Skip to main content
. 2020 Jun 24;11(28):7444–7450. doi: 10.1039/d0sc02878a

Optimization of the dual catalytic enantioselective desymmetrization of allene-tethered cyclohexanonesa.

graphic file with name d0sc02878a-u1.jpg
Entry [Cu] cat. Prolinamide 2a b (%) drc erd
1 Cu(OTf)2 P1 76 8 : 1 82 : 18
2 CuI P1 44 >20 : 1 72 : 28
3 Cu(OAc)2 P1 40 7 : 1 70 : 30
4 Cu(MeCN)4PF6 P1 98 12 : 1 87 : 13
5 Cu(MeCN)4BF4 P1 76 11 : 1 78 : 22
6 Cu(acac)2 P1 93 10 : 1 80 : 20
7 Cu(MeCN)4PF6 P2 99 >20 : 1 82 : 18
8 Cu(MeCN)4PF6 P3 90 18 : 1 80 : 20
9 Cu(MeCN)4PF6 P4 99 >20 : 1 89.5 : 10:5
10 Cu(MeCN)4PF6 P5 90 18 : 1 89 : 11
Change from entry 9
11 Reaction run at 100 °C nd nd
12 Reaction concentration [0.04 M] 91 >20 : 1 90 : 10
13 Reaction concentration [0.02 M] 93 >20 : 1 91 : 9
14e P6 used as organocatalyst 82 >20 : 1 92.5 : 7.5
15 e , f TFA used instead of 4-BrPhCO 2 H 81 >20:1 96:4
a

General conditions: 1a (0.2 mmol), [Cu] catalyst (0.02 mmol, 10 mol%), 4-bromobenzoic acid (0.1 mmol, 50 mol%), prolinamide catalyst (0.06 mmol, 30 mol%), in CPME (0.1 M, 2 mL) at 120 °C, under an argon atmosphere for 48 h.

b

Isolated yield.

c

dr calculated via1H NMR analysis of the crude reaction mixture.

d

er value was determined via chiral HPLC analysis of the pure product.

e

Reaction concentration [0.02 M].

f

P6 (30 mol%) was used as prolinamide catalyst.