion
We utilize a bovine multiassembly graph to uncover sequences
that are not included in the B. taurus reference genome. Non-
reference contigs can also be assembled from unmapped reads,
but placing them onto reference coordinates is difficult (12, 31).
Our approach provides physical coordinates for the nonreference
sequences because the breakpoints anchor them onto the reference
genome. Despite including the genetically distant yak, constructing
the multiassembly graph using minigraph (21) was computa-
tionally efficient and scalable. Our multiassembly graph utilizes a
well-annotated backbone assembly to identify nonreference se-
quences from other assemblies. We show that the choice of the
backbone as well as its genetic distance to all other assemblies
influences the amount of nonreference bases uncovered through
the multiassembly graph. Sophisticated algorithms facilitate the
reference-free alignment of thousands of assemblies (32). To de-
termine the origin of the nonreference sequences, we developed an
approach to assign labels to all nodes in the multiassembly graph.
Our evaluation showed that this strategy is highly accurate.
By systematically characterizing structural variations in mul-

tiple assemblies from domestic cattle and their close relatives, we
detect 45,357 autosomal segments with a cumulative length of
70,329,827 bases that are not part of the B. taurus reference
genome. To obtain continuous nonreference sequences spanning

multiple nonreference nodes, we recovered the nonreference
alleles from structural variations. The number of bases detected
in our study that are not in the B. taurus reference genome is
comparable to values reported for pigs [72.5 Mb (33)] and goats
[38.3 Mb (34)], based on multiassembly graphs constructed from
11 and 8 animals representing different breeds, respectively. In
our study, many nonreference sequences originate from yak.
Hybridizing between yak and cattle is widely practiced and re-
sults in fertile female descendants. However, multiple genera-
tions of backcrossing are required for males to resume fertility
(35). A pangenome constructed from domestic cattle and their
extant relatives as recently proposed by the Bovine Pangenome
Consortium (36) will reveal variants that were lost during do-
mestication and the separation of cattle into specialized breeds
(37). For instance, some of the 8 million nonreference bases spe-
cific to Brahman might contribute to the adaptation of indicine
cattle to harsh environments. Individual taurine assemblies also
contain between 14 and 18 million bases that are missing in the
Hereford-based reference assembly, many of which are shared
between individuals. This value is somewhat higher than the 5 to 10
million nonreference bases detected per human genome (38–40),
possibly because cattle breeds have diverged more strongly than
human populations due to intense artificial selection. Each of the
three taurine assemblies contains ∼3 million autosomal non-
reference bases that were not detected in any other assembly.
There were also 4.4 million nonreference bases, of which 2.1 million
were nonrepetitive, that were present in all assemblies except the
reference. This includes 1.2 million bases that are either specifically
deleted in the Hereford breed or the animal used to build the
reference, inadvertently propagating reference-bias.
A reference graph may integrate linear reference coordinates,

nonreference sequences, and shorter variants (20). However, as
many genome analysis tools still rely on a linear coordinate
system, we append the nonreference sequences linearly to the
ARS-UCD1.2 reference genome. Adding 100 bp flanking sequence
on either side of the breakpoints facilitated accurate alignment of
sequencing reads at the boundaries of the contigs. A graph-based
approach might enable the mapping of sequencing reads spanning
breakpoints (20). We considered only variations larger than 100 bp
because integrating smaller variations increases the complexity of
the resulting reference with limited benefit for downstream analyses
(21). We show that our extended ARS-UCD1.2 reference genome
leads to improved DNA and RNA-seq read mapping in indicine
and taurine cattle, even for breeds that did not contribute to the
multiassembly graph. However, excessively adding nonreference
contigs to the reference genome carries the risk of increasing the
number of ambiguous alignments.
The nonreference sequences comprise more repetitive ele-

ments than the overall ARS-UCD1.2 reference genome (76%
versus 48%) but less than nonreference insertions detected from
human pangenomes (88%) (12, 38). Many nonreference se-
quences with repetitive elements were observed at immune gene
complex loci, corroborating that these regions are highly repet-
itive (41). The immune gene complex loci also contain many
nonrepetitive nonreference sequences suggesting great allelic
diversity which may cause assembly problems (30), thus resulting
in gaps and missing sequences in the primary ARS-UCD1.2 as-
sembly.
We show that the 16.6 million nonrepetitive nonreference

bases encompass transcribed features. An ab initio approach
predicted 857 gene models from these sequences. The de novo
assembly of RNA-seq read alignments from liver samples pro-
vided additional support for more than 400 of these gene models.
As these analyses were only conducted on liver transcriptomes, it
is highly likely that the nonreference sequences contain addi-
tional coding sequences that are transcribed in other tissues. The
discovery of distinct nonreference genes in an independent
RNA-seq dataset from peripheral blood leukocytes of Holstein
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cattle supports this hypothesis. Some of the nonreference genes,
including genes encoding olfactory receptors, were also present
in the animal used to build the reference genome. Olfactory
receptors have been observed to undergo frequent duplication
and rapid evolution in mammalian genomes (42, 43). Segments
encompassing duplicated genes may either be collapsed in pri-
mary assemblies or result in unplaced contigs that represent
variants of the sequence in the assembled chromosomes (44, 45),
hence the presence of paralogous copies among nonreference
genes is expected. In order to obtain a confident set of non-
reference genes, we retained only genes that were not expressed
in Dominette. Many of the proteins encoded by these non-
reference genes are predicted to play roles in the immune re-
sponse. Pangenome analyses in species other than cattle have
also revealed nonreference genes with immune-related functions
(42, 46, 47). Our findings show that more nonreference tran-
scripts can be assembled in breeds that contribute to the multi-
assembly graph (Brahman and Angus) than those not included
(Holstein and Jersey), suggesting that individual assemblies
contain breed-specific, functionally relevant bases. We detect the
largest number of nonreference genes using RNA samples from
Brahman, suggesting that breeds with great genetic distance
from the reference benefit the most from a more diverse refer-
ence genome. Importantly, some nonreference genes are dif-
ferentially expressed between M. bovis–infected and noninfected
cattle, including genes that encode proteins that either contrib-
ute to the immune response against Mycobacterium infections or
may serve as targets for immunomodulation by the pathogen.
These differentially expressed genes remained undetected when
the transcriptomes were aligned against the standard linear ref-
erence genome (25). Thus, our multiassembly graph uncovers
functionally active and biologically relevant genomic features
that are missing in the B. taurus reference genome.
Our extended reference genome also leads to substantial im-

provements over ARS-UCD1.2 in reference-guided alignment
and variant discovery. First, the sequence read mapping rate
increases for samples from all breeds investigated. Using the ex-
tended reference genome would enable mapping ∼100,000 previ-
ously unmapped reads for samples sequenced at 30-fold coverage.
Second, the mapping quality increases for reads that were previ-
ously aligned to other positions in ARS-UCD1.2, suggesting that
the appended nonreference sequences resolve misalignments.
These findings agree well with results from species other than cattle,
including goats, pigs, and humans (33, 34, 39). In addition, we show
that the nonreference sequences contain polymorphic sites that
remained hitherto undetected; we discover 83,250 variants that
segregate within and between breeds of cattle. A cluster analysis
based on these variants separated individuals by breed, suggesting
that variable nonreference bases might be associated with breed-
specific traits. This hypothesis is further supported by the “HIGH
IMPACT” classification of 54 variants affecting nonreference bases.
Considering that the Ti/Tv ratio of the nonreference variants in
putative coding sequences was only 1.83, they need to be scrutinized
for false positives (48). In any case, our multiassembly graph makes
a previously neglected source of inherited variation amenable to
genetic investigations.
The size of the bovine multiassembly graph will grow as addi-

tional reference-quality assemblies from the Bovinae subfamily
become available. Assemblies which are more distant will con-
tribute correspondingly to the overall pangenome growth, in-
creasing the flexible part of graph and reducing the size of the core
genome (SI Appendix, Note S2). In its current implementation, our
multiassembly graph only contains insertions and deletions, as
other types of structural variations (e.g., translocations and inver-
sions) that distort the collinearity of the assembly graph cannot be
integrated accurately with minigraph. We provide a versatile
workflow that facilitates constructing and characterizing multi-
assembly graphs for a flexible number of assemblies (https://github.

com/AnimalGenomicsETH/bovine-graphs, SI Appendix, Note S5).
Our workflow provides tools to determine the origin of non-
reference bases, derive structural variations from multiassembly
graphs, predict nonreference genes, and append the nonreference
sequences linearly to a reference genome. We anticipate that the
latter will become obsolete as soon as accurate and fast base-level
alignment and split-read graph mapping enables the full suite of
genome analyses from a reference graph (49).

Methods
Construction of the Multiassembly Graph. We used minigraph (21) (version
0.12-r389) with option -xggs to integrate six reference-quality genome assemblies
into a multiassembly graph. The current bovine reference genome (B. t. taurus,
ARS-UCD1.2, GCF_002263795.1) and four assemblies that were generated previ-
ously are accessible at the public repository of the National Center for Biotech-
nology Information (NCBI): Angus (B. t. taurus, UOA_Angus_1, GCA_003369685.2)
(4), Brahman (B. t. indicus, UOA_Brahman_1, GCF_003369695.1) (4), Highland
(B. t. taurus, ARS_UNL_Btau-highland_paternal_1.0_alt, GCA_009493655.1) (5), yak
(B. grunniens, ARS_UNL_BGru_maternal_1.0_p, GCA_009493645.1) (5). Additionally,
we constructed an assembly from a female Original Braunvieh calf (B. t. taurus)
using PacBio HiFi reads (SI Appendix, Note S1). The sampling of blood from the
original Braunvieh animal and its parents was approved by the veterinary office of
the Canton of Zurich (animal experimentation permit ZH 200/19).

The genetic distance among the six assemblies was estimated using Mash
(version 2.2) (22). We performed genomic sketching separately for each as-
sembly with mash sketch using a sketch and k-mer size of s = 1,000 and k =
21, respectively. Sketches were combined using mash paste, and mash dist
was used to estimate the distances between the assemblies. A phylogenetic
tree was built from the estimated pairwise distances using the neighbor-
joining method (50) as implemented in the R package ape (version 5.4)
(51). The tree was visualized with the phylo.plot function, using the yak
assembly as the outgroup to root the tree.

Identification of Nonreference Segments from the Multiassembly Graph. We
refer to nodes that are not in the Hereford-based reference genome
(ARS-UCD1.2) as nonreference nodes. We separately aligned (with mini-
graph parameters “--cov -x asm”) each of the six assemblies back to the
multiassembly graph to determine the support for nonreference nodes. For
each alignment, all nodes with nonzero coverage (i.e., nodes traversed by
this specific assembly) were labeled. After iterating through all the alignments,
each node then contained labels for every assembly which passed through it.
As such, each node necessarily had at least one label, while a node traversed
by all six assemblies would have six labels (SI Appendix, Fig. S1).

It was possible to assess minigraph’s alignment accuracy for the path of
the Hereford-based reference genome (ARS-UCD1.2) because all reference
nodes in the multiassembly graph were from this assembly. Nodes were
considered true positive (TP) and true negative (TN) when reference and
nonreference nodes were correctly assigned Hereford labels, respectively.
Reference nodes aligned as nonreference nodes were assigned false nega-
tive (FN), and nonreference nodes aligned as reference nodes were assigned
false positive (FP). We characterized alignment recall (TP / (TP + FN)), preci-
sion (TP / (TP + FP)), and overall F1 score (2 × (precision × recall) / (precision +
recall)).

Identification of Structural Variations from the Multiassembly Graph. We used
the bubble popping algorithm of gfatools (version 0.4) (21) to derive the
structural variations from the multiassembly graph. In the reference graph
model of minigraph, a bubble is a branching region in the graph for which
the start and end node are reference sequences. A path traversing the start
and end nodes represents an allele of a structural variant.

The version of gfatools considered in our study reports the shortest and
longest path for each bubble. To detect and classify all paths within a bubble,
we applied the following stepwise procedure (SI Appendix, Fig. S2):

• Determine the start and stop node for each bubble using the bubble
popping algorithm of gfatools.

• Traverse all possible paths in the bubble using a recursive depth-
first search.

• Retain only paths with color-consistent labels (see above).
• Classify a path as a reference path when all nodes and edges are part of

the Hereford-based reference assembly and as nonreference otherwise.
• Compare reference and nonreference paths to classify the type of the

structural variations.
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Structural variations were classified as biallelic if two paths were observed
in a bubble and multiallelic if a bubble contained more than two paths. The
structural variations were further classified into:

• Alternate deletion: when the nonreference path was shorter than the
reference path (but the reference path has nonzero length).

• Complete deletion: when the nonreference path has a length of zero.
• Alternate insertion: when the nonreference path was longer than the

reference path.
• Complete insertion: when the reference path has a length of zero.

Breakpoints of structural variations were determined according to ARS-
UCD1.2 reference coordinates. We overlapped the breakpoints with anno-
tations from Ensembl (build 101) to identify structural variations in coding
sequences. Affected genes were subjected to a gene set enrichment analysis
using PANTHER (pantherdb.org/) (23) for which the B. taurus reference gene
list was supplied as a baseline.

To validate the structural variations, we mapped 6,803,270 (∼46-fold
coverage) PacBio HiFi reads to the multiassembly graph using GraphAligner
(version 1.0.12) (52) with preset -x vg (variation graph mapping). The HiFi
reads were generated from a Nellore × Brown Swiss crossbred bull
(SAMEA7765441), representing taurine and indicine breeds that were not
used to build the multiassembly graph. The veterinary office of the Canton
of Zurich approved the sampling of blood from the crossbred animal and its
parents (animal experimentation permit ZH 200/19). The mean read length
was 20,612 bases with an average accuracy of 99.76%. We calculated cov-
erage (number of reads aligned) at each node and edge in the graph based
on the graphical alignment format output from GraphAligner.

We combined all nonreference alleles (excluding complete deletions,
paths without nonreference bases, and paths with length less than 100 bp) to
obtain a comprehensive set of nonreference bases from the multiassembly
graph. To facilitate the mapping of short reads to the segment edges, we
added 100 bp of flanking sequences (derived from sequences at the source
and sink nodes) on either side of the structural variations. The flanking se-
quences were not considered for length calculations or gene predictions
(see below).

To investigate the repeat content of the nonreference sequences, we used
the RMBlastn search engine (version 2.10.0) to run RepeatMasker version
4.1.1 (option -species cow) (53) using the database of repetitive DNA ele-
ments from Repbase (release 20181026) (54).

Bioinformatic Characterization of Nonreference Sequences. In order to reveal
functionally active nonreference sequences, we performed two complementary
analyses:

First, we compared the repeat-masked nonreference sequences against a
local protein database using DIAMOND BLASTX (version 0.9.30) (55). Using
DIAMOND makedb, the local protein database was built from the RefSeq
protein sequences of

• Taurine cattle (B. t. taurus, GCF_002263795.1_ARS-UCD1.2_protein.faa)
• Indicine cattle (B. t. indicus, GCF_003369695.1_UOA_Brahman_1_protein.faa)
• Yak (Bos mutus, GCF_000298355.1_BosGru_v2.0_protein.faa)
• Human (Homo sapiens, GCF_000001405.39_GRCh38.p13_protein.faa)
• Mouse (Mus musculus, GCF_000001635.26_GRCm38.p6_protein.faa)
• Bison (Bison bison, GCF_000754665.1_Bison_UMD1.0_protein.faa)
• Water buffalo (Bubalus bubalis, GCF_003121395.1_ASM312139v1_protein.faa)
• Goat (Capra hircus, GCF_001704415.1_ARS1_protein.faa)
• Sheep (Ovis aries, GCF_002742125.1_Oar_rambouillet_v1.0_protein.faa)
• the curated protein databases of SwissProt and PDB (ftp://ftp.ncbi.nlm.

nih.gov/blast/db/FASTA/)

To query the nonreference sequences against the local protein database,
we ran BLASTX with the parameters “--more-sensitive --e-value 1 × 10−10

--outfmt 6.” We considered only the top hit for each queried sequence with
minimum coverage and identity of 80%.

Second, we performed an ab initio gene structure prediction from the
repeat-masked nonreference sequences using a local instance of Augustus
(version 3.3.3) (56) using default parameters trained on the human genome.
From the Augustus Gene transfer format (GTF) output file, we extracted the
number of gene models, the number of gene models with transcription start
and termination site, transcript length, exon count and length per gene,
coding sequence count and length per gene, and protein length of the
protein-coding sequences. To classify the domain and family of the non-
reference proteins, we converted the Augustus GTF output to the fasta
format and performed a query against the local protein database (as above)

using DIAMOND BLASTP with the same parameters and thresholds as the
BLASTX query.

De Novo Transcript Assembly from Nonreference Sequences. We downloaded
between 12,361,440 and 34,421,106 paired-end RNA-seq reads from liver
tissue from 10 Angus (57), 10 Brahman (58), 9 Holstein (59), and 10 Jersey
(59) cattle as well as from Dominette—the animal used to construct the ARS-
UCD1.2 reference genome (2). Adapter sequences and low-quality bases
were removed from the raw RNA-seq data using default parameters of fastp
(version 0.19.4) (60). The filtered reads were then aligned using HISAT2
(version 2.1.0) (61), with option “--dta” to facilitate the downstream tran-
scriptome assembly, to the original ARS-UCD1.2 reference as well as the
extended version of the ARS-UCD1.2 reference. The extended reference was
constructed by appending repeat-masked nonreference sequences as un-
placed contigs (61).

Nonreference transcripts were assembled de novo using StringTie2 (ver-
sion 2.1.1) (24) from RNA-seq reads that aligned to the nonreference se-
quences. To facilitate transcript assembly, we supplied the ARS-UCD1.2
Ensembl annotation (build 101) and the gene models predicted by Augustus
(see above). Transcripts were assembled de novo separately for all RNA-seq
samples. Subsequently, we used StringTie2 merge to create a unique set of
transcripts across all samples and facilitate the assembly of full-length
transcripts from partially assembled transcripts. We quantified gene ex-
pression for each sample with StringTie2 using a fixed (merged) GTF file that
was generated previously (without predicting new transcripts, option -e).
Gene abundance was quantified in TPM.

Differential Gene Expression Analysis. We utilized publicly available periph-
eral blood leukocyte transcriptomes of eight M. bovis–infected and eight
age-matched healthy Holstein cattle (25) to detect differentially expressed
genes from nonreference sequences. The RNA-seq data contain between
9,272,629 and 25,358,979 single-end reads of length 78 bp. We performed
quality control on the raw sequencing reads using fastp (version 0.19.4) (60)
with default parameters. The filtered reads were then mapped to the ex-
tended ARS-UCD1.2 reference genome that contained the nonreference
sequences using HISAT2 (61). Potential nonreference transcripts were as-
sembled de novo with StringTie2 (see above). Gene-level read counts were
estimated based on a custom annotation file that contained the Ensembl
(build 101) ARS-UCD1.2 genome annotation and the nonreference annota-
tion as generated by StringTie2 using the featurecounts function of the
Rsubread package (option countMultiMappingReads = FALSE to exclude
multimapping reads). The read count matrix was used as input for EdgeR
version 3.24.3 (62). We normalized transcript abundance by sequencing
depth using the trimmed-mean of M-values approach. Genes that were
expressed at ≥1 CPM in at least eight samples were tested for differential
expression in peripheral blood leukocytes between M. bovis–infected and
control animals using a generalized linear model (GLMQfit) with dispersion
parameter estimated using the Cox–Reid method. Genes were considered to
be differentially expressed at a Benjamini–Hochberg–corrected FDR ≤ 0.05.
Multidimensional scaling of the normalized read count matrix of the dif-
ferentially expressed genes was performed using the cmdscale function in R.

Mapping and Variant Calling from Whole-Genome Short-Read Data. We con-
sidered the original ARS-UCD1.2 reference genome and an extended ver-
sion of the reference that additionally contained 70,329,827 nonreference
bases detected from five assemblies. We used paired-end short-read se-
quencing data from 45 samples representing five breeds: Original Braunvieh,
Brown Swiss, Holstein, Simmental (63), and Hereford (including Domi-
nette, the animal used to construct the ARS-UCD1.2 reference genome) (2,
64) that had average sequencing coverage of 18.94-fold. Quality control
of the short-read sequencing reads was performed using fastp (version
0.19.4) (60) with default parameter settings. The filtered reads were sub-
sequently mapped to the original ARS-UCD1.2 reference and the extended
ARS-UCD1.2 reference that also contained nonreference sequences using
the mem-algorithm of Burrows–Wheeler Aligner (BWA version 0.7.17) (65)
with default parameters. Duplicate reads were marked with Samblaster
(version 0.1.24) (66).

We performed multisample variant calling (SNP and indels) on the non-
reference sequences using SAMtools (version 1.10) (67) and GATK (version
v4.1.9.0) (68) as detailed in Crysnanto et al. (17). Base quality scores were
recalibrated using known variants from the 1,000 bull genomes project
database (www.1000bullgenomes.com/doco/ARS1.2PlusY_BQSR_v3.vcf.gz).
We applied the GATK modules HaplotypeCaller, GenomicsDBImport, and
GenotypeGVCFs to discover and genotype polymorphic sites. The variants
were subsequently hard filtered using recommended parameters (SNP filters:
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QD < 2 || QUAL < 30 || FS > 60 || MQ < 40 || MQRankSum < −12.5 || Read-
PosRankSum < −8 || AN < 10, Indel filters: QD < 2 || QUAL < 30 || FS > 200 ||
ReadPosRankSum < −20.0 || AN < 10) (17). A second independent variant
discovery and genotyping approach was performed using SAMtools mpileup
and bcftools call (67). The resulting genotypes were subsequently hard filtered
according to parameters recommend by the 1,000 bulls genomes project
(QUAL < 20 || MQ < 30 || DP < 10 || AN < 10) (7). To create a consistent variant
representation across both datasets, variants were normalized using vt (ver-
sion 0.5) (69). We retained only filtered variants, which were identified by both
SAMtools and GATK. Functional consequences of variants affecting non-
reference bases were predicted based on the GTF file from Augustus (see
above) using Ensembl’s Variant Effect Predictor (70).

Code Availability. Workflows to construct multiassembly graphs and custom
scripts to characterize nonreference sequences are available via Github
(https://github.com/AnimalGenomicsETH/bovine-graphs). All workflows were
built using Snakemake (version 5.30.1) (71), and custom scripts were written in
R (version 3.5.1) (72) and Python (version 3.7.1).

Data Availability. Short sequencing reads are available at the European Nu-
cleotide Archive (https://www.ebi.ac.uk/ena) with study accessions PRJNA436715

(Transcriptome: Brahman) (58), PRJNA392196 (Transcriptome:Angus) (57), PRJNA357463
(Transcriptome: Holstein and Jersey) (59), PRJNA294306 (Transcriptome:
Dominette) (2), PRJNA257841 (Differential expression analysis: Holstein)
(25), PRJEB18113 (Whole-genome sequencing (WGS): Brown Swiss, Original
Braunvieh, Holstein, and Simmental) (63), PRJNA494431 (WGS: Hereford) (64),
and PRJNA391427 (WGS: Dominette) (2). Accession numbers for all samples are
provided in Dataset S1. PacBio HiFi reads for an Original Braunvieh animal
used to construct a de novo assembly are available at study accession
PRJEB42335 (73) under sample accession SAMEA7759028. PacBio HiFi reads for
a Nelore × Brown Swiss bull are available at study accession PRJEB42335 (73)
under sample accession SAMEA7765441. Data supporting this study, including
the multiassembly graph, nonreference sequences, nonreference genes,
transcript abundances, and sequence variants detected from nonreference
sequences are available via Zenodo (https://zenodo.org/record/4385983#.
YHQwER8zbIU) (74).
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