Skip to main content
. 2020 Jun 24;11(28):7335–7348. doi: 10.1039/d0sc01637c

Summary of results for various DNN architectures for several targets in initial investigations. Best performing networks on the test data are highlighted in red. Full results can be found in the ESI (Tables S5–S9). The first column represents the NN architecture, showing the number of neurons in each hidden layera.

Training Validation Test
SE SP ACC MCC ROC-AUC SE SP ACC MCC ROC-AUC SE SP ACC MCC ROC-AUC
AChE
[10] 88.7 83.9 86.6 0.726 0.93 84.9 80.7 83.1 0.655 0.90 84.2 78.9 81.9 0.631 0.89
[100] 90.7 88.4 89.7 0.791 0.96 87.4 83.2 85.6 0.706 0.92 86.2 80.7 83.8 0.670 0.90
[1000] 88.0 83.7 86.2 0.718 0.93 85.5 78.0 82.3 0.637 0.89 84.4 78.8 82.0 0.632 0.88
[10,10] 90.7 89.7 90.3 0.802 0.96 86.1 82.9 84.7 0.688 0.92 84.3 82.4 83.5 0.664 0.90
[100,100] 91.5 91.3 91.4 0.826 0.97 87.1 85.2 86.3 0.721 0.92 85.0 84.2 84.7 0.689 0.91
[1000,1000] 95.2 96.6 95.8 0.915 0.99 88.0 86.7 87.4 0.744 0.93 84.7 84.0 84.4 0.684 0.92
ADORA2A
[10] 97.6 89.9 95.0 0.888 0.98 97.2 90.2 94.7 0.884 0.98 97.2 88.5 94.2 0.871 0.97
[100] 97.8 92.9 96.1 0.913 0.99 96.9 90.9 94.8 0.886 0.98 97.2 90.2 94.8 0.884 0.98
[1000] 97.5 90.7 95.2 0.893 0.98 97.2 89.5 94.6 0.879 0.98 97.0 89.1 94.3 0.872 0.97
[10,10] 97.8 92.7 96.0 0.911 0.99 97.6 90.6 95.3 0.893 0.98 97.0 90.0 94.6 0.880 0.98
[100,100] 98.1 93.7 96.6 0.924 0.99 96.8 90.8 94.8 0.883 0.98 96.9 90.5 94.7 0.881 0.98
[1000,1000] 99.0 77.8 91.7 0.817 1.00 97.3 92.4 95.6 0.903 0.98 96.7 91.2 94.8 0.884 0.98
AR
[10] 58.0 99.3 88.3 0.691 0.88 59.1 98.9 88.3 0.691 0.87 55.8 99.0 87.5 0.667 0.86
[100] 69.1 98.7 90.9 0.759 0.91 64.4 98.1 89.1 0.711 0.87 64.5 98.3 89.3 0.715 0.86
[1000] 65.0 98.6 89.7 0.727 0.89 61.6 98.2 88.5 0.693 0.86 61.5 98.3 88.6 0.695 0.86
[10,10] 67.1 99.0 90.5 0.750 0.90 62.7 98.5 89.0 0.708 0.86 61.6 98.6 88.8 0.701 0.87
[100,100] 76.1 99.4 93.2 0.823 0.95 69.2 97.8 90.2 0.740 0.87 68.0 98.1 90.1 0.737 0.87
[1000,1000] 73.3 99.4 92.5 0.804 0.94 65.8 97.9 89.3 0.717 0.87 64.4 98.2 89.2 0.713 0.87
hERG
[10] 93.5 53.5 77.5 0.529 0.87 91.6 48.2 74.3 0.454 0.82 92.0 46.1 73.7 0.441 0.81
[100] 94.1 49.9 76.4 0.508 0.86 92.2 45.8 74.2 0.443 0.81 92.9 44.1 73.4 0.438 0.80
[1000] 89.7 64.3 79.7 0.568 0.87 84.6 59.5 72.7 0.458 0.82 87.0 55.0 74.2 0.450 0.81
[10,10] 94.1 85.0 90.5 0.800 0.97 86.1 67.0 78.4 0.545 0.86 86.3 63.8 77.3 0.519 0.85
[100,100] 96.2 90.5 93.9 0.873 0.98 84.9 69.8 78.8 0.555 0.86 85.1 65.5 77.3 0.519 0.84
[1000,1000] 95.0 87.5 92.0 0.833 0.98 84.2 66.8 77.2 0.520 0.86 83.4 65.5 76.2 0.498 0.84
SERT
[10] 99.2 72.4 93.4 0.799 0.98 99.1 66.1 91.7 0.752 0.97 99.0 67.6 92.1 0.760 0.97
[100] 99.0 89.2 96.9 0.906 0.99 98.4 83.8 95.1 0.856 0.98 98.6 83.1 95.2 0.857 0.98
[1000] 99.2 77.2 94.4 0.831 0.98 98.8 73.8 93.3 0.797 0.97 99.1 73.9 93.5 0.805 0.97
[10,10] 99.0 89.7 97.0 0.909 0.99 98.9 82.1 95.1 0.857 0.98 98.7 83.1 95.3 0.858 0.98
[100,100] 99.4 95.8 98.6 0.959 1.00 98.2 86.1 95.6 0.867 0.98 98.6 86.8 96.0 0.882 0.99
[1000,1000] 99.4 98.2 99.1 0.975 1.00 98.1 91.1 96.5 0.897 0.99 98.4 90.5 96.6 0.901 0.99
a

SE = sensitivity, SP = specificity, ACC = accuracy, MCC = Matthews correlation coefficient, ROC-AUC = area under receiver operating characteristic curve.