
Because statistics has too often been presented as a bag of specialized 
computational tools, with morbid emphasis on calculation, it is no wonder that 

survivors of such courses regard their statistical tools as instruments of 
torture [rather] than as diagnostic aids in the art and science of data analysis. 

— George W. Cobb1

From the underside
It was the seventh time I had taken a course in basic biostatistics, and I vowed
that this time I was actually going to understand it. The year was 1974, and we
were on sabbatical in London. The Beatles had started to beat on each other,
Ali beat Frazier, the good guys beat Nixon, Lord Lucan beat his nanny, and I
could still beat the odds of getting run over while bicycling between NW3 and
St. Thomas’s Hospital. I had the time, I had the “coal-face” experience (by then
I’d been a PI on several randomized controlled trials [RCTs]), and I already
knew the English, Greek and Latin bits (I’d aced my 6 previous courses). More-
over, I’d had the good fortune to have worked with biostatisticians who were
not only brilliant methodologists but also outstanding teachers.

Alas, history repeated itself. At the end of my studies I was as incapable of
applying this course to my current phase III RCTs as I had been incapable of
applying my medical school biostatistics course to my patients 18 years ear-
lier. Chastened, I returned home to find that the new crop of would-be trialists
who also had successfully completed graduate courses in biostatistics were as
confused as I when they tried to integrate how sick their prospective study pa-
tients might be, how well their outcomes might be ascertained, and how pow-
erful their interventions might be with how many patients they might need to
enrol and how certain they could be about any of their conclusions. Even to-
day, 26 years later, the young clinical-practice researchers who come to our
Trout Workshops up here in the woods still find it difficult or impossible to
see the practical forest among the statistical trees.

Causes

I’ve concluded that the fault here lies neither with the teachers nor the would-be
trialists, but with an irreconcilable mismatch between what’s judged necessary to be
learnt about biostatistics and who’s to learn it. The myriad statistical formulas that
appear in textbooks and articles about how to do phase III RCTs possess 5 draw-
backs for the clinician–would-be-trialist:
• They are frightening to behold. I reckon numerophobia is as prevalent among clin-

ician-trialists as are refractive errors.
• They are tough to remember. Forty-four years after my (mostly irrelevant)

anatomy course I can still name the cranial nerves (“Ole Olson Ought To Take
A Fling At *****”), but I’ve never encountered a mnemonic for recalling the for-
mula for the 95% confidence interval around a difference in proportions.

• They require an understanding of mathematics and statistics far beyond most would-be
trialists’ background knowledge and expertise. Graduate statistical programs have
recognized that an extensive prior knowledge of mathematics is a prerequisite
for later competency as a practising biostatistician. However, most health pro-
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fessional schools have recognized the irrelevancy of the
traditional, “hard” basic sciences to the provision of ef-
fective and compassionate clinical care. Very few suc-
cessful applicants to medical school would be accepted
into graduate training in biostatistics.

• Time taken to master their nuances is at the expense of
maintaining clinical competence, a social life, a positive self-
image and a sense of humour. While writing a recent es-
say on the fall of clinical research,2 I tried to think of
any clinical colleague who, after taking sufficient time
away from clinical practice to master statistics (or, to be
fair, molecular biology), I’d trust to take care of a really
sick patient with multisystem disease. I could think of
only one.

• They exist in isolation, without relation to each other. Wis-
dom in designing RCTs requires both the thoughtful
integration of several statistical principles and sound
clinical judgement, neither of which is to be found in
individual statistical formulas. When this fact dawns on
learners who have struggled to master them, it should-
n’t surprise us if they heap criticism on their statistics
courses and act in ways described by Bokonon: “Beware
of the man who works hard to learn something, learns
it, and finds himself no wiser than before. He is full of
murderous resentment of people who are ignorant
without having come by their ignorance the hard way.”3

Given the foregoing, I find it far more remarkable that
some clinicians succeed in integrating their first course in
biostatistics than that most of them fail to do so.

Preventive strategy: a 3-part solution and
introduction to “physiological statistics”

Whatever success I’ve had as a clinician-trialist has been
the result of good luck, great statistical colleagues and the
development of 3 strategies to overcome these 5 drawbacks.
I offer them here in the possibility that they may be of use
to others:
1. Forget the formal formulas. I know fewer of them now

than when I designed my first RCT in 1963.
2. Never work alone, but always in collaboration with statis-

ticians (and whatever other experts could contribute to
the success of the enterprise). Complex statistical analy-
ses, far beyond the competency of clinician-trialists, are
occasionally vital in understanding the result of an
RCT. A statistical collaborator will know when and
how to use them. The great majority of clinician-
trialists I’ve encountered know enough statistics to get
into trouble, but not enough to get out again.

3. Employ “physiological statistics.” As noted above, the im-
portance of statistical formulas lies not in their individ-
uality but in their thoughtful combination. Although
it’s possible (and in statistical circles, mandatory) to de-
scribe this combination in mathematical terms, clini-
cians might understand them far better by thinking of

them in physiological terms, analogous to combining
the determinants of systemic arterial blood pressure.
Just as a patient’s blood pressure represents the net ef-
fects of multiple cardiac, central nervous system, en-
docrine, renal and vascular factors (that can interact
both synergistically and antagonistically), the confi-
dence we have in an RCT’s results (that is, the narrow-
ness of the confidence interval around the effect of the
experimental treatment or, in the old-fashioned terms
that most trialists have abandoned, the trial’s “statistical
significance”) is the net result of the interaction of pa-
tients, treatments and study factors that, as you’ll see,
also can behave synergistically and antagonistically. In-
voking “physiological statistics” to combine the formu-
las gives us licence to borrow from the time-honoured
tradition of employing physiological “stories,” which,
although they have great explanatory power, are not
quite true. In similar fashion, the price for clarity in the
rest of this essay is the occasional stretching of statistical
truth (I apologize in advance to statistical purists and
will no doubt do penance for my statistical hubris in the
letters-to-the-editor department).

The “only formula” of physiological statistics

The formula is ridiculously simple, and looks like this

(Equation 1):
Expressed in words, the confidence in the conclusion of an

RCT is the ratio of the magnitude of the signal to the mag-
nitude of the noise times the square root of the sample size.

Confidence describes how narrow the confidence interval
is (the narrower the better) around the effect of treatment,
whether expressed as an absolute or relative risk reduction
or as some other measure of efficacy. For readers still im-
prisoned by p values, this sort of “confidence” becomes
greater as the p value becomes smaller.

The signal describes the differences between the effects
of the experimental and control treatments. In the RCTs in
which I’ve been involved, the most useful signal in under-
standing their design, execution, analysis and interpretation
has been the (absolute) arithmetic  difference obtained
when you subtract the rate (or average severity) of events
among experimental patients from the rate of events
among control patients. When, as in most RCTs, these
outcomes are discrete clinical events such as strokes, bleeds
or death, I’ll call this arithmetic difference (the control
event rate minus the experimental event rate) the Absolute
Risk Reduction (ARR). Why don’t I prefer the more fre-
quently reported Relative Risk Reduction (which is the ab-
solute risk reduction divided by the control event rate)? Be-
cause the relative risk reduction doesn’t distinguish
important treatment effects from trivial ones (slashing

size Sample
Noise
Signal

  Confidence ×= √ 
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deaths from 80% down to 40% generates the same relative
risk reduction [0.5] as teasing them from 0.008% down to
0.004%). Despite the criticism that, in some circumstances,
the absolute risk reduction can be influenced more by pa-
tients’ underlying risks (their control event rates) than by
the proportion by which that risk is reduced with treatment
(the relative risk reduction), I prefer the former. Finally, in
some RCTs the outcomes are “continuous” measures such
as blood pressure, elapsed time on a treadmill before chest
pain occurs, or location on a 0–100 scale of disease activity
or functional status. In these latter cases, the signal is best
represented for me by the Absolute Difference (AD) in this
continuous measure.

The noise (or uncertainty) in an RCT is the sum of all
the factors (“sources of variation”) that can affect the ab-
solute risk reduction or absolute difference. Why might pa-
tients’ responses to treatment, or our measurements of
them, vary? Some of these sources are obvious, but others
aren’t, so I’ll use plenty of examples.

Finally, sample size is the number of patients in the trial.
Note that its influence on confidence intervals is as its
square root. As you’ll see later, this means that, if you want
to cut the confidence interval around a study’s absolute risk
reduction in half by adding more patients to it, you need to
quadruple their number. Alternatively, an RCT designed to
detect an absolute risk reduction of 0.10 needs to quadruple
its sample size in order to detect an absolute risk reduction
of 0.05 (half as great).

For a quick appreciation of the “physiology” described
by this formula, I suggest that readers pause at this point
and perform a simple experiment. Place an audiotape
player next to a radio. Ask a friend to insert one of your
favourite melodies (the signal) into the former but not tell
you which one it is. Tune the radio to a spot between sta-
tions where you hear only static (the noise) and turn up the
volume. Then start the audiotape at low volume and note
the “confidence” with which you can identify the melody as
you vary the volume of the audiotape (signal), the radio sta-
tic (noise) and the amount of time (analogous to sample
size) it takes you to discern the former amidst the latter.

In order to generate extremely small and highly convinc-
ing confidence intervals around moderate but important
benefit signals, a very strong case can and has been made for
really large, really simple RCTs4 and systematic reviews.5

Their effect of revolutionizing the treatment and improving
the outcomes of patients with heart disease, cancer and
stroke attests to their success. When study patients number
in the tens of thousands they can overcome, by the brute
force of numbers, the negative influences of small but highly
important absolute risk reductions (e.g., the polio vaccine
trials that required hundreds of thousands of study individu-
als) and considerable noise (as long as the latter does not re-
sult from bias). However, most trials, even when carried out
in multiple centres, are of small to moderate size, and they
must confront and solve the challenges of small (but useful)
signals, large amounts of noise and scarce patients.

Table 1 summarizes the effects of changes in each of
these 3 elements on the confidence interval around a trial’s
absolute or relative risk reduction when the other 2 ele-
ments are held constant (if any of its contents are confus-
ing, I suggest that you repeat the audiotape/radio experi-
ment until they make sense).

You can now identify and understand the factors that
raise or lower confidence in an RCT result by acting on
each of these elements. Since your objective is to maximize
everyone’s confidence in that result, the remainder of this
essay will describe these 3 elements in terms of how they
help or hinder the achievement of this goal. Because this
pursuit of confidence may involve restricting the entry of
certain sorts of patients into your RCT, it may start to shift
away from a “pragmatic” orientation (“Does offering the
treatment to all patients do more good than harm under
usual circumstances?”) toward an “explanatory” one (“Can
rigorously applying the treatment to just some subgroup of
patients do more good than harm under ideal circum-
stances?”), and I will discuss the implications of this shift as
they arise.

Determinants of the signal, and how they can
be manipulated to maximize it

Four determinants affect the magnitude of the signal
generated in an RCT (as you will see later, these factors
may also affect noise). They are the “baseline” or control
group’s risk of an outcome event, the responsiveness of ex-
perimental patients to that treatment, the potency of the
experimental treatment, and the completeness with which
outcome events are ascertained and included in the analy-
sis. Understanding how these determinants operate begins
and ends with the realization that the important number in
an RCT is not the number of patients in it, but the number
of outcome events among those patients.

All 4 determinants are present in every group of indi-
viduals being initially considered for, or later invited to
join, a phase III RCT. Sometimes they are already opti-
mum (in terms of maximizing the signal) within all poten-
tial study patients, and no restrictive eligibility criteria
need to be applied on their account. More often, however,
they are optimum only in certain subgroups of these pa-

Table 1: Effects of changes in a single element on our
confidence in the randomized controlled trial (RCT) result

Effect on our confidence in the RCT result*

Element
When this element

increases
 When this element

  decreases

Signal (ARR) Confidence rises Confidence falls
Noise Confidence falls Confidence rises
Sample size Confidence rises Confidence falls

*Confidence increases as the confidence interval around the absolute risk reduction (ARR)
signal narrows.

Sackett
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tients, and the trialist needs to decide whether to selec-
tively enrol just these optimum subgroups. As we shall see,
manipulations of eligibility criteria to accomplish this se-
lective enrolment can result in large, indeed definitive, in-
creases in the signal produced by the trial. On the other
hand, the opportunity costs of examining, lab testing and
imaging all patients in order to find just the optimum sub-
group of them may be prohibitive. Moreover, as noted in
the previous section, eligibility criteria might shift an RCT
away from its intended “pragmatic” orientation (“Does of-
fering this treatment to all patients do more good than
harm under usual circumstances?”) toward an “explana-
tory” one that is more difficult to apply  (“Can rigorously
applying the treatment to just some subgroup of patients
do more good than harm under ideal circumstances?”).
With those caveats in mind, we can now consider each of
the determinants and how they convert into strategies for
maximizing the signal.

Selectively enrol “high-risk” patients

Restricting eligibility to patients who are at higher than
average “baseline” risk of outcome events leads to higher
“Control Event Rates” (CER) among those receiving
placebo or standard therapy. Because the absolute risk re-
duction signal is equivalent to the product of this control
event rate and the relative risk reduction from therapy
(ARR = CER × RRR)6 it follows that, if the relative risk re-
duction achieved by the experimental treatment is both
true and constant over different control event rates, the ex-
perimental treatment will generate a larger absolute risk re-
duction signal when the control event rate is high than
when it is low. This is illustrated in Fig. 1. If the relative
risk reduction is 1/4 for all patients in the RCT (regardless
of their control event rates), notice the different impacts on
the absolute risk reduction signal and the corresponding
confidence in the trial result when we enrol all patients and

Fig. 1: Effect of enrolling only patients with higher control event rates (“high-risk” patients). In
panel A we have randomly assigned 240 patients into equal-sized control and experimental
groups (and have lost none to follow-up). Although their overall risk of an event if given conven-
tional therapy is 50% (control event rate 0.50), they are a heterogeneous lot: half of them (panel
B) are at high risk if left untreated (control event rate 0.80) and half (panel C) are at low risk
(control event rate 0.20). The relative risk reduction (1/4) is the same in all groups. Confidence
intervals (CIs) shown here are calculated as the CI for a difference in absolute risk reductions.6

Panel A
All eligible patients

n = 240

Panel B
Just high-risk patients

n = 120

Panel C
Just low-risk patients

n = 120

Control Experimental Control Experimental Control Experimental

12 9

45

60
36

48

60

75

12

24

48 51

Control event rate 0.50 0.80 0.20

Relative risk
reduction

1/4 1/1/4 4

Experimental
event rate

0.375 0.60 0.15

Absolute risk
reduction (ARR)

0.125 0.20 0.05

Size of 95% CI
around that ARR

± 100% ± 80% ± 270%

p value 0.07 0.03 0.63
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when we restrict enrolment to just the subgroups at high
and low baseline risk. Recruiting and randomly assigning
just the subgroup of 120 high-risk patients in panel B gen-
erated both a higher absolute risk reduction (up from 0.125
to 0.20) and a 20% narrower confidence interval around it
(from ±100% to ±80%) than randomly assigning all 240
patients in panel A. An examination of the low-risk patients
in panel C shows how they inflate the confidence interval
around the absolute risk reduction signal. In fact, every
low-risk patient admitted to this trial makes the need for
additional patients go up, not down!

Remember that this strategy works only when the rela-
tive risk reduction is either constant or increasing as con-
trol event rates increase. Although
there isn’t much documentation
about this, and there are some ex-
ceptions, I’ve concluded that rela-
tive risk reduction is pretty con-
stant over different control event
rates when the treatment is de-
signed to slow the progression of disease and prevent its
complications. This has been observed, for example, in
meta-analyses of ASA and the secondary prevention of car-
diovascular disease,7 and of both ACE inhibitors8 and β-
blockers9 in heart failure. Moreover, in an examination of
115 meta-analyses covering a wide range of medical treat-
ments, the control event rate was twice as likely to be re-
lated to the absolute risk reduction as to a surrogate for the
relative risk reduction (the odds ratio), and in only 13% of
the analyses did the relative risk reduction significantly vary
over different control event rates.10 When the treatment is
designed to reverse the underlying disease, I’ve concluded
that relative risk reduction should increase as control event
rates increase, exemplified by carotid endarterectomy for
symptomatic carotid artery stenosis, where the greatest rel-
ative risk reductions are seen in patients with the most se-
vere stenosis (and greatest stroke risks).11

When outcomes are “continuous” you can look for evi-
dence on whether the experimental treatment will cause
the same relative change in a continuous outcome (say,
treadmill time) for patients with severe starting values (aw-
ful exercise tolerance, analogous to high-risk patients for
discrete events) and good starting values (good but not
wonderful exercise tolerance, analogous to low-risk patients
for discrete events). If this evidence suggests a consistent
relative effect over the range of the continuous measure, I
hope it’s clear why the absolute difference signal generated
by experimental treatment is greater (and its confidence in-
terval narrower) among the patients with initially severe
disease than among those with less severe disease (if this
isn’t clear, consider how much “room for improvement”
there is in a patient who already is doing pretty well v. one
who is doing poorly).

Harsh as it may sound, you need people in your RCT who
are the most likely to have the events you hope to prevent with
your experimental treatment (e.g., myocardial infarctions, re-

lapses of a dreadful disease, or death). And, as long as the rela-
tive risk reduction from treatment is constant or rises with in-
creasing control event rates, these high-risk patients also have
the most to gain from being in the trial. Finally, to be practi-
cal, this “high-risk” strategy requires not only solid prior evi-
dence that high- and low-risk patients exist, but also that their
identification is easy and cheap enough to make their inclusion
and exclusion cost-effective in conducting the trial.

The foregoing should cause second thoughts among tri-
alists who are considering arbitrary upper age limits for
their trials; they may be excluding precisely the high-risk
patients who will benefit the most, raise the absolute risk re-
duction and make the largest contribution to the confidence

in a positive result. On the other
hand, if high-risk patients (or those
with severe disease) are too far
gone to be able to respond to the
experimental therapy, or if com-
peting events (e.g., all-cause mor-
tality) swamp those of primary in-

terest in the trial, the absolute risk reduction’s confidence
interval will expand and its signal might decrease. This dis-
cussion introduces a second element, responsiveness.

Selectively enrol highly responsive patients

The second way that you can increase the absolute risk
reduction signal and the confidence in a positive trial result
is by selectively enrolling highly responsive patients who are
more likely (than average) to respond to the experimental
therapy. Their greater-than-average relative risk reductions
translate to increased absolute risk reductions and higher
confidence in positive trial results. This increased respon-
siveness can arise from 2 different sources. The first and
most easily determined cause is patients’ compliance with an
efficacious experimental therapy. Those who take their
medicine might respond to it, but those who don’t take
their medicine can’t respond to it. No wonder, then, that so
much attention is paid to promoting and maintaining high
compliance during RCTs, and why some RCTs put patients
through a pre-randomization “faintness-of-heart” task, re-
jecting those who are unwilling or unable to comply with it.
This is because, once patients are randomly assigned, all of
them must be included in subsequent analyses, even if they
don’t comply with their assigned treatment. The second
cause for increased responsiveness is the result of real bio-
logic differences in the way that subgroups of patients re-
spond to experimental treatment. This biologic difference
may be much more difficult (and expensive) to determine
among otherwise eligible patients. Fig. 2 illustrates how ei-
ther cause works among another 240 patients, this time with
subgroups at the same baseline risk but with differing de-
grees of compliance (or other aspect of responsiveness).

Panel A is identical to panel A of Fig. 1. If, as in panel B,
just the highly compliant subgroup is recruited, the result-
ing confidence interval around the absolute risk reduction is

The important number in an RCT is not the
number of patients in it, but the number of
outcome events among those patients.

Sackett
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narrower than that observed among all 240 patients. How-
ever, every patient with low compliance (panel C) admitted
to this trial made the need for additional patients go up, not
down! Note that this high-response strategy works best
when control event rates are either constant or increasing in
subgroups with progressively higher relative risk reductions.
Once again, although there isn’t much documentation of
control event rates in subgroups with different responsive-
ness, patients in our carotid endarterectomy trials with
higher control event rates also enjoyed greater relative risk
reductions with surgery.11 As in the case of high-risk pa-
tients, the identification of highly responsive patients has to
be both accurate and inexpensive if it is to decrease the total
effort necessary for achieving a definitive trial result.

The foregoing elements of risk and responsiveness can
usefully be combined as shown in Table 2, where I have
summarized the “attractiveness” (in terms of maximizing

the absolute risk reduction signal and the confidence in a
positive trial result) of different sorts of patients whom you
might consider enrolling into your RCT. This will come
home to haunt you if, toward the end of your recruitment

Table 2: The attractiveness of different sorts of potential RCT
patients

Responsiveness to (compliance with) the
experimental treatment (relative risk reduction)

Risk (control
event rate) High  Low

High Ideal! Are they too sick to
benefit? Admit with
caution

Low Are they too well to
need any treatment?
Admit with caution

Keep out!

Fig. 2: Effect of enrolling only patients with higher relative risk reductions (highly responsive pa-
tients) in an RCT. In panel A we have randomly assigned 240 patients into equal-sized control
and experimental groups (and have lost none to follow-up). Although their overall compliance
rate is great enough to achieve a relative risk reduction of 1/4, they are a heterogeneous lot: half
of them (panel B) are highly compliant and achieve a relative risk reduction of 2/5, and half
(panel C) display low compliance and achieve a relative risk reduction of only 1/10. The control
event rate (0.50) is the same in all groups.

Panel A
All eligible

patients
n = 240

Panel B
Patients with high

compliance
n = 120

Panel C
Patients with low

compliance
n = 120

Control Experimental Control Experimental Control Experimental

18
45 27

60 30

60
75

30

42

30
33

Control event rate 0.50 0.50 0.50

Relative risk
reduction

1/4 2/5 1/10

Experimental
event rate

0.375 0.30 0.45

Absolute risk
reduction (ARR)

0.125 0.20 0.05

Size of 95% CI
around that ARR

± 100% ± 86% ± 350%

p value 0.07 0.04 0.72
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phase, you are short of “ideal” patients and decide to relax
your inclusion criteria and start admitting lower risk or less
compliant individuals. As predicted in Figs. 1 and 2, admit-
ting such patients may increase, rather than decrease, the

remaining sample size requirement (and administrative
burdens) that must be satisfied to achieve a sufficiently
large absolute risk reduction and a sufficiently narrow con-
fidence interval around it.

Use a potent experimental treatment and give it 
a chance to exert its effect

The third way that you can tend to raise an absolute risk
reduction signal and the confidence in a positive trial result
is to employ a potent experimental treatment and give it a
chance to exert its effect. You shouldn’t expect patients to
experience better outcomes when their treatment regimens
aren’t administered in a sufficient dose for a sufficient dura-
tion. Thus, an RCT to see whether drastic reductions in
blood pressure reduce the risk of stroke must employ a
drug that, in phase II trials, really does reduce blood pres-
sure to the desired level. This “be-sure-your-experimental-
treatment-is-potent” strategy is dramatically demonstrated
in surgical trials, where the principal investigators may re-
strict their clinical collaborators to just those surgeons with
excellent skills and low perioperative complication rates. In
similar fashion, you should be sure that the experimental
treatment is applied long enough to be able to achieve its
favourable effects, if they are to occur.

If you digested the foregoing, you’ll quickly grasp the
incremental price of therapeutic progress that trialists must
pay as they search for marginal improvements over treat-
ments they already have shown, in previous RCTs, to do
more good than harm. When today’s standard treatment is
already known (through prior RCTs) to do more good
than harm, clinicians and ethics committees should and will
insist that “standard therapy” (rather than a placebo) be
provided to control patients in any subsequent RCT of the
next generation of potentially more effective
treatments. As a result, the control event rates
are progressively reduced in subsequent trials
(they behave like the low-risk patients de-
scribed in panel C of Fig. 1), and even if rela-
tive risk reductions are maintained at their
former levels, the resulting absolute risk re-
ductions will fall and their confidence intervals will widen.
No surprise, then, that RCTs in acute myocardial infarc-
tion have become huge and hugely expensive, not (only)
because cardiologists are an entrepreneurial lot, but be-

cause they already are reducing control event rates with the
thrombolytics, β-blockers, ASA and ACE inhibitors they
validated in previous positive trials.

As forecast in the introduction, the foregoing strategies
for increasing the absolute risk reduction
and narrowing its confidence interval by re-
stricting trial participants to just the high-
risk, high-response group, by maximizing
compliance, by employing just the best sur-
geons, and so forth, moves the resultant
trial away from a “pragmatic” study ques-

tion (“Does offering the treatment do more good than
harm under usual circumstances?”) toward an “explana-
tory” study question (“Can rigorously applying the treat-
ment do more good than harm under ideal circum-
stances?”).12 If the original question was highly pragmatic
and intended to compare treatment policies rather than
rigorous regimens, the strategies described above may be
unwise and it becomes more appropriate to conduct a really
large, simple trial. Similarly, these restrictive strategies may
raise concerns (and not a few hackles) about the generaliz-
ability of the trial result. As I’ve argued elsewhere,13 it is my
contention that front-line clinicians do not want to “gener-
alize” an RCT’s results to all patients, but only to “particu-
larize” its results to their individual patient, and already
routinely adapt the trial result (expressed, say, as a “num-
ber-needed-to-treat” or NNT, which is the inverse of the
absolute risk reduction) to fit the unique risk and respon-
siveness of their individual patient, the skill of their local
surgeon, the patient’s preferences and expectations, and the
like.14 Moreover, cautionary pronouncements about gener-
alizability have credibility only if the failure to achieve it
leads to qualitative differences in the kind of responses pa-
tients display such that, for example, experimental therapy
is, on average, unambiguously helpful for patients inside
the trial but equally unambiguously harmful or powerfully
useless, on average, to similar patients outside it. I’ll address
this straw man in a later essay in this series.

Identify and record (ascertain) every event suffered
by every patient in the trial

This is the fourth way that you can maximize an ab-
solute risk reduction signal and the confidence in a posi-
tive trial result. Up to this point, I have assumed that all

events have been ascertained in both control and experi-
mental patients and that the resulting absolute risk reduc-
tion signal, regardless of whether it is large or small, is
true. In other words, although the absolute risk reductions

Sackett

1232 JAMC • 30 OCT. 2001; 165 (9)

Relative risk reduction should increase as control event rates increase
when the treatment is designed to reverse the consequences of the un-
derlying disease.

Relative risk reduction is pretty constant over different control event rates
when the treatment is designed to slow the progression of disease and
prevent its complications.



displayed in Table 1 and Fig. 1 are affected by the risk-
responsiveness composition of the study patients, they
nonetheless provide unbiased estimates of the effects of
treatment. What happens in the real world of RCTs,
where the ascertainment of events is virtually always in-
complete? As you will see, this leads to systematic distor-
tion of the absolute risk reduction signal away from the
truth; that is, this estimate of the signal becomes biased.
Accordingly, the fourth way that you can increase the ab-
solute risk reduction signal and the confidence in a posi-
tive trial result is by improving the ascertainment of events
during the RCT. This is shown in Fig. 3.

Suppose that the RCT’s follow-up procedures were
loose, and many patients were lost. Or, suppose that the
outcome criteria were so vague and subjective that lots of
events were missed. If experimental and control patients
are equally affected by this incomplete ascertainment, the

situation depicted in Fig. 3 would occur, with a loss in the
strength of the absolute risk reduction signal even though
the relative risk reduction is preserved. But what if the ac-
curacy of ascertainment differs between control and experi-
mental patients, such as might occur in nonblinded trials,
when experimental patients are more closely followed (e.g.,
for dose-management and the detection of toxicity) than
control patients? What if that greater scrutiny of experi-
mental patients leads to missing only 5% of events in the
experimental group while continuing to miss 25% of events
in the control group? This situation is shown in Fig. 4.
Missing more events among control patients than among
experimental patients not only decreases the absolute risk
reduction signal but also widens its confidence interval. In
this case, the bias leads to a “conservative” type II error
(concluding that the treatment may be useless when, in
truth, it is efficacious) and presents a powerful additional

Fig. 3: Effect of equally incomplete ascertainment of events in both control and experimental pa-
tients. Panel A displays the true effect of the experimental treatment: a relative risk reduction of
1/5, generating an absolute risk reduction signal of 0.10 whose confidence interval excludes
zero. If the experimental and control patients are equally affected by this incomplete ascertain-
ment (missing, say, 25% of events in each group) the misclassification of events depicted in panel
B would occur. As a consequence (panel C), although the relative risk reduction is preserved, the
absolute risk reduction signal declines from 0.10 to 0.075, its confidence interval now crosses
zero, and the trial result becomes indeterminate.
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argument for blind RCTs (since they maintain equal
scrutiny of experimental and control patients and equal as-
certainment of their outcome events).

Having defined the determinants of the signal generated
in an RCT and demonstrated how they can be manipulated
to maximize that signal, it is time to consider how noise af-
fects our confidence in the trial result and how that noise
can be reduced.

Determinants of the noise, and how they can
be manipulated to minimize it

The effects of noise and its reduction are perhaps best
understood by considering RCTs whose outcomes are con-
tinuous measures (e.g., blood pressure, functional capacity

or quality of life) rather than discrete events (e.g., major
stroke, brain metastasis or death). The key to understand-
ing noise is to think of all the sorts of factors (“sources of
variation” or, better yet, “sources of uncertainty”) that
might affect the end-of-study result for this continuous
measure, not just in the individual study patient but espe-
cially in the groups of patients that comprise the experi-
mental and control groups.

Consider blood pressure. You know from prior experi-
ence that you won’t get the same blood pressure result for
every patient in an RCT. Indeed, you know that repeat
measurements in the same patient at the same visit will
generate different results (depending on whether, for ex-
ample, it’s the first or the fourth measurement at that visit,
whether they are inhaling or exhaling, whether they are

Fig. 4: Effect of better ascertainment of events in the experimental group than in the control
group. Panel A displays the true effect of the experimental treatment: as in Fig. 3, there is a rela-
tive risk reduction of 1/5, generating an absolute risk reduction signal of 0.10 whose confidence
interval excludes zero. If the experimental and control patients are unequally affected by this in-
complete ascertainment (missing 25% of events in the control group but only 5% of events in
the experimental group) the misclassification of events depicted in panel B would occur. As a
consequence (panel C), both the relative and absolute risk reductions are falsely reduced, and the
trial draws a false-negative conclusion.
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talking, on whether you are supporting their arm and back,
and so forth). At the group level you must add the variation
in blood pressure that exists between study patients (based
not only on differences in their individual endocrine, car-
diovascular and nervous systems and responses to therapy,
but also on how well they know their examiner and the
timing of their last cigarette, their last meal, their last con-
versation, their last void and by which of several types of
sphygmomanometers are being applied to them by which
examiners with what hearing acuity and which preferences
for the terminal digits 0, 2, 4, 6 and 8). These sources of
variation in recorded blood pressure may, in combination,
create so much noise that it becomes impossible to detect
the signal (say, a small but important reduction in blood
pressure) being generated by the experimental treatment.

How might you minimize this noise, recalling from the
first section of this essay that decreases in noise are re-
warded by decreases in confidence intervals around signals
and, therefore, increases in our confidence in the results of
the trial? In this case, the link between statistics and physi-
ology is just about perfect. You reduce the noise element in
your trial by eliminating or minimizing sources of uncer-
tainty. I’ll illustrate this with the blood pressure example.
• You can remove the uncertainty that arises from study-

ing 2 different treatments in separate, “parallel” groups
of different patients (with their different baseline blood
pressures and responses to treatment) by applying both
treatments to every patient. This is accomplished by
randomizing, for each patient, the order in which they
receive the experimental and control regimens, sepa-
rated by an intervening period of sufficient length to
“wash-out” any effects of the previous treatment. This
“within-patient” or “crossover” design, if feasible, re-
moves any variation between study patients and usually
produces big reductions in noise that are reflected in
big reductions in confidence intervals (ambitious read-
ers can verify this by contrasting the results of paired
and unpaired t-tests on a data set obtained from a cross-
over trial). Although theoretically attractive, crossover
trials are not suited for disorders subject to irreversible
events or total cures, and patients who withdraw or
drop out before completing both treatment periods are
tough to analyze. Moreover, it is impossible to tell
whether there is a “carry-over” of the effects of the first
treatment into the second treatment period until the
trial is over. When these carry-over effects are large,
the data for the second period may have to be thrown
away, and the trial’s noise continues unabated.

• You can reduce variations in the outcomes of study pa-
tients by making the patients more homogeneous
through the same strategies that you employed in the
previous section: assembling study patients with similar
risks (e.g., just those with the highest blood pressures)
and similar responsiveness to the experimental treat-
ment. This can be done either by “restricting” admis-
sion to the trial to just those patients with similar risks

and responsiveness or by stratifying study patients for
these features and then randomly assigning patients
from each stratum. The result is a narrower band of
blood pressures and blood pressure changes with ther-
apy (smaller standard deviations for these measures) and
reduced noise. As previously stated, in explanatory sur-
gical trials we routinely reduce uncertainty in respon-
siveness by drafting only those surgical collaborators
who can document their high success and low compli-
cation rates.

• You can reduce noise by making experimental and con-
trol patients as similar as possible. Although random al-
location tends to create similar groups (and is our only
hope for balance in unknown determinants of respon-
siveness), we can ensure similarity for known determi-
nants by stratification prior to randomization or even
by minimization (allocation of the next patient to
whichever treatment group will minimize any differ-
ences between the groups).15

• In similar fashion, you can reduce noise by achieving
similar (and high) compliance among all study patients.

• You can minimize sloppiness and inconsistency in the
ascertainment of outcomes. Not only should your out-
come criteria be objective and unambiguous; they
should be applied (or at least adjudicated) by 2 or more
observers who are blind to which treatment a study pa-
tient has received. In trials whose outcomes are mea-
sured in absolute differences (e.g., in hemoglobin lev-
els), noise is reduced by analyzing the averages of
duplicate or triplicate determinations of the outcome.

• You can make sure that every study patient actually has
the target condition whose natural history you are at-
tempting to change. Misdiagnoses at patient entry cre-
ate subgroups of patients with the wrong conditions
who may be incapable of responding to your experi-
mental treatment, thus adding noise to the trial.

Increasing sample size

Reducing confidence intervals by increasing the size of
an RCT should be your last resort. There are 2 major rea-
sons for this admonition. First, as I stated at the start of this
essay, in order to halve the width of the confidence interval
around the absolute risk reduction achieved by your experi-
mental treatment, you need to quadruple the number of
patients in your trial. For example, in panel A of Fig. 1, to
halve the confidence interval for an absolute risk reduction
from ±100% to ±50% demands a quadrupling of the sam-
ple size from 240 to 960 patients. Only after exhausting the
foregoing strategies for increasing the signal and reducing
the noise should you take on the daunting task of increas-
ing your sample size. The second reason why it may be
dangerous to attempt to rescue an RCT that is too small is
that scouring recruitment sites with relaxed inclusion or ex-
clusion criteria often leads to the recruitment of low-risk,
low-response patients. Figs. 1 and 2 and Table 2 reveal that
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adding patients of these sorts can paradoxically lower ab-
solute risk reductions and increase the confidence intervals
around them. Of course, sample size requirements can be
revisited during a trial (with care not to destroy blindness),
and methods are available for determining the risk of draw-
ing false-negative conclusions after a trial is completed.16

There are 11 strategies that you can employ either to in-
crease your sample size or to make the most of whatever
sample size you do recruit. They come in 3 sets.

General strategies for increasing your sample size

• You can make it easier for clinical collaborators to ap-
proach and enter patients into the trial by shortening
the entry forms to include just those items that are of
immediate relevance. For example, some of the large,
simple trials have used entry forms that take up less
than a page.

• In similar fashion, you can reduce the complexity and
time expended in deciding whether every patient is eli-
gible for a trial by reducing its eligibility criteria to a
bare minimum and employing the “uncertainty princi-
ple”17 as the main determinant of an individual patient’s
eligibility.

• You can reduce the effort required of busy clinical col-
laborators by providing research assistants to help them
with forms, baseline measurements, allocation and fol-
low-up appointments. I vastly prefer this strategy to
that of providing “bounties” to clinicians for every pa-
tient they enter.

• You can encourage “out-of-hours” recruitment by
maintaining a randomization “hotline” on a 24/7 basis.

• When a brand new drug or other treatment is not yet
available to the public and has never been evaluated in a
phase III trial, many sponsors (especially health care
providers who must pay for the innovation) will make the
experimental treatment available only within an RCT.

• You can explore collaboration with relevant organiza-
tions of patients and families who have come together
to provide information, support and advocacy to the
victims of the disorder you are studying. Growing num-
bers of such organizations have become strong and ef-
fective advocates for relevant RCTs.

Strategies to ensure that all eligible patients 
are approached

The next 3 are strategies for overcoming the near-uni-
versal failure of participating centres (including your own!)
to approach all eligible patients.
• You can increase recruitment from your current cen-

tre(s) by frequently exposing them to your most charis-
matic and respected clinical collaborator. Our cere-
brovascular trials succeeded in large part because our
principal clinical investigator was willing to devote ma-
jor time to national and international “circuit-riding”

among the centres. His “outreach” visits began with
grand rounds and bedside rounds, demonstrating and
teaching clinical skills and evidence-based clinical judge-
ment. Valuable in their own right, these sessions also
dramatized the clinical relevance and importance of the
trial and gained the respect of the front-line clinicians
(often in training) who were most likely to encounter el-
igible patients. Having established and reinforced the
credibility of the study and its investigators, he then
would turn to issues of recruitment and follow-up, en-
couraging, instructing and admonishing as the situation
dictated. His visits were almost always followed by dra-
matic increases in both recruitment and data quality.
Equally dramatic are the numbers of trials without peri-
patetic clinical leaders that failed to recruit even a small
portion of their projected numbers of patients.

• You can increase recruitment by employing strategies
that have been shown in other RCTs to change the be-
haviour of clinicians.18–20 For example, keeping a “log”
of all remotely relevant patients (both eligible and ineli-
gible) at each centre provides the base for audit and
feedback to the individual clinicians who had agreed to
approach such patients for the trial.

• You can increase recruitment by recognizing both the
needs and contributions of individual participating cen-
tres. Providing continuing education (as well as study
clarification) to local staff, recognizing their contribu-
tions in final reports and providing them the opportu-
nity to carry out and publish their own ancillary studies
strengthens their commitment to the success of the par-
ent study.

Strategies for protecting against erosion 
of your sample size

The final 2 strategies are intended to protect against
erosion of your effective sample size by making the most of
patients you already have enrolled.
• Minor gains can be made (or protected) by keeping the

numbers of control and experimental patients equal.
When hunches favouring one of the treatments are
strong, it may be tempting to randomly assign a larger
proportion of eligible patients to that arm of the trial.
However, there is a price to pay. Randomly assigning
twice as many patients to one of the treatments (2:1
randomization) requires 12% more patients overall; 3:1
randomization requires 33% more patients.21

• The most important admonition in this essay is to pro-
tect your sample size by not losing any study patients.
Keeping track of all of them serves 2 related purposes.
First, it detects events that otherwise would be missed.
Second, it increases your chances of being able to present
a convincing “worst-case scenario” (in which all experi-
mental patients lost to follow-up in a trial with a positive
conclusion are assigned bad outcomes, and all lost con-
trol patients a rosy one). When losses to follow-up are so
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few that absolute risk reductions and their confidence in-
tervals remain convincing in worst-case scenarios, the
credibility of a trial’s positive conclusion is enhanced.

Gaining first-hand experience 
with physiological statistics

Just as the understanding of human physiology benefits
from dynamic laboratory and bedside (real-life) observations
of the effects of altering a single determinant (say, periph-
eral resistance) on a “final common pathway” (say, arterial
blood pressure), aspiring trialists can increase their under-
standing of physiological statistics by recreating the figures
in this essay from their own protocols and data sets and ex-
amining the effects of altering these determinants, singly
and in combination, on a final common pathway such as the
confidence interval around an absolute risk reduction.

The simple experiment with the audiotape player and ra-
dio that opened this essay provided primitive insights. Better
still, and analogous to what can be learned from interactive
computer models of human physiology, aspiring trialists can
study the combined effects of different signal strengths, dif-
ferent amounts of noise and different sample sizes in com-
puter models of randomized trials. For example, a clinical tri-
als simulator developed by Wayne Taylor and Eric Bosch22

permits users to input whatever risks, responsiveness, compli-
ance, loss to follow-up, ascertainment of outcomes, dropouts,
crossovers, and so forth, they desire into the model and deter-
mine their joint effects on both the validity of their hypotheti-
cal trials and the confidence intervals around their signals.

I reckon that the more trialists use such audiotape-and-
radio, pencil-and-paper or computer simulations to “massage”
their assumptions before they start a trial, the less they’ll
have to “massage” their inconclusive data after it’s over.
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