Skip to main content
. 2021 May 27;16(5):e0250579. doi: 10.1371/journal.pone.0250579

Table 5. Comparison of multilocus coat pheomelanin intensity predictive models.

Variables β ± se t-value P>|t| PRE Adj. R2 ln(likelihood)
A. Intercept 1.012 ± 0.049 20.831 <2.2x10-16 - 0.7300 -2,795.30
CFA2 0.915 ± 0.026 35.074 <2.2x10-16 0.365
CFA15 0.191 ± 0.026 7.225 <2.2x10-16 0.024
CFA18 0.272 ± 0.056 4.85 <2.2x10-16 0.011
CFA20 1.038 ± 0.026 39.262 <2.2x10-16 0.419
CFA21 0.215 ± 0.027 0.027 <2.2x10-16 0.029
B. Intercept 1.074 ± 0.043 25.088 <2.2x10-16 - 0.7324 -2,785.92
CFA2 0.920 ± 0.026 35.666 <2.2x10-16 0.373
CFA15_2 0.286 ± 0.039 7.256 <2.2x10-16 0.024
CFA18_red_dom 0.405 ± 0.074 5.444 <2.2x10-16 0.014
CFA20 1.037 ± 0.026 39.453 <2.2x10-16 0.421
CFA21_red_dom 0.355 ± 0.040 8.904 <2.2x10-16 0.036
C. Intercept 1.606 ± 0.062 25.834 <2.2x10-16 - 0.5394 -3375.46
CFA15_2 0.053 ± 0.096 0.550 5.82 x 10−1 0.000
CFA15_2 x CFA20 0.374 ± 0.063 5.956 <2.2x10-16 0.016
CFA20 1.290 ± 0.043 29.844 <2.2x10-16 0.294
D. Intercept 1.095 ± 0.054 20.250 <2.2x10-16 - 0.7353 -2772.11
CFA2 0.908 ± 0.026 35.087 <2.2x10-16 0.366
CFA15_2 0.167 ± 0.081 2.050 4.1 x 10−2 0.002
CFA15_2 x CFA20 0.161 ± 0.049 3.291 1.0 x 10−3 0.005
CFA15_2 x CFA21_red_dom -0.139 ± 0.079 -1.752 8.0 x 10−2 0.001
CFA18_red_dom 1.225 ± 0.217 5.65 <2.2x10-16 0.015
CFA18_red_dom: CFA20 -0.381 ± 0.112 -3.400 1.0 x 10−3 0.005
CFA18_red_dom: CFA21_red_dom -0.308 ± 0.174 -1.772 7.7 x 10−2 0.001
CFA20 0.985 ± 0.034 28.85 <2.2x10-16 0.281
CFA21_red_dom 0.436 ± 0.055 7.944 <2.2x10-16 0.029
E. Intercept 1.134 ± 0.051 22.195 <2.2x10-16 - 0.7346 -2,775.53
CFA2 0.908 ± 0.026 35.043 <2.2x10-16 0.365
CFA15_2 0.102 ± 0.073 1.387 1.67x10-1 0.001
CFA15_2 x CFA20 0.148 ± 0.048 3.061 2.0x10-3 0.004
CFA18_red_dom 1.017 ± 0.185 5.496 <2.2x10-16 0.014
CFA18_red_dom x CFA20 -0.406 ± 0.112 -3.640 <2.2x10-16 0.006
CFA20 0.992± 0.034 29.141 <2.2x10-16 0.285

Coefficients, coefficient standard error, t score values, t test p-values, and PRE for the y-intercept and each of the independent variables in the best fit linear model incorporating non-additivity and pairwise epistasis. Section A. shows the base model that assumes perfect additivity at each locus and no interactions between loci. Section B. shows the best fit model incorporating dominance at all five loci. Section C. shows a model consisting of only the two previously reported loci (CFA15 and CFA20) using their best dominance encoding, and their pairwise interaction (CFA15_2 x CFA20). Section D. shows the best fit model incorporating both the dominance terms in model B. and two pairwise epistasis terms: CFA15_2 x CFA20 and CFA18_red_dom x CFA20. Section E. shows a reduced version of model D. that only includes terms that explained > 0.1% of variance (PRE > 1 x 10−3) in model D. and shows similar performance.