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A B S T R A C T   

The AI research community has recently been intensely focused on diagnosing COVID-19 by applying deep 
learning technology to the X-ray scans taken of COVID-19 patients. Differentiating COVID-19 from other 
pneumonia-inducing illnesses is a highly challenging task as it shares many of the same imaging characteristics as 
other pulmonary diseases. This is especially true given the small number of COVID-19 X-rays that are publicly 
available. Deep learning experts commonly use transfer learning to offset the small number of images typically 
available in medical imaging tasks. Our COV-SNET model is a deep neural network that was pretrained on over 
one hundred thousand X-ray images. In this paper, we designed two COV-SNET models with the purpose of 
diagnosing COVID-19. The experimental results demonstrate the robustness of our deep learning models, ulti-
mately achieving sensitivities of 95% for our three-class and two-class models. We also discuss the strengths and 
weaknesses of such an approach, focusing mainly on the limitations of public X-ray datasets on current COVID-19 
deep learning models. Finally, we conclude with possible future directions for this research.   

1. Introduction 

The medical industry and researchers around the world have been 
urgently seeking new modalities to diagnose COVID-19. A lack of testing 
supplies in countries around the world has left many COVID-19 patients 
without a diagnosis, leading to the further spread of the illness. To help 
alleviate this exponentially growing need, deep learning researchers 
have been attempting to image lung manifestations of coronavirus dis-
ease 2019 (COVID-19) with the use of radiological techniques. COVID- 
19 is caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) and is an airborne illness that can be rapidly spread be-
tween individuals. The COVID-19 outbreak was officially recognized by 
the World Health Organization (WHO) as being the cause of a pandemic 
on March 11, 2020. 

The real-time reverse transcription-polymerase chain reaction (RT- 
PCR) test is the current gold standard for diagnosing COVID-19 [2]. 
While it is the best option that is currently available for diagnosing 
COVID-19, there have been considerable problems reported concerning 
the test’s sensitivity [9]. The false-negative rate of an RT-PCR test can 
vary significantly over the time that it is administered. In a study con-
ducted by John Hopkins University, the best false-negative rate that 

RT-PCR testing achieved was 26%. This performance was reported on 
the eighth day since the onset of COVID-19 symptoms [20]. A large 
variation in RT-PCR test accuracy has motivated many researchers to 
find other tests that can replace or be used in addition to RT-PCR tests. A 
leading candidate among medical researchers has been the use of 
radiological imaging. In instances where a COVID-19 test is negative but 
the patient is strongly suspected of suffering from the disease, radio-
logical imaging has been shown to be advantageous [26]. 

Chest X-rays (CXRs) and thoracic computed tomographic (CT) scans 
are the most common modalities radiologists use to detect COVID-19 
related pneumonia in individuals. Both technologies have their merits 
and shortcomings. In comparing CXRs and CT scans, CXRs are generally 
less expensive and hence more widely used. This is especially true in 
developing countries where budgeting for a CT scanner can be more of a 
challenge. X-ray machines have another advantage over CT scanners in 
that they are commonly manufactured to be portable. They can be 
physically carted into intensive care units (ICUs) and the patient can 
remain where they are. 

Before diving into the details of deep learning algorithms that may 
assist in diagnosing COVID-19, it is beneficial to first consider what 
imaging details radiologists have cited in determining a COVID-19 
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diagnosis. These image characteristics are of considerable importance 
during the process of validating COVID-19 deep learning models with 
saliency maps. Common features of COVID-19 in radiological imaging 
includes bilateral Ground-Glass Opacities (GGOs) with peripheral pre-
dominance [21]. A GGO is an infected pulmonary location in a radio-
logical scan with increased attenuation. Song et al. [34] have 
additionally discovered that consolidation can commonly be observed in 
patients as the disease worsens. These consolidated areas in radiology 
represent regions where a patient’s lung is filled with pus, liquid and 
other materials that normally would not be present. Song et al. have also 
reported that “patients older than 50 years had more consolidated lung 
lesions than did those aged 50 years or younger.” [34] Older patients 
therefore have clinical radiological evidence that shows they are at 
greater risk of negative health outcomes when they are infected. Cozzi 
et al. have likewise published research involving X-ray scans indicating 
that COVID-19 patients “show patchy or diffuse reticular–nodular 
opacities and consolidation, with basal, peripheral and bilateral pre-
dominance.” [8] The same authors have additionally established that in 
cases where only one lung is infected, the right lung typically is more 
often affected. To obtain a visual appreciation for the manifestations of 
COVID-19 inside an infected patient’s lungs, Fig. 1 shows the chest 
X-rays of two COVID-19 patients with some of the visual markers that 
have been discussed. 

Our research has been focused on the development of a new deep 
learning model that has been trained to classify patients suspected of 
suffering from COVID-19. The contributions of our work are three-fold. 
First, the proposed COV-SNET models we present are capable of diag-
nosing COVID-19 with accuracies above those reported by practicing 
radiologists in a related work [39]. Second, the dataset we use does not 
incorporate several sources of bias contained in related works. Lastly, 
our work presents a comprehensive study that benchmarks our new 
COV-SNET models with other existing COVID-19 deep learning models. 

Our work commences in section 2 with a discussion of other studies 
that have used transfer learning for diagnosing COVID-19. In section 3, 
we then move on to discuss our proposed network architecture and the 
deep learning methods we have employed for processing the X-ray scans 
of COVID-19 patients. After explaining these methods, in section 4 we 
present the experimental results of our system. We thereafter compare 
the performance of our models with other existing systems and discuss 
the advantages of our approach. Lastly, in section 5 we conclude our 
discussion with possible future directions for this research. 

2. Related works 

There are a number of papers that have been published on using deep 
learning methods on X-ray images for diagnosing COVID-19. There is a 
variety of approaches that have been researched on the subject and a 
large assortment of public COVID-19 X-ray datasets in circulation. 
Below are some of the findings of the most important papers that have 
been published on the subject. 

The designers of COVIDX-Net [13] compared seven 2D off-the-shelf 
architectures. Hemdan et al. [13] intended to compare these architec-
tures using the same training and test methods. Apostolopoulos and 
Mpesiana [4] took the same approach as Hemdan et al. [13] and 
compared several architectures that were pretrained on ImageNet 
weights. Hemdan et al. [13] reported the best architecture’s results 
came from using the VGG-19 [33] and DenseNet-201 architectures [14]. 
Apostolopoulos and Mpesiana [4]’s approach differed from Hemdan 
et al. [13] in that they reported 2-class and 3-class (COVID vs. pneu-
monia vs. normal) results. They found a VGG-19 obtained the highest 
results. There were a couple of major deficiencies in these reported 
studies. These studies’ datasets (especially Hemdan et al. [13]) were 
both too small to achieve trustworthy results. They also only used 
ImageNet and neglected using a form of modality-specific transfer 
learning. Apostolopoulos and Mpesiana [4] made the mistake of using 
Kermany et al.’s [18] pneumonia dataset of children between the ages of 
one to five years old. We noticed that papers that have used this dataset 
tend to report unrealistic evaluation metrics. 

Khalifa et al. [19] first proposed using a generative adversarial 
network (GAN) [10] to further augment the images input into their 
classifier and increase its accuracy in diagnosing patients with pneu-
monia. The authors increased the size of their dataset by a factor of ten. 
They believe this helped their classifier to avoid overfitting. They 
attempted to use several deep learning classifiers in their model and 
ultimately decided to use a ResNet-18 [12]. Waheed et al. [36] also 
designed their model incorporating a GAN and later released a work 
similar to Khalifa et al. [19]. Their model differed in that they used an 
auxiliary classifier generative adversarial network (AC-GAN) [25]. Their 
AC-GAN generated synthetic images that were input into a VGG-16 
classifier [33]. Khalifa et al. [19] made the mistake of using Kermany 
et al.’s [18] pneumonia dataset. Waheed et al. [36] look to have made 
the same mistake by using the COVID-19 Radiography Database [29]. 

Wang et al. [37] designed “COVID-Net” for the purpose of diagnosing 
COVID-19. The dataset used to train this custom-designed CNN was 
made public and eventually used in several other research papers. This 

Fig. 1. Lungs of 2 men with COVID-19 pneumonia in their 50s showing (a) bilateral consolidation and (b) GGOs (white arrows) and linear opacity (black arrow) [7].  
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dataset is one of the largest datasets publicly available and the dataset 
does not contain many of the errors found in several other public 
datasets. Their model demonstrated promising results and achieved an 
accuracy of 93.3%. Their model was constructed using a “machine--
driven design exploration strategy” [37] that uses generative syntheses 
[40]. This particular strategy was the subject of some of the authors’ 
previous research prior to the COVID-19 pandemic. Their approach is 
capable of generating efficient deep neural networks automatically and 
designs these networks using a ResNet architecture [12]. The authors of 
this paper also used an explainability method called GSInquire [22] to 
validate their work. 

Rajaraman et al. [30] created a model of iteratively pruned deep 
learning ensembles to diagnose COVID-19. The authors carried out their 
work by first training several popular CNN models (VGG-16/VGG-19 
[33], Inception-V3 [35], Xception [6], DenseNet-201 [14], etc.) on a 
separate lung X-ray task (a modality-specific task). To use fewer model 
parameters and help improve the model’s accuracy, the authors itera-
tively pruned their CNNs. They combined these iteratively pruned CNNs 
using several ensemble strategies. They found weighted averaging to be 
the most effective ensemble strategy. Like many other studies, they 
made the mistake of using Kermany et al.’s [18] pneumonia dataset. 

Another study that deserves consideration is Wehbe et al.’s [39] 
publication that attempted to diagnose COVID-19 using a large private 
dataset from a US medical institution. This paper was similar to 
Rajaraman et al.’s paper [30] as the authors constructed an ensemble of 
many CNNs to detect COVID-19. Their dataset, however, did not suffer 
from the same deficiencies in size as other datasets. They also did not use 
Kermany et al.’s [18] dataset. The paper is noteworthy in that the au-
thors assembled a team of five radiologists to determine the diagnosis of 
COVID-19 patients. They thereafter compared the predictions of the 
radiologists with their ensemble model. They found that the consensus 
of five radiologists was only able to detect COVID-19 with 81% accu-
racy. These results give a reasonable estimate of Bayes error for the task 
of determining the diagnosis of suspected COVID-19 patients. The au-
thor’s ensemble model produced predictions with 83% accuracy, which 
is reasonable given the experts’ consensus accuracy of 81%. Previous 
studies were unable to perform comparisons of their models against the 
predictions of working radiologists. The evaluation metrics mentioned 
in many of the previous papers were also liable to be skewed by the size 
of their datasets. Smaller datasets can sometimes lead to overly prom-
ising results. 

Yeh et al. [41] used private datasets from several medical institutions 
and added them to Wang et al.’s dataset [37] when training their 
DenseNet-121 model [14]. They trained and tested their deep learning 
model initially using images from the same sources as Wang’s COVIDx 
Dataset. They also used pneumonia, COVID-19, and normal X-ray im-
ages from two medical institutions. They obtained very promising re-
sults and achieved COVID-19 sensitivities between 95 and 100%. They 
held out a third much larger private dataset from a medical institution to 
see how their results would change with extra data. This larger dataset 
caused their accuracy to drop and they achieved an 81.82% COVID-19 
sensitivity on their test set. This is evidence that using a small 
COVID-19 X-ray dataset leads to unrealistic evaluation metrics. The 
third private dataset only included 306 extra COVID-19 patients, but 
these added images caused a drastic change to the results of their deep 
learning model. 

Mangal et al. [23] have created a computer-aided detection (CAD) 
system for diagnosing COVID-19 based on a ChexNet model [31]. 
ChexNet first gained the attention of the research community because of 
its ability to diagnose 14 pulmonary pathologies. The model is designed 
using a DenseNet-121 architecture [14] and has been trained on over 
100,000 X-rays. They created 3-class and 4-class models. Mangal et al. 
[23] validated their model using Gradient-weighted Class Activation 
Mappings (Grad-CAMs) [32]. A deficiency in this model was that it used 
a dataset from Kermany et al. [18] when making use of Paul Mooney’s 
Chest X-ray dataset on Kaggle [24]. The dimensions of the lungs in these 

X-rays that were taken from children likely caused their final classifier to 
produce unpredictable results. Haghanifar et al. [11] improved on 
Mangal et al.’s [23] original design by including a segmentation unit 
with their ChexNet model. They constructed a different dataset than 
Mangal et al. [23] for training their ChexNet model. Hagnifar et al. [11] 
made the same mistake as Mangal et al. [23] in including Kermany 
et al.’s [18] dataset. Al-Waisy et al. [3] likewise published a paper using 
a ChexNet model that made the same mistake. The authors obtained an 
even more exaggerated set of performance metrics than the previous two 
models mentioned. Unfortunately, the use of Kermany et al.’s [18] 
dataset is widespread and this has created a major flaw in all of these 
ChexNet models. 

Islam et al. [16] developed a novel CNN-LSTM model for diagnosing 
COVID-19 with chest X-rays. Their model was unique in terms of its 
architecture in the literature. During validation, they obtained accu-
racies, specificities, sensitivities, and F1-scores between 98 and 100% 
for all classes in their results. Their model seemed to report what looked 
like overly optimistic performance metrics. This suspicion was 
confirmed when it was noticed that their model reported using Kermany 
et al.’s dataset [18] (also referred to as the Kaggle chest X-ray repository 
in their article). 

Rahimzadeh et al. [28] developed a deep learning model that com-
bined the Xception [6] and ResNet-50 [12] models together. Two ’10 ×
10 × 2048 feature maps’ [28] forming the last feature extractor layers of 
both models were concatenated to improve on the final results of each 
classifier. This novel architecture worked quite well and the authors 
additionally performed five-fold cross-validation to improve the 
robustness of their results. Overall the authors of this article achieved 
reasonable success with their model as they achieved an overall accu-
racy of 91.4% and sensitivity of 80.5%. 

Panwar [27] et al. constructed and optimized a VGG-19 model with 
ImageNet weights to detect COVID-19 in suspected patients. Their 
model was trained both on x-ray and CT scans. Their models were all 
binary models and these models compared COVID-19 patients vs. 
normal patients, COVID-19 vs. pneumonia patients, and COVID-19 pa-
tients vs. non-COVID-19 patients. The authors also focused on gener-
ating Grad-CAM heatmaps to make sure they were picking up the 
features of COVID-19 in X-rays and CT scans. While their CT classifier’s 
dataset is likely adequate, their dataset for comparing COVID-19 vs 
pneumonia patients had a source of bias as their X-ray pneumonia im-
ages were derived from Kermany et al.’s [18] dataset. 

Afshar et al. [1] published a paper that utilized a unique deep 
learning approach to diagnosing COVID-19. While the vast majority of 
models in the literature use CNNs to detect COVID-19, Afshar et al.’s [1] 
model utilized Capsule Networks (CapsNets). CapsNets are alternative 
models that can better utilize the spatial information in images by using 
“routing by agreement” [1]. The capsules in these networks are thereby 
capable of reaching “a mutual agreement on the existence of the objects” 
[1] in an X-ray. Like previous teams mentioned before, the authors 
pretrained their COVID-CAPS model on 94,323 X-rays before fine-tuning 
the model to a smaller COVID-19 dataset. A deficiency we found in this 
work is that the authors included Kermany et al.’s dataset [18] when 
making use the Paul Mooney’s Chest X-ray dataset [24] on Kaggle. 

Karthik et al. [17] presented a unique CNN in their work, which used 
a Channel-Shuffled Dual-Branched (CSDB) CNN that is augmented with 
Distinctive Filter Learning (DFL). This unique architecture learns 
“custom filters within a single convolutional layer for identifying spe-
cific pneumonia classes.” [17] They compared their model with a variety 
of standard CNNs and promisingly outperformed those CNNs after 
training them on the same dataset. Their dataset, unfortunately, con-
tained a deficiency whereby the authors used bacterial pneumonia and 
pneumonia X-rays derived from Kermany et al.’s dataset [18]. 
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3. Proposed network architecture 

3.1. Dataset 

An important aspect of developing a deep learning model in medical 
imaging begins with the data. The availability of X-ray images and 
metadata is important when considering the research directions for such 
a project. In our data-gathering stage, we found it difficult to find 
metadata accompanying X-ray images. There was an insufficient amount 
of metadata to assist with developing a practical COVID-19 diagnosis 
system. There were many publicly available datasets available, but in 
analyzing these datasets we found that many of them were incorrectly 
assembled. Many datasets on Kaggle and in various research papers used 
Kermany et al.’s [18] dataset. As previously mentioned, this dataset 
consists of chest X-rays from children between the ages of one and five 
years old. A child’s lungs have different features than an adult’s lungs 
and hence these datasets were taken out of consideration. We also found 
that the vast majority of publicly available datasets made no mention as 
to whether they divided their training and test sets by patient number. 
Most datasets incorporated COVID-19 X-rays harvested from medical 
research papers. In many of these datasets, multiple images from the 
same patient could be found. Wang et al.’s [37] ’COVIDx’ dataset does 
not suffer from the same disadvantages. Wang et al. [37] split their 
training and test sets by patient number. Their COVIDx dataset is large in 
comparison with other datasets and is “comprised of a total of 13,975 
CXR images across 13,870 patient cases” [37]. This dataset contains 358 
COVID-19 images, 8066 normal images, and 5541 pneumonia images. 
The COVIDx dataset has been used by many other research teams and is 
currently a good benchmark for testing a new model’s results with other 
papers. For these reasons, we decided to use the COVIDx dataset in our 
study. 

We divided the COVIDx dataset into a 90% training set and 10% test 
set ratio. This allowed for a suitable number of COVID-19 examples in 
the training set given the extreme class imbalance in the COVIDx 
dataset. The multi-class training set, therefore, consisted of 258 COVID- 
19 patients, 7966 normal patients, and 5441 pneumonia patients. Ten 
percent of the dataset was leftover for validation, but within the test set, 
there was again a class imbalance. We, therefore, reduced the number of 
normal and pneumonia examples in the test set to match the number of 
COVID-19 examples. In doing so, we obtained a balanced test set for 
evaluating our model’s performance. This three-class test set ultimately 
consisted of 100 COVID-19 examples, 100 normal examples, and 100 
pneumonia examples. A binary classifier was also designed in this study 
which grouped pneumonia and normal images into a single category. 
Our two-class COVID-19 vs. non-COVID-19 X-ray classifier was con-
structed to compare our approach with other two-class studies. Our bi-
nary training set consisted therefore of 258 COVID-19 images and 13407 
non-COVID-19 images. The binary classifier’s test set consisted of 100 
COVID-19 X-rays and 100 non-COVID-19 X-rays. 

We first trained and tested our deep learning model on the afore-
mentioned datasets but later went on to create another set of larger 
training sets. Given the small number of COVID-19 images available in 
the COVIDx dataset, we expanded the number of COVID-19 images in 
this dataset to examine possible overfitting. Previous studies [39,41] 
mention this specifically as a reason for reduced COVID-19 sensitivity in 
their work. We wanted to investigate if more COVID-19 images would 
create a significant correction to our classifier’s COVID-19 sensitivity. 
This second training set we created started out with 517 COVID-19 
images from the COVIDx5 [37] training set. This second training set 
also included 922 images from the MIDRC-RICORD-1C database [5] and 
2474 images from the BIMCV dataset [15]. Our second training set, 
therefore, consisted of 3913 COVID-19 images, 7966 normal images, 
and 5441 pneumonia images. For binary classification, we also exam-
ined how well our model works with a training set of 3913 COVID-19 
images and 13417 non-COVID-19 images. We kept the original test 
sets as a benchmark to test our system against our previously trained 

classifiers and Wang et al.’s published model [37]. Tables 1 and 2 shows 
the COVIDx training set dataset alongside our expanded training set as 
well as our shared test set. 

3.2. System design 

Both models in our study are designed with a DenseNet-121 [14] 
base feature extractor and trained on the ChestX-ray14 dataset [38]. The 
ChestX-ray14 dataset contains “112,120 frontal-view X-ray images of 
30805 patients” [31]. This form of modality-specific transfer learning 
increases our model’s ability to capture COVID-19 features. The Den-
seNet-121’s earliest layers contain feature maps that have already been 
trained to pick up many of the tissues and patterns seen in chest X-ray 
images. Many architectural design options were investigated before 
finalizing a new architecture model based on a DenseNet-121 network. 
The proposed system architecture, COV-SNET network, has the 
following features. After loading our pretrained weights into the 
DenseNet-121 network we have added a dense layer with 128 units, a 
dropout layer with a dropout rate of 10%, and a 3-class softmax layer for 
multiclass classification. An illustration of our model can be observed in 
Fig. 2. For our binary classifier, we replaced the softmax layer with a 
dense layer containing a single sigmoid activation function. Table 3 
shows a detailed layer by layer description of our model. 

Prior to training our models, we noticed that a class imbalance 
existed that required correction. This mainly was due to the lack of 
COVID-19 X-rays publicly available. A weighted loss function was used 
during training to correct for this class imbalance. In addition to cor-
recting for the class imbalance, our training required some necessary 
preprocessing steps. We used data augmentation methods during 
training to increase our model’s capacity to generalize on new examples. 
For our multiclass models, we set image rotations to 15%, vertical/ 
horizontal translations to 15%, image shearing to 15%, and random 
zooms to 15% when augmenting our training dataset. For our binary 
models, each of the aforementioned augmentation categories was set to 
20%. In all of our models, we additionally used horizontal flips in our 
augmentation process. During training and testing, our batch size was 
set to 32. Using Kera’s ImageDataGenerator class, we additionally 
normalized our training data so that the values in each batch had a mean 
of 0 and a standard deviation of 1. 

The first step in training our COV-SNET models involved initially 
training the final layer alone. The last layer of each network was trained 
in TensorFlow 2.0 for 9 epochs. The Adam optimizer was used during 
this training. To increase the performance of our networks we unfroze all 
of the layers in our models for further training. For 6 epochs we left the 
Adam optimizer at its default learning rate. After 6 epochs we fixed the 
learning rate to 1 × 10− 5 and trained each model until their peak sen-
sitivities were reached. For the models trained on the COVIDx dataset 
alone this required 10 epochs. For the models trained on our larger 
training set, this took 13–14 epochs. Before unfreezing the layers in our 
model, we fixed the moving mean and moving variance of the batches in 
our model’s batchnormalization layers. These batchnormalization pa-
rameters were fixed to the weights generated from training our model on 
the ChestX-ray14 dataset. 

Table 1 
Datasets - number of images in the multiclass training and test sets.   

COVID-19 Normal Pneumonia 

COVIDx Multiclass Training Set 258 7966 5451 
Our Expanded Multiclass Training Set 3913 7966 5451 
Multiclass COVIDx Test Set 100 100 100  
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4. Experimental results 

4.1. Performance evaluation 

The results reported in the COVID-19 deep learning literature are 
typically based on a variety of evaluation metrics. Accuracy, specificity, 
sensitivity, precision, recall, negative predictive value (NPV), positive 
predictive value (PPV), F1-Score, and area under the ROC curve (AUC) 

are all evaluation metrics used in the literature and included in our final 
results. 

After training the last layer of each model for 9 epochs, the overall 
validation accuracy for each model was between 75 and 80%. While this 
was close to the performance of practicing radiologists in a previous 
study [39], we knew this result could be further improved upon by 
unfreezing layers in each model. After the models were unfrozen, all of 
the models achieved COVID-19 sensitivities of at least 95%. The entire 
set of class-wise performance statistics that were calculated for each 
classifier can be seen in Tables 4 – 7. Their corresponding confusion 
matrices can also be seen in Figs. 3–6. Our three-class model trained on 
the original COVIDx training set ultimately hit a final validation accu-
racy of 84.3%. Our 3-class model trained on our expanded training set 
obtained a validation accuracy of 86%. The final accuracy of the 
two-class model trained on the original COVIDx training set was 88.5%. 
The two-class model trained on our expanded training set obtained a 
validation accuracy of 87.5%. The AUC curves of all four of our models 
generated comparable results as can be seen in Figs. 7–8. 

The evaluation metrics of a deep learning model should never alone 
be relied upon while validating the model’s performance. Small datasets 
may only contain hundreds of images of the particular pathology under 
investigation. They tend to be prone to generating unrealistic evaluation 
metrics. To ensure a deep learning model is picking up correct features, 
saliency maps are widely employed in medical imaging. Saliency maps 
are important in that they can inform a designer whether a deep learning 
algorithm is being deceived by image characteristics that are unrelated 
to the pathology being imaged. Deep learning algorithms often incor-
rectly lock onto necklaces, medical devices, and text appearing in X-ray 
images. In our study, a Grad-CAM [32] was used to determine whether 
our COV-SNET model is fixing onto the correct features of COVID-19 in 

Table 2 
Datasets - number of images in the binary training and test sets.   

COVID-19 Non-COVID-19 

COVIDx Binary Training Set 258 13417 
Our Expanded Binary Training Set 3913 13417 
Binary COVIDx Test Set 100 100  

Fig. 2. Proposed network architecture for COVID-19 classification.  

Table 4 
Three-class model performance metrics after training on the COVIDx multiclass training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 95 166 34 5 0.870 0.95 0.830 0.736 0.971 0.84 
Normal 86 192 8 14 0.926 0.86 0.960 0.915 0.977 0.88 
Pneumonia 72 195 5 28 0.890 0.72 0.975 0.935 0.874 0.82  

Table 3 
Proposed network architecture for COVID-19 classification.  

Layers Output Size Model 

Convolution 112 × 112 7 × 7 conv, stride 2 
Pooling 56 × 56 3 × 3 max pool, stride 2 
Dense  Block

(1)
56 × 56 

[
1x1 conv
3x3 conv

]

x6  
Transition Layer 56 × 56 1 × 1 conv 
(1) 28 × 28 2 × 2 average pool, stride 2 
Dense  Block

(2)
28 × 28 

[
1x1 conv
3x3 conv

]

x12  
Transition Layer 28 × 28 1 × 1 conv 
(2) 14 × 14 2 × 2 average pool, stride 2 
Dense  Block

(3)
14 × 14 

[
1x1 conv
3x3 conv

]

x24  
Transition Layer 14 × 14 1 × 1 conv 
(3) 7 × 7 2 × 2 average pool, stride 2 
Dense  Block

(4)
7 × 7 

[
1x1 conv
3x3 conv

]

x16  
Average Pooling 1 × 1 7 × 7 global average pool 
DNN – 128 units, relu 
Dropout – 10% 
Classification – 3 category softmax  
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frontal chest X-rays. The heatmaps produced by a Grad-CAM contain 
color encoded information that highlights the features of an image that 
are the most relevant to a CNN’s final classification. Fig. 9 shows the 
performance of our model on COVID-19 patients using Grad-CAM 
generated heatmaps. The red and orange regions of these Grad-CAM 
heatmaps are the most relevant parts of each image that contributed 
to a COVID-19 diagnosis in both patients. These colors transition into 
blue regions that are the least relevant portions of each image in 
contributing to our CNN’s final classification. The Grad-CAM we 
employed uses the final feature maps in the last convolutional layers of 
our model to generate these regions of importance. As can be seen from 
our two examples, our Grad-CAM is locating the opacities in both images 
that would normally be picked by a radiologist when assessing these 
patients. 

4.2. Discussion 

All of our COV-SNET models achieved higher evaluation metrics 
than the consensus performance of the five radiologists in Wehbe et al.’s 
study [39] on a related dataset. While their dataset is not available 

publicly at this time, Wehbe et al.’s [39] study on the performance of 
five radiologists provides a good approximation for Bayes error. The best 
performing radiologist in Wehbe et al.’s [39] study only achieved an 
accuracy of 81% in diagnosing COVID-19 correctly. The best sensitivity 
among the radiologists was 76%. All of our models beat their 
best-performing radiologists by a substantial margin. Their work has 
been useful in that it provides designers with beneficial insights as to 
whether a deep learning model is providing reasonably grounded per-
formance metrics. The consensus and best/worst performances of the 
five radiologists in Wehbe et al. [39] are provided in Table 8. 

Many deep learning models in the literature report metrics that are 
superior to the performance of the radiologists in Wehbe et al.’s study 
[39]. Some papers report evaluation metrics that are superior to our own 
as well. What could be the reasons for this? Many papers have incor-
porated Kermany et al.’s [18] dataset. This dataset contains chest X-rays 
from children between the ages of one and five years old. The children in 
these chest X-rays are all suffering from various forms of bacterial and 
viral pneumonia. The extra categories in Kermany et al.’s [18] dataset 
were used as sources for comparison when diagnosing COVID-19 in 
other deep learning models. Many designers thought these extra 

Table 5 
Two-class model performance metrics after training on the COVIDx binary training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 96 81 19 4 0.885 0.96 0.81 0.835 0.959 0.89 
Non-COVID-19 81 96 4 19 0.885 0.81 0.96 0.953 0.835 0.876  

Table 6 
Three-class model performance metrics after training on our expanded multiclass training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 95 170 30 5 0.833 0.95 0.850 0.760 0.971 0.86 
Normal 93 189 11 7 0.940 0.93 0.945 0.894 0.964 0.91 
Pneumonia 70 199 1 30 0.897 0.70 0.995 0.989 0.869 0.82  

Table 7 
Two-class model performance metrics after training on our expanded binary training set.   

TP TN FP FN Acc. Sens. Spec. PPV NPV F1 

COVID-19 95 80 20 5 0.875 0.95 0.80 0.826 0.941 0.883 
Non-COVID-19 80 95 5 20 0.875 0.80 0.95 0.941 0.826 0.865  

Fig. 3. Confusion matrix from three-class model after training on the COVIDx 
multiclass training set. 

Fig. 4. Confusion matrix from two-class model after training on the COVIDx 
binary training set. 
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categories would be useful in clinical situations for ruling out other 
possible sources of infection. It is incorrect however to train a deep 
learning algorithm with children’s lungs if that same algorithm will 
ultimately be deployed on adult lungs. Apostolopoulos and Mpesiana 
[4], Khalifa et al. [19], Waheed et al. [36], Rajaraman et al. [30], 
Haghanifar et al. [11], Mangal el al. [23], Al-Waisy et al. [3], and Islam 
et al. [16] all used Kermany et al.’s [18] dataset in their models. Many of 
those models reported exceedingly high-performance metrics. To the 
best of our knowledge there is only one other deep learning model in the 
existing literature that uses a COVID-19 dataset as large as our own and 
at the same time does not make the mistake of using Kermany et al.’s 
[18] dataset. That model was published by Wehbe et al. [39] and they 
ultimately only achieved a COVID-19 sensitivity of 75%. There is still a 
need therefore to explore whether a deep learning model can achieve a 
higher COVID-19 sensitivity while using a larger training set than has 
commonly been available to past authors. A correctly constructed 
dataset is required to perform this research. Prior to expanding Wang 
et al.’s [37] COVIDx dataset, we attempted to use public datasets that 
incorporated Kermany et al.’s dataset [18]. We trained a DenseNet-121, 
a DenseNet-201, and an Inception V3 architecture on these datasets. In 

doing so, we obtained suspiciously high-performance metrics and ob-
tained accuracies between 98.0 and 99.6% on three-class and two-class 
models respectively. These performance metrics mirrored the perfor-
mance metrics we have found in other studies that made the same 
mistake. Table 9 illustrates our point. It compares the performance of the 
radiologists in Wehbe et al.’s [39] study with other DenseNet-based 
models we have reviewed from the COVID-19 deep learning literature. 

There are other possible reasons for the deep learning models in 
other studies to be generating unrealistic performance metrics. Many 
public datasets on Kaggle and various other platforms do not specifically 
state whether they have divided their training and test sets by patient 
number. If there has been cross-contamination between a deep learning 
model’s training and test sets, there is a high probability that the trained 
model will have a better knowledge of the features in the test set. This 
data leakage leads to unrealistic performance metrics. The X-ray files in 
public datasets are often renamed and their original source information 
in many instances is lost. Many papers have combined several public 
datasets. They often have done so without making any mention as to 
how they ensured the same images from different datasets were not 
duplicated in their own dataset. The datasets in some papers are also 
difficult to reconstruct and it is challenging to trace the chain of images 
that ended up being included in some datasets. These are all likely 
factors that are contributing to the high-performance metrics of some 
studies which are far outside of the performance range of practicing 
expert radiologists. We decided to use Wang et al.’s [37] ’COVIDx’ 
dataset because the designers of that dataset took into account these 
issues being discussed. The dataset, therefore, is more conservative and 
grounded compared to other online public datasets. 

It should now be clear that the composition of the datasets used to 
train deep learning COVID-19 models is one of the main contributing 
factors to the high evaluation metrics often being reported in the liter-
ature. There is however another crucial factor that is contributing to 
these unrealistic evaluation metrics. Many datasets in the COVID-19 X- 
ray imaging literature do not have a sufficient number of COVID-19 
images. This lack of COVID-19 X-ray images in medical datasets can 
sometimes lead to unpredictable results. When more images are added 
there can be a correction in a system’s evaluation metrics towards the 
performance reported by practicing experts in the field. This is precisely 
what happened in Yeh et al.’s [41] study. The work in Ref. [41] 
commenced with using an earlier version of the COVIDx dataset. The 
authors of the study also initially used the private X-ray images of two 
medical institutions. When the authors trained a DenseNet-121 classifier 
on these initial datasets alone they achieved a COVID-19 sensitivity of 
96.8%. This did not last however and the inclusion of a third medical 
institution’s COVID-19 X-rays in their model’s training caused a 
correction in its evaluation metrics. This led their model to have a final 
COVID-19 sensitivity of 81.82%. 

Yeh et al.’s [41] final dataset contained 510 COVID-19 images. The 
COVIDx dataset we used had 358 COVID-19 images. Our original 
three-class model, therefore, contained only 70% of the number 
COVID-19 images that Yeh et al.’s [41] model initially trained on. Our 
three-class model generated a COVID-19 sensitivity of 95%. Yeh-et al.’s 
[41] three class-model obtained a final COVID-19 sensitivity of 81.82%. 
Wang et al.’s [37] three-class model used the same original dataset as 
ours and obtained a COVID-19 sensitivity of 91%. How do we know 
however that our 95% sensitivity would not correct if we trained on 
more COVID-19 images? After all, there are some in the research com-
munity [39] that have pointed out that overfitting is occurring in past 
models trained on small COVID-19 datasets. Recently a large number of 
COVID-19 images have become available that are independent of pre-
vious COVID-19 datasets. This led us to create an expanded dataset from 
the original COVIDx dataset that we used to check for overfitting. After 
further examination, we discovered that our evaluation metrics were not 
impacted by training our model on the expanded COVID-19 dataset. We 
were able to maintain the same COVID-19 sensitivity (95%) using this 
dataset on our three-class model. 

Fig. 5. Confusion matrix from three-class model after training on our expanded 
multiclass training set. 

Fig. 6. Confusion matrix from two-class model after training on our expanded 
binary training set. 
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We thereafter moved on to creating a two-class model with the same 
expanded dataset. Our original two-class model generated a COVID-19 
sensitivity of 96%. After training this model on our expanded dataset 
we obtained a COVID-19 sensitivity of 95%. Wehbe et al.’s [39] 
two-class COVID-19 model obtained a COVID-19 sensitivity of 75%. 
Their ensemble model however was trained on a slightly larger dataset 
than ours. Their dataset contains 4253 COVID-19 images. They showed 
in their paper that their model’s sensitivity (75%) was better than the 
consensus performance of the five radiologists in their study. They also 
argued that the high sensitivities of deep learning models presented in 

other studies were caused by a lack of COVID-19 images in publicly 
available datasets. We wrote earlier that this was indeed the case in Yeh 
et al.’s [41] study, but have been able to prove that it is not the case in 
our study. Expanding the COVIDx dataset did not significantly affect the 
performance of our classifier. Of all of the studies that do not improperly 
use Kermany et al.’s [18] dataset, our models achieve the highest sen-
sitivities that we can find in the literature. Table 10 presents a com-
parison of the sensitivities among models that do not have any issues 
regarding dataset composition. Out of the papers in Table 10, we were 
able to only make a direct comparison of our work with Wang et al.’s 

Fig. 7. ROC AUC graphs of (a) Three-class model trained on COVIDx multiclass training set and (b) Two-class model trained on COVIDx binary training set.  

Fig. 8. ROC AUC graphs of (a) Three-class model trained on our expanded training set and (b) Two-class model trained on our expanded training set.  
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[37] COVID-Net model. Our models ultimately required different 
augmentation settings than theirs in order to achieve optimal results. 
Unfortunately, we were unable to replicate the other datasets in 
Table 10. A couple of the papers in Table 10 mention that their datasets 
are private. Wehbe et al. [39] currently have the largest COVID-19 
dataset that we have found in the literature, but unfortunately, it’s 
entirely private. We have however been able to assemble a dataset that is 
now much closer in size to Wehbe et al.’s [39] private COVID-19 dataset. 
In doing so, we have been able to prove that deep learning models are 
capable of obtaining higher COVID-19 sensitivities than has previously 
been reported. 

Fig. 9. Two different COVID-19 patients showing their original X-rays alongside their Grad-CAM produced heatmaps.  

Table 8 
Performance of five radiologists in diagnosing COVID-19 with X-rays [39].   

Acc. Sens. Spec. 

Consensus 81% 70% 89% 
Best Radiologist 81% 76% 91% 
Worst Radiologist 76% 60% 75%  

Table 9 
Performance of past DenseNet-Based models versus radiologists.  

Paper Reviewed F1 ACC COVID-19 Sens. 

Yeh et al. [41] 
3-class – – 81.82% 
Haghanifar et al. [11] 
2-class 94% 98.62% – 
3-class 85% 81.04% – 
Mangal et al. [23] 
3-class 92.3% 90.5% 100% 
Al-Waisy et al. [3] 
2-class 99.99% 99.99% 99.98% 
Rajaraman et al. [30] 
4-class 96.77% 96.83% 96.34% 
Radiologists [39] 
2-class – 81% 70% 

Note: Haghanifar et al. [11], Mangal et al. [23], Al-Waisy et al. [3], and 
Rajaraman et al. [30] all improperly used Kermany et al.’s dataset [18]. 
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5. Conclusion 

Deep learning models trained on public datasets prior to early 2021 
all have experienced dataset size limitations in terms of the number of 
COVID-19 X-rays available. This has made all of these models suscep-
tible to possible overfitting. There are now however several thousand 
COVID-19 X-rays publicly available. This recent surge in available 
COVID-19 X-rays allows for past authors still working in this space to 
check and see if their models will ultimately correct when training with 
a larger dataset. At the beginning of our research, we started out hoping 
to benchmark our study against a popular dataset. This led us to use 
Wang et al.’s [37] COVIDx dataset. We ended up achieving a higher 
sensitivity than their model and went on to train our model with more 
COVID-19 images. This ultimately allowed us to ensure that our model 
was not overfitting on a dataset containing only a limited number of 
COVID-19 images. While the extra layers we added to our pretrained 
model increased its overall performance, the dropout layer near the end 
of the model additionally helped it to avoid overfitting. The data 
augmentation techniques we employed while training our model also 
improved its performance metrics and prevented overfitting. Unfreezing 
our pretrained model in a fashion that does not upset key batch 
normalization parameters also ultimately allowed our models to achieve 
high COVID-19 sensitivities. Our models are currently capable of 
obtaining a higher COVID-19 sensitivity than all other models that we 
have reviewed in the literature so far. We have restricted this analysis to 
those models that do not improperly use Kermany et al.’s [18] dataset or 
otherwise make any observable dataset composition mistakes. 

The models constructed in this study led to promising evaluation 
metrics in comparison with expert radiologists in the field [39]. We 
achieved two-class and three-class COVID-19 sensitivities of 95%. There 
is room to improve on the design of our two models. In future datasets, 
metadata may be included alongside new COVID-19 X-ray images. Extra 
information regarding a patient’s sex, age, blood work, temperature, 
and exposure history may help to increase the accuracy of COVID-19 
diagnostic models. In addition to metadata, adding a segmentation 
unit would assist with generating better evaluation metrics and 
Grad-CAM heatmaps. While the results of the two models presented in 
this study look promising, more work is required to implement them in a 
clinical setting. The same can be said for Yeh et al. [41] and Wang et al.’s 
[37] models which are also based on different versions of the COVIDx 
dataset. The addition of more COVID-19 images to public databases will 
no doubt help to further inform the research community as to which 
approaches are the most promising. Medical institutions in countries all 
over the world are in need of new diagnostic modalities that can help 
increase available COVID-19 testing capacity. Deep learning X-ray 
technology remains a promising candidate for fulfilling this incredibly 
important need. 
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