Skip to main content
. 2021 May 19;18(10):5422. doi: 10.3390/ijerph18105422

Table 4.

Regression results grouped by season.

Explanatory variable Explained Variable: Number of Negative Weibo Posts
Spring Sample Summer Sample Autumn Sample Winter Sample
Model 1 Model 2 Model 3 Model 4
Weekend −2.2482 0.0871 6.2589 −8.4189
(2.6921) (2.1938) (11.2871) (13.5364)
Holiday −5.6358 −1.2324 −47.9146 *** −67.8414 ***
(3.6301) (3.0269) (13.7614) (20.1369)
Temperature 0.6360 8.0492 ** 7.9258 *** 5.6999 **
(1.0657) (3.3116) (2.2704) (2.3145)
Square of temperature −0.0424 −0.1510 ** −0.3072 *** −0.2588
(0.0296) (0.0656) (0.0700) (0.2622)
Humidity −0.1998 * 0.1838 *** −0.3889 2.5306 ***
(0.1091) (0.0656) (0.4263) (0.7840)
Precipitation 0.4642 * −0.0656 1.9974 * −20.4136 ***
(0.2790) (0.0478) (1.0437) (7.0949)
Sea level pressure 0.6597 ** 0.4025 ** 1.2726 2.8981 **
(0.3241) (0.2010) (1.2203) (1.3610)
Wind speed 0.4996 1.2986 ** 5.2688 *** 4.3613 ***
(0.3360) (0.6216) (1.2799) (1.2222)
Major event 0.6764 −0.4948 6.8629 1.5558
(4.9188) (1.7036) (11.7907) (18.1195)
PM2.5 0.5568 *** 0.1989 *** 1.8648 *** 0.8980 ***
(0.0430) (0.0558) (0.2196) (0.1695)
R2 0.7682 0.3350 0.6598 0.5936

Note: The values in the table represent the correlation coefficients of the variables of the regression model, and the standard error of each coefficient is in parentheses. ***, **, * indicate significance at the levels of 0.01, 0.05 and 0.1, respectively. Winter is the default variable.