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Abstract

Objectives—Immune checkpoint inhibitors (ICIs) have changed the landscape of lung cancer 

therapy. However significant proportions of patients have primary or acquired resistance to ICIs. 

Molecular characterization is critical for patient selection and overcoming resistance to checkpoint 

inhibitors. The purpose of this study is to investigate the molecular characteristics associated with 

ICIs outcomes in advanced non-small cell lung cancer (NSCLC) patients.

Materials and methods—All advanced stage NSCLC patients at City of Hope who received 

ICIs (pembrolizumab, nivolumab, atezolizumab, and durvalumab) were identified retrospectively. 

Overall survival (OS, from the start of the ICIs), Pathology and information on genomic alterations 

(GAs) including next-generation sequencing (NGS) data, tumor mutation burden (TMB), and 

Programmed death-ligand 1 (PD-L1) levels were collected. Chi-square and Fisher’s exact test, 

Log-rank test were used for comparison of demographics, and survival curves respectively. 

Univariate and multivariate COX proportional hazards model was used for survival analysis.

Results: 346 NSCLC patients were identified. Univariate and multivariate analysis found the 

association of OS with PD-L1 level ≥50% (Hazard ratio [HR], 0.19; 95% confidence interval [CI], 

0.06–0.59; P<0.01), EGFR (HR 7.38; 95% CI, 1.15–47.42; P<0.05), and TET2 (HR 0.15; 95% CI, 

0.03–0.90; P<0.05). The median OS was not reached [NR] for the 12 patients who had genomic 

alterations (GAs) in TET2 (12/108, 11%) versus (vs) 11.5 months in TET2 negative patients 

(98/108, 89%). Interestingly, GAs in TET2 and FANCA were mutually exclusive and patients who 

had GAs in FANCA gene (6%) had shorter OS (5.5 months vs 14.5 months, Log-rank test, 

P<0.05).

Conclusions: We described the clinical and molecular features of NSCLC patients treated with 

ICIs. The association of GAs in TET2 with longer OS and its mutual exclusivity with FANCA 

GAs were insightful for developing novel therapeutic strategies to improve ICIs outcomes in 

NSCLC.
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TET2; FANCA; PD-L1; TMB; immunotherapy

Introduction

Immune checkpoint inhibitors (ICIs) are currently used as monotherapy or combination 

therapy in frontline and subsequent lines for metastatic lung cancer including 

adenocarcinoma, squamous cell carcinoma, and small cell lung cancer (SCLC) [1–5]. 

Furthermore, ICIs before or after surgery showed efficacy in patients with resectable disease, 

highlighting the potential of ICIs to improve outcomes in these patients and expand the use 

of ICIs in the neoadjuvant and adjuvant settings [6, 7]. Despite higher response rates, longer 

duration of response, and less toxicity of ICIs compared with chemotherapy, many lung 
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cancer patients have primary and acquired resistance to ICIs. Specifically, response rates to 

ICIs are ~20% for monotherapy and ~ 40% for combination therapy, but eventually, most 

patients have progression of disease [8, 9]. Therefore, clinical and molecular profiling to 

understand the underlying mechanisms behind response and resistance is needed for the 

selection of patients, and identification of novel therapeutic targets and strategies to improve 

the response to ICIs.

To date, programmed death-ligand 1 (PD-L1) protein expression is the only US FDA-

approved biomarker to select metastatic lung cancer patients for first-line pembrolizumab 

monotherapy [10]. However, studies using nivolumab or atezolizumab monotherapy, and 

combination therapy with chemotherapy or ipilimumab, show responses to treatment 

regardless of the PD-L1 levels [1, 5, 11–13]. Analysis of 5-year survivors of nivolumab 

treated non-small cell lung cancer (NSCLC) patients showed that only 70% of the survivors 

had ≥ 1% PD-L1 expression at baseline, indicating that patients without PD-L1 expression 

may still have durable responses from ICIs [14]. Besides, FDA-approved 

immunohistochemistry (IHC) tests show variable concordance for evaluation of the PD-L1 

expression, as indicated in the Blueprint project [15], there was poor reliability on immune 

cells PD-L1 scoring and different sensitivities between antibodies, which is further 

complicated by the inter- and intratumoral heterogeneity [16]. Exploratory analyses had 

shown tumor mutation burden (TMB) could be a potential predictive marker for ICIs in lung 

cancer as patients with higher TMB seemed to fare better when treated with nivolumab and 

ipilimumab combination therapy [17, 18]. However, larger datasets for confirmation and 

standardization of TMB thresholds across different platforms and samples (whole exon 

DNA sequencing versus (vs) targeted gene panel sequencing using tissues vs circulating 

tumor DNA) are needed [19].

Studies using next-generation sequencing (NGS) to identify genomic alterations (GAs) that 

drive response and resistance to ICIs appear promising. GAs in tumors could shape the 

immune microenvironment to affect the outcomes of checkpoint inhibitors [20]. The meta-

analysis demonstrated no overall survival (OS) benefit for patients who had EGFR mutant 

tumors treated with ICIs compared with chemotherapy [21]. Lack of responses to ICIs in 

EGFR mutated patients was consistently observed in multiple studies [22, 23]. Co-mutation 

of KRAS and KEAP1/NFE2L2 was reported to be an independent prognostic factor with 

shorter OS [24]. GAs such as STK11/LKB1 mutations was identified as the genomic drivers 

for primary resistance to immune checkpoint inhibitors in KRAS-mutated lung 

adenocarcinoma [25]. It was also reported that increased expression of PD-L1 was 

associated with TP53 mutation and MET amplification [26]. However, the role of TP53 was 

not very prominent in other studies and KRAS mutations were not different in the overall 

population compared with patients who had durable clinical benefits [23, 27–29]. To date, 

correlations of GAs with ICIs outcomes in NSCLC vary between different cohorts; 

validation of the results in larger and different populations are needed. Furthermore, 

identifying specific mutations in patients who survived longer with ICIs will be helpful to 

explore signaling pathways important in tumor responses to ICIs and to develop novel 

therapeutic strategies. Therefore, in the present study, we used clinical and molecular 

information of 346 advanced NSCLC patients treated with ICIs including available NGS 

data to identify molecular features associated with overall survival.
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Methods

Patients

Total 346 patients with advanced NSCLC in City of Hope, who received ICIs 

(pembrolizumab, nivolumab, atezolizumab, and durvalumab) in different settings including 

standard of care, compassionate use, and clinical trials, were identified retrospectively at the 

cutoff date of 11/8/2018. All lines of therapy were not available during analysis and the 

cohort includes a heterogeneous population of lung cancer patients who received 

immunotherapy. Demographic, clinical, and pathological information was collected with 

approval by the institutional review board (IRB) of City of Hope. Informed consent was 

waivered per IRB requirements since it was a retrospective observational study. Overall 

survival (OS, from the start of the ICIs) were calculated if available at the study time point.

Molecular information

The information of tumor GAs was extracted from the available clinical data including 

EGFR, ALK/ROS rearrangement, KRAS, TP53 and TMB from patients who had next-

generation sequencing (NGS) using various platforms such as FoundationOne (Foundation 

Medicine, Cambridge, MA, USA), Caris (Caris life science, Phoenix, AZ, USA), Paradigm 

(Paradigm diagnostics, Phoenix, AZ, USA), Guardant360 (Guardant, Redwood City, CA, 

USA), Neogenomics (NeoGenomics Laboratories, Fort Myers, FL, USA) or targeted gene 

sequencing panels at City of Hope. TMB was reported by FoundationOne. PD-L1 (22C3) 

expression detected by paraffin IHC was reported as Tumor Proportion Score (TPS), which 

is defined as the percentage of viable tumor cells showing partial or complete membrane 

staining (≥ 1+) relative to all viable tumor cells present in the sample (positive and negative). 

Negative PD-L1 is defined as < 1% of viable tumor cells showing membranous staining.

Statistical analysis

The OS was defined from the start of ICIs until death due to any cause. The association of 

clinical and molecular features with OS was analyzed first by univariate COX proportional 

hazards model independently. Based on the results of the univariate analysis, clinically and 

biologically relevant features with statistical significance (cutoff P value 0.05) were selected 

for the multivariate COX proportional hazards model. TMB was categorized to low, 

intermediate, and high groups as reported by Foundation. PD-L1 expression was categorized 

as negative (<1%), 1% - <50% and ≥ 50%. The Kaplan-Meier method was used to estimate 

overall survival (OS) and the Log-rank test was used to compare the survival curves. 

Statistical analyses and data visualization were performed using GraphPad Prism 8 

(GraphPad Software) and R (open source for statistical computing and data visualization). 

All tests were two-sided and P<0.05 was considered statistically significant. Lollipops 

diagram for TET2 gene and its mutations was generated using Lollipops application [30].

Results

Patient characteristics

The baseline characteristics of 346 patients were summarized in Table 1. The median age 

was 69 years (range 34–100) with 164 (47%) patients was age ≥ 70 and 182 (53%) were <70 
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years old at the treatment of ICIs. 160 (46%) were female and 186 (54%) were male. 102 

(29%) were never smokers, 211 (61%) former smokers and 33 (10%) were current smokers. 

Histology included 257 (74%) adenocarcinoma, 67 squamous cell lung cancer (19%), and 

22 (6%) other types (9 poorly differentiated tumors including non-small cell carcinoma, not 

otherwise specified (NSCC-NOS), 4 large cell lung cancer, 2 neuroendocrine tumors, 1 lung 

atypical carcinoid, 1 adenosquamous tumor, 1 basaloid squamous cancer, 1 mixed large cell 

with neuroendocrine tumor, 1 giant cell carcinoma, 1 mixed adenocarcinoma with large cell 

neuroendocrine tumor, and 1 adenoid cystic adenoid carcinoma). PD-L1 was tested in 212 

patients: 72 (34%) were negative (<1%), 89 (42%) were ≥ 50%, 51 (24%) were 1% - <50%. 

TMB was reported in 52 patients (8 high, 26 intermediate, 18 low). EGFR was tested in 307 

patients with 50 (16%) positive and 257 (84%) negative patients.

Univariate COX analysis revealed the association of OS with PD-L1 level ≥50% and the 

statistical significance was retained in the multivariate analysis (HR 0.19; 95% CI, 0.06–

0.59; P<0.01). The median OS was NR for patients who had PD-L1 level ≥50% vs 12.2 

months with PD-L1 level 1%−50% and 6.9 months with negative PD-L1 (Figure 1A). No 

statistical significance was found in age, gender, smoking status, TMB, histology associated 

with OS in the multivariate analysis.

Recurrently detected GAs and OS

Top detected GAs and the patients’ clinical information (Figure 2) were sorted by the 

detected positive rate of GAs among tested patients (number of tested patients for each gene 

varied due to different gene panels in the testing platforms). TP53 ranked as the most 

frequently detected GAs (123 patients) with 50% positive rate in the 246 patients tested for 

TP53, followed by KRAS (84/301, 28%) and LRP1B (28/108, 26%). Univariate analysis 

showed statistically significant (P<0.05) association of OS with GAs in EGFR, FANCA, 

TET2 and CDKN2A/B loss (Hazard Ratio in Figure 2), which were included for the 

multivariate analysis. The association of OS with GAs in EGFR (HR, 7.38; 95% CI, 1.15–

47.42; P<0.05) and TET2 (HR, 0.15; 95% CI, 0.03–0.90; P<0.05) was retained in the 

multivariate COX proportional hazards model, as indicated in Table 2. The median OS for 

patients who had EGFR GAs was 7.2 months and for patients who were EGFR negative, the 

median OS was 14.8 months (Figure 1B). CDKN2A/B loss (HR, 2.51; 95% CI, 1.27–4.96; 

P<0.01) and FANCA (HR, 2.69; 95% CI, 1.28–5.69; P<0.01) was associated with worse OS 

(Figure 3) in the univariate analysis but was not statistically significant in the multivariate 

analysis.

TET2 GAs

We found that TET2 GAs were associated with longer OS. As shown in Figure 2C, the 

median survival was not reached (NR) for the 12 patients who had GAs in TET2 among 108 

patients tested for TET2 (positive rate 11%) compared with 11.5 months in the 96 negative 

patients (89%) (Log-rank test, P<0.05). Interestingly we found none of the patients were 

positive for GAs in both TET2 and FANCA. Shorter survival was found in patients who 

harbored FANCA GAs. The median survival was 5.5 months for the 8 patients who had GAs 

among 132 patients tested for FANCA (positive rate 6%) vs 14.5 months in the patients who 

tested negative (124/132, 94%) for FANCA GAs (Log-rank test, P<0.05). However, in the 
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multivariate analysis, there is no statistical significance in the association of FANCA GAs 

and OS. We summarized the information of patients who had GAs in TET2 (Table 3). 

Among the 12 positive patients, there were 8 lung adenocarcinomas, 2 NSCC-NOS, 1 lung 

squamous cancer, and 1 basaloid squamous lung cancer. All 12 patients had non-

synonymous mutations and 4 of them had nonsense mutations. 3 mutations located in the 

oxygenase domain as shown in the Lollipops diagram (Figure S1).

Discussion

In this study, we investigated the clinical and molecular features associated with survival of 

NSCLC patients treated with ICIs at City of Hope. Consistent with previous studies [21], 

EGFR mutated patients (n=50, 16%) had worse OS (median, 7.2 months) compared with 

patients who were negative for EGFR GAs (median, 14.8 months) (multivariate COX 

analysis, HR, 7.38; 95% CI, 1.15–47.42; P<0.05). Longer OS (median, not reached) was 

observed in patients who had PD-L1 ≥50% than patients with PD-L1 1%−50% (median, 

12.2 months) or negative PD-L1 (median, 6.9 months) (Log-rank test, P< 0.01). However, 

patients with PD-L1 level ≥50% likely received ICIs at first-line rather than later lines of 

therapy; thus, the results might be confounded by the lines of therapy. Detailed therapy 

information including previous tyrosine kinase inhibitors for EGFR mutated patients was not 

available for analysis, but for the OS analysis the OS was defined from the start of the 

immunotherapy rather than cancer diagnosis. Despite the heterogeneity of the study 

population, our findings are consistent with previous reports that patients with PD-L1 ≥50% 

fare better with ICIs and patients who had EGFR mutations had worse OS than patients who 

were EGFR negative treated with ICIs [10]. The underline mechanism of lack of benefits in 

EGFR mutated tumors remains unclear and a recent study of T cell receptor repertoire 

analysis showed that EGFR-mutated tumors had lower clonal T cell expansion compared 

with EGFR non-mutated tumors [31]. Our real-world experience with patient populations in 

different settings from clinical trials validated the role of PD-L1 level ≥50% and EGFR 

mutations in ICIs. The top 3 detected GAs in our cohort were TP53 (50%), KRAS (28%), 

and LRP1B (26%). None of these was associated with OS. STK11 mutations were reported 

to be associated with resistance to ICIs but no statistically significant association of STK11 

mutations (31/243, 13%) with OS was detected in our cohort (Figure 2) [25]. We did not 

find an association of TMB with OS. This may be due to the limited sample size (n=52) for 

TMB analysis.

In univariate analysis, patients who had GAs in FANCA gene (8/132, 6%) had shorter OS 

(median, 5.5 months vs 14.5 months, Log-rank test, P<0.05) compared to patients who were 

negative (124/132, 94%). Worse OS was also found in CDKN2A/B loss (13/132, 10%) 

patients (7.1 months vs 14.7 months, Log-rank test, P<0.05) compared to patients who were 

negative (119/132, 90%) for CDKN2A/B loss in the univariate analysis but the results were 

not statistically significant in the multivariate analysis. Fanconi anemia complementation 

group A (FANCA) is a core component of Fanconi anemia complex and important for DNA 

damage (double-strand breaks) repair [32]. GAs in DNA damage response and repair genes 

including FANCA were reported to be associated with higher response rates to PD-1/PD-L1 

in metastatic renal cell carcinoma[33]. Targeting DNA damage response proteins has been 

shown to increase PD-L1 expression and enhance the anti-tumor effect of PD-L1 blockade 
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in small cell lung cancer via the activation of the STING pathway [34, 35]. The worse 

survival of FANCA mutated patients treated with ICIs in our cohort might imply different 

mechanisms underneath. FANCA mutations were reported to cause adult immunodeficiency 

and be involved in impaired lymphomagenesis likely due to the accumulated DNA 

replication stress [36]. In our cohort, we had 18 patients (18/241, 7%, Figure 2) tested 

positive for BRCA2 GAs but there was no association with OS on ICIs with BRCA2 GAs. 

The role of GAs in DNA damage repair genes in ICIs outcomes warrants further studies in 

lung cancer.

Interestingly, we found longer OS (median, NR vs 11.5 months, P<0.05) in patients who had 

TET2 mutations and the statistical significance was confirmed in the multivariate COX 

model (HR, 0.15; 95% CI, 0.03–0.90; P<0.05). TET2 encodes the Ten-eleven translocation 

(TET) demethylase which is important in epigenetic modification by converting 5-

methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) with α-ketoglutarate (α-KG)-

dependent hydroxylase activity and by recruiting acetylglucosamine transferase (OGT) 

enzyme for histones modifications to increase gene expression [37, 38]. TET2 inactivation 

was common in myeloid and lymphoid malignancies and its mutations were loss of function 

[39]. Loss of TET2 function has been shown to increase self-renewal and expansion and 

TET2 is a proposed tumor suppressor [40]. Interestingly, TET2 determines the fate of CD8+ 

T cells by promoting CD8+ T cell memory differentiation [41]. Recently, a single clone of 

chimeric antigen receptors (CARs)-T cell with disrupted TET2 and a hypomorphic mutation 

in the second TET2 allele induced complete remission of a chronic lymphocytic leukemia 

(CLL) patient and central memory phenotype of CAR-T cells were detected after 4.2 years 

[42]. In our cohort, all the GAs of TET2 identified in the 12 patients were non-synonymous 

mutations, with 4 of them nonsense mutations. Functions of these mutations were rarely 

reported but they are potentially pathogenic since they caused amino acid/protein changes. 

The role of TET2 mutations in solid tumors and ICIs outcomes is unclear. Ablation of TET2 

in myeloid cells suppressed melanoma growth in vivo [43]. In primary breast cancer and 

colorectal cancer, upregulated TET2 with PD-L1 promoter hypomethylation as well as PD-

L1 expression in peripheral blood contributed to immunosuppressive microenvironment 

compared with healthy donors and methylation patterns in tumor tissues were different from 

blood cells [44]. In our cohort, TET2 mutations were present in both lung adenocarcinoma 

and squamous histology and the PD-L1 level was tested in tumor cells not immune cells in 

lung cancer tissue samples. As listed in Table 3, the PD-L1 levels in the 12 TET2 positive 

patients ranged from ≥50% (n=4) to negative (n=4) with 2 patients no tested and 2 patients 

were 1% to<50%. TET2 mutations on the PD-L1 expression on immune cells in lung cancer 

are unclear. However, it is possible that the TET2 mutated tumors had altered epigenetics or 

metabolism and thus, modulated the tumor microenvironment and affected T cells function 

and anti-tumor responses. TET2 mutations were previously observed to be mutually 

exclusive with isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations, as cytosolic IDH1 and 

mitochondrial IDH2 were important for α-KG production and TET dioxygenase activity 

[45]. To the best of our knowledge, mutual exclusivity of TET2 and FANCA mutations have 

not been reported. However, by querying public databases using cBioPortal, we found 

mutual exclusivity of TET2 GAs and FANCA GAs existed in the pan-cancer sequencing of 

12089 samples that included MSK-IMPACT clinical sequencing cohort (n=10945), pan-lung 
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cancer cohort from TCGA (n=1144) (Figure S2) [46–49]. The underlying mechanisms for 

the mutual exclusivity of TET2 and FANCA GAs remain poorly understood. It is possible 

that TET2 could bind to the FANCA promoter and upregulate its gene expression as shown 

in diffuse large B cell lymphoma (DLBCL) [50]. TET2 mutations are not well characterized 

in NSCLC and ICIs, along with FANCA GAs. Our results of longer OS in patients who had 

TET2 mutations with ICIs and mutual exclusivity with FANCA GAs suggest further 

investigation of TET2, FANCA is warranted, and TET2 may be a therapeutic target for 

improving outcomes of NSCLC treated with ICIs.

Limitations

Despite the promising results, the present study does suffer from some caveats. First, it is a 

single institution study with a modest cohort for which NGS data were available. Second, it 

includes a heterogeneous population with different settings of ICIs used including 

monotherapy, combination therapy, and different lines of therapy. Third, we included results 

from different NGS platforms and the sample size for TMB analysis is small with only 52 

patients. Finally, less than half of our patients were tested for TET2 (n=108), FANCA 

(n=132), CDKN2A/B (n=132) and the number of positive patients for TET2 (n=12), 

FANCA (n=8), CDKN2A/B (n=13) were limited. Analyzing larger datasets in the future 

would be helpful to explore the molecular features of ICIs outcomes in NSCLC. EGFR 

mutated patients would also need to be further evaluated in a future study to determine the 

effect of ICIs before, after, and concurrently with EGFR-TKIs.

Conclusions

We have summarized the clinical and molecular features of patients with NSCLC treated 

with ICIs. Our results validated the role of EGFR mutations and PD-L1 ≥50% in the 

outcomes of ICIs. We identified a novel association of TET2 mutations with longer OS and 

mutual exclusivity of mutations in TET2 and FANCA genes. Due to limited sample sizes 

and non-conforming NGS platforms, studies with a larger dataset and with different 

populations are warranted. Exploring the role of TET2, FANCA, CDKN2A/2B loss in 

NSCLC and ICIs appears a promising strategy to discern potential prognostic biomarkers for 

survival and to investigate novel targets for improving outcomes of NSCLC treated with 

ICIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 346 Lung Cancer patients including next generation sequencing data were 

analyzed

• EGFR mutations were associated with shorter overall survival

• PD-L1 ≥50% was associated with longer overall survival

• TET2 muations was associated with longer overall survival

• TET2 mutations were mutually exclusive with FANCA gene mutations.
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Figure 1: PD-L1, EGFR and TET2 genomic alterations (GAs) with overall survival (OS).
Survival curves of OS according to levels of PD-L1 (A), mutation status of EGFR (B), and 

TET2 (C). The Kaplan Meier curves and Log-rank tests were performed using R.
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Figure 2. Top detected genomic alterations (GAs) and overall survival (OS)
Oncoplot showed clinical information and top detected genomic alterations in 346 patients 

sorted by the rate of positive patients among tested patients (Mutation Positive %) with 

results of Hazard Ratio (HR) and 95% confidence interval (CI) by univariate COX analysis 

of overall survival (OS). Statistical analyses and data visualization were performed in R 

(open source for statistical computing and data visualization).
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Figure 3: Overall survival (OS) with genetic alterations (GAs) of FANCA and CDKN2A/B.
Overall survival (OS) according to genomic alterations of CDKN2A/B loss (A) and FANCA 

(B). The Kaplan Meier curves and Log-rank teste were performed using R.
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Table 1.

Baseline patient characteristics

Characteristics No. (%)

Age, years, at ICIs

< 70 182 (53)

≥ 70 164 (47)

Gender

Women 160 (46)

Men 186 (54)

Smoking status

Current 33 (10)

Former 211 (61)

Never 102 (29)

Histology

Lung adenocarcinoma 257 (74)

Lung squamous 67 (19)

Others
a 22 (6)

EGFR

Positive 50 (16)

Negative 257 (84)

Total tested 307

PD-L1

Negative 72 (34)

1%-<50% 51 (24)

≥50% 89 (42)

Total tested 212

TMB

High 8 (15)

Interme ‘iat 26 (50)

Low 18 (35)

Total tested 52

a
Others included 9 poorly differentiated lung tumors including non-small cell carcinoma, not otherwise specified (NSCC-NOS), 4 large cell lung 

cancer, 2 neuroendocrine tumors, 1 lung atypical carcinoid, 1 lung adenosquamous tumor, 1 basaloid squamous lung cancer, 1 mixed large cell with 
neuroendocrine tumor, 1 lung giant cell carcinoma, 1 mixed lung adenocarcinoma with large cell neuroendocrine tumor, and 1 lung adenoid cystic 
adenoid carcinoma.
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Table 2.

Multivariate analysis of overall survival (OS)

All Cohort HR (95% CI for *P value

Age

< 70 Reference

≥ 70 1.46 (0.62 – 3.46) 0.3841

Gender

Female Reference

Male 0.92 (0.41 – 2.04) 0.8321

Histology

Adenocarcinoma Reference

Squamous 0.39 (0.08 – 1.82) 0.2291

Others 0.63 (0.11 – 3.70) 0.6081

Smoking Status

Never Reference

Current 0.68 (0.17 – 2.68) 0.5773

Former 1.00 (0.35 – 2.88) 0.9988

PD-L1

Negative Reference

1%-<50% 1.6’ (0.63 – 4.2 ) 0.3170

≥50% 0.19 (0.06 – 0.59) 0.0037

Genomic alterations

CDKN2A/B 2.^ 5 (0.73 – 6.95) 0.1572

EGFR ‘ .38 (1.15 – 47.42) 0.0353

FANCA 2.31 (0.59 – 9.03) 0.2304

TET2 0.15 (0.03 – 0.90) 0.0381

*
Multivariate COX proportional hazards model.
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