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Background. Thymoma is a heterogeneous tumor originated from thymic epithelial cells. The molecular mechanism of thymoma
remains unclear. Methods. The expression profile, methylation, and mutation data of thymoma were obtained from TCGA
database. The coexpression network was constructed using the variance of gene expression through WGCNA. Enrichment
analysis using clusterProfiler R package and overall survival (OS) analysis by Kaplan-Meier method were carried out for the
intersection of differential expression genes (DEGs) screened by limma R package and important module genes. PPI network
was constructed based on STRING database for genes with significant impact on survival. The impact of key genes on the
prognosis of thymoma was evaluated by ROC curve and Cox regression model. Finally, the immune cell infiltration,
methylation modification, and gene mutation were calculated. Results. We obtained eleven coexpression modules, and three of
them were higher positively correlated with thymoma. DEGs in these three modules mainly involved in MAPK cascade and
PPAR pathway. LIPE, MYH6, ACTG2, KLF4, SULT4A1, and TF were identified as key genes through the PPI network. AUC
values of LIPE were the highest. Cox regression analysis showed that low expression of LIPE was a prognostic risk factor for
thymoma. In addition, there was a high correlation between LIPE and T cells. Importantly, the expression of LIPE was modified
by methylation. Among all the mutated genes, GTF2I had the highest mutation frequency. Conclusion. These results suggested
that the molecular mechanism of thymoma may be related to immune inflammation. LIPE may be the key genes affecting
prognosis of thymoma. Our findings will help to elucidate the pathogenesis and therapeutic targets of thymoma.

1. Introduction

Thymoma is the most common anterior mediastinal com-
partment tumor, originating from the thymic epithelial cell
population [1]. The incidence of thymomas is approximately
2.5 cases per million people per year, with an age distribution
ranging from 10 to 80 years [2]. In addition, thymoma is
often associated with autoimmune diseases, especially myas-
thenia gravis (MG) [3, 4]. However, the potential molecular
oncogenesis of thymoma remains unknown. Generally, when
a thymoma is diagnosed, the patient will receive surgical
treatment. For stages III and IV patients, the 5-year survival
rates were 74% and <25%, respectively [5]. At present, nei-
ther surgeon nor physician can predict the prognosis and
metastasis status of thymoma patients through X-ray exami-
nation, nor can detailed treatment plan be formulated before

operation [6]. Obviously, the establishment of additional pre-
dictors is very beneficial for the identification and treatment
of thymoma.

The pathogenesis of thymoma is various, and the rapid
development of “genome” technology, including whole-
genome expression analysis and next-generation sequencing
(NGS), provides new means to explore the complexity and
map of genomic alterations in thymoma [7–9]. Epigenetic
modifications, including epigenetic alterations, are a feature
of cancer because they play an important role in the process
of carcinogenesis [10, 11]. In addition, the thymus provides a
special microenvironment for the development and selection
of mature T cells. Recent evidence suggests that immune
responses such as T cells are involved in the development
of thymoma [12, 13]. However, the understanding of the
pathogenesis of thymoma is still limited.
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In recent years, with the development of molecular biol-
ogy, more and more research projects have begun to explore
methods to accurately predict the prognosis of thymoma. In
this study, we used multiomics datasets from the tumor
genome map (TCGA). The results may be helpful to under-
stand the pathogenesis of thymoma and identify LIPE as a
potential new therapeutic target through bioinformatics
analysis. The novelty of this work is that we combined the
variance and difference of gene expression to screen the genes
related to the prognosis of thymoma through coexpression
network and PPI network. Then, the key genes were further
screened by methylation modification.

2. Materials and Methods

2.1. TCGA Dataset Processing and Coexpression Analysis.
Thymoma mRNA-seq expression data, methylation data,
mutation data, and clinical materials were obtained from
TCGA website (https://portal.gdc.cancer.gov/). The variance
of gene expression was calculated, and the top 1/4 genes were
intercepted for coexpression analysis through weighted gene
coexpression network analysis (WGCNA).

2.2. Screening of Differentially Expressed Genes. The differen-
tially expressed genes (DEGs) between thymoma and control
were identified by limma R package. Set the filtering thresh-
old P < 0:05.

2.3. Construction of PPI Network. The gene was mapped into
the STRING database (https://string-db.org) to obtain the
protein-protein interaction (PPI) network. A significant PPI
network was obtained by comprehensive score ≥ 0:7, which
was demonstrated by the Cytoscape software. The selection
of key genes was based on their association with other pro-
teins: genes with higher connectivity were considered to play
an important role in the PPI network [14, 15].

2.4. Enrichment Analysis. In order to analyze the biological
functions and signaling pathways of differentially expressed
genes in thymoma-related modules, we performed enrich-
ment analysis. Gene Ontology (GO) and the Kyoto Encyclo-
paedia of Genes and Genomes (KEGG) were enriched by
clusterProfiler R package. P < 0:05 was the threshold used
for the significant terms. Gene set enrichment analysis (GSEA)
was performed with the GSEA software for genes [16, 17].

2.5. Differential Methylation and Mutation Analysis. The
quality of the original probe data obtained from the methyl-
ated microarray was checked, including background correc-
tion, probe type difference adjustment, and probe exclusion.
According to these in sample standardized procedures,
DNA methylation was scored as a β value. We used samr R
package for differential methylation analysis. For a CpG site
to be considered differentially methylated, the difference in
the median β value in thymoma and normal samples should
be at least 0.1 and the P value <0.05. The nonsilent mutation
(gene-level) data were analyzed using Maftools R-package.

2.6. Statistical Analysis. Statistical analysis was performed
using the SPSS software, version 23.0 (SPSS Inc., Chicago,

USA). Kaplan-Meier method was used to estimate the overall
survival (OS). Cox regression model and Cox proportional
hazards regression method were used to identify predictors
of OS [18]. P value <0.05 was considered statistically signifi-
cant [19].

3. Results

3.1. Coexpression of Genes in Thymoma. According to the
variance results of thymoma gene expression, the top 1/4
genes with larger variance were selected for coexpression
analysis. A coexpression network consisting of 5758 genes
was obtained. Taken 0.9 as the threshold of correlation coef-
ficient, select the soft threshold as 7 (Figure 1(a)). A total of
11 coexpression modules were identified through WGCNA
analysis (Figure 1(b)). In addition, we calculated the correla-
tion between module genes and thymoma. We found that
MEgreen, MEblue, and MEturquoise had the highest correla-
tion with tumor samples (Figure 1(c)). Furthermore, 2559
differentially expressed genes (DEGs) were screened between
thymoma and control group (P < 0:05) (Figure 1(d)).

3.2. Enrichment of Differentially Expressed Genes in Modules.
Further, 913 intersection genes between DEGs and the three
modules with the highest correlation were selected as the
important genes for subsequent study and enrichment analy-
sis. The results of GO enrichment showed that these genes
were involved in 1234 biological processes (BP), 151 cell com-
ponents (CC), and 214 molecular functions (MF). It mainly
included cell growth, positive regulation of MAPK cascade,
ERK1 and ERK2 cascade, response to transforming growth
factor beta, and Wnt signaling pathway (Figure 2(a)). KEGG
enrichment results showed a total of 40 terms, mainly involv-
ing cell adhesion molecules, ECM-receptor interaction, focal
adhesion, and PPAR signaling pathway (Figure 2(b)). In addi-
tion, the GSEA results showed some of the same results as
KEGG, mainly including cGMP-PKG signaling pathway, cho-
lesterol metadata, and PPAR signaling pathway (Figure 2(c)).
These same signaling pathways cover a large number of differ-
entially expressed genes (Figure 2(d)).

3.3. Identification of Key Prognostic Genes. The overall survival
(OS) analysis of selected important genes identified 88 genes
with significant impact on prognosis (P < 0:05). Mapping these
genes into the STRING database yielded a PPI network of 45
genes, which was displayed by Cytoscape (Figure 3(a)). The
top six genes with the highest connectivity were analyzed in
depth as key genes. Among them, the expression of MYH6
and SULT4A1 in osteosarcoma was higher than that in control
group, while the expression of LIPE, ACTG2, KLF4, and TF
was decreased (Figure 3(b)). In addition, high expression of
LIPE and MYH6 could improve the OS of patients, and
ACTG2, KLF4, SULT4A1, and TF decreased the OS of patients
(Figure 3(c)). ROC curves showed that the AUC values of these
six genes were all greater than 0.6, especially those of LIPE, and
KLF4 and TF were greater than 0.9 (Figure 3(d)).

3.4. The Effect of Key Genes on Prognosis. Multivariate sur-
vival analysis was performed by Cox regression model, and
nomogram was generated by Cox regression coefficients.
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The nomogram showed that low expression of LIPE was a risk
factor for predicting the overall survival time of thymoma at 5
and 8 years (Figure 4(a)). Calibration plots showed that the
nomograms performed well compared with an ideal model
(Figure 4(b)). In addition, Cox risk ratio model suggested that
the survival rate of the high-risk population for thymoma was
poor (Figure 4(c)). Among them, low expression of LIPE and
MYH6 and high expression of ACTG2, KLF4, SULT4A1, and
TF were important risk factors.

3.5. Changes of Immune Microenvironment in Thymoma. By
comparing the immune cell infiltration between thymoma

and control, we found that dendritic cells (DC) decreased
most significantly in thymoma (Figure 5(a)). These differen-
tially infiltrated immune cells were clustered into four groups
(Figure 5(b)). The strongest correlation was found between T
cells and CD8 T cells or Th17 cells in thymoma tissues
(Figure 5(c)). In addition, we analyzed the correlation between
key genes and immune cells (Figure 5(d)). LIPE had the stron-
gest positive correlation with T cells and Th2 cells, MYH6 had
the strongest positive correlation with NK cells, TF, KLF4, and
aDC had the strongest positive correlation, SULT4A1 and
pDC had the strongest positive correlation, and ACTG2 and
neutrophils had the strongest positive correlation.
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Figure 1: Coexpression analysis of gene expression in thymoma. (a) Determination of soft threshold power in coexpression analysis. The left
image shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right image shows the average
connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). (b) Module cluster tree of thymoma genes with large
variance. Branches with different colors correspond to different modules. (c) The correlation between module and clinical trait. Each row
corresponds to a module, and each column corresponds to a feature. Each cell contains the corresponding correlation and P value. (d)
The differentially expressed genes between thymoma and control. Red nodes were significantly upregulated genes, and green nodes were
significantly downregulated genes.
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Figure 2: Continued.
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3.6. Regulatory Factors Associated with Thymoma. By com-
paring gene methylation modifications between thymoma
and control, we obtained 943 differential methylation sites
(Figure 6(a)). Among them, the methylation sites of chr1

accounted for the most, accounting for 13% (Figure 6(b)).
Fourteen genes were identified as methylation factors
because they had opposite levels of methylation and expres-
sion (Figure 6(c)). Among them, LIPE was significantly
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Figure 2: Enrichment analysis of thymoma-related module genes. (a) Important genes were involved in biological processes. Red nodes are
upregulated genes, and blue nodes are downregulated genes. (b) Important genes were involved in KEGG pathway. Different line colors
represent different signaling pathways which genes involved in. (c) KEGG pathway in GSEA for important genes. These pathways were
significantly upregulated in thymoma. (d) The DEGs involved in the same KEGG pathway in the results of enrichment and GSEA.
Different colors represent genes involved in different signaling pathways.
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Figure 3: Continued.
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associated with OS in thymoma. In addition, GTF2I, the gene
with the highest frequency of mutations in thymoma, was
missense mutation in all samples (Figure 6(d)).

4. Discussion

Like other malignant tumors, the growth and proliferation of
thymoma have many biological factors. However, the exact

molecular basis of thymoma occurrence remains unclear. In
this study, the possible molecular mechanism and regulatory
factors of thymoma were explored through multiomics.

Early studies have shown that changes in certain genes
seem to be associated with the development of thymic tumors
[20, 21]. Our data suggest that there is a large difference in
gene expression between thymoma and control. By identify-
ing coexpression network constructed by genes with larger
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Figure 3: Identification of key genes affecting overall survival of thymoma. (a) Cytoscape software shows the PPI network of important genes
based on the STRING database. (b) The expression of six genes with the highest connectivity in the PPI network. ∗∗∗P < 0:001. (c) The effect
of six genes with the highest connectivity in the PPI network on the overall survival of thymoma (Kaplan-Meier plot). Red and green curves
are for high expression and low expression, respectively. (d) ROC curve of key genes. Different color curves represent different genes.
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variance, module genes with high correlation with thymoma
were obtained. Intersection with differentially expressed
genes yielded 913 genes possibly associated with thymoma
development.

GO functional enrichment analysis is very powerful and
widely used to identify biological functions of gene expres-
sion data [22]. In the GO functional enrichment results,
MAPK cascade, ERK1 and ERK2 cascade, response to trans-
forming growth factor beta (TGF-β), and Wnt signaling
pathway were mainly involved. Mitogen-activated protein
kinase (MAPK) is a complex and interrelated signal cascade,
which is closely related to the occurrence and progress of
tumor, and plays an important regulatory role in cell prolifer-
ation, differentiation, migration, and survival [23, 24]. ERK
1/2 is also an effective target for anticancer [25]. Studies have
shown that MAPK signal and ERK 1/2 were significantly
activated in thymoma [26]. TGF-β inhibited apoptosis and
had reduced expression of IFN-γ in effector cell, a key medi-
ator of antitumor immunity [27]. Recently, it had been

proved that Wnt pathway was activated in human thymoma,
which may be involved in the tumorigenesis [28]. These find-
ings further confirmed that a variety of inflammatory pro-
cesses and cytokines were involved in the pathogenesis of
thymoma.

In addition, in KEGG enrichment results, ECM also regu-
lated intercellular communication, cell connectivity plasticity,
and cell adhesion molecules interacting with various cytoki-
nes/chemokines or growth factors [29, 30]. There were 34%
of the genes in the ECM-receptor interaction pathway mutated
repeatedly in cancer [31]. Focal adhesion kinase (FAK) is
highly expressed in thymic epithelial tumors and can be used
as an independent prognostic biomarker [32]. PPARγ overex-
pression more than doubled insulin-stimulated thymoma viral
protooncogene phosphorylation during low lipid availability
[33]. GSEA results had the same terms as KEGG enrichment
results, in which cholesterol accumulation was a common fea-
ture of cancer tissues. Recent evidence showed that cholesterol
played a crucial role in the progress of cancer including breast,
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Figure 4: The expression of key genes affects the prognosis of patients with thymoma. (a) Nomogram for predicting overall survival in
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prostate, and colorectal cancer [34]. Activation of cGMP PKG
signal may promote the growth of cervical cancer cells [35].

By screening the DEGs that had a significant impact on the
prognosis of thymoma, we identified LIPE, MYH6, ACTG2,
KLF4, SULT4A1, and TF as key genes. LIPEwas also predicted
as a new prognostic marker of thymoma in other studies [36].
Consistent with our analysis, MYH6 was differentially
expressed in thymoma [37]. We found that MYH6 may be a
potential target for thymoma. ACTG2, KLF4, SULT4A1, and
TF were all involved in the occurrence or development of can-
cer, but their biological significance in thymoma was not clear
[38–41]. This needs further study and discussion of the follow-
up experiments.

From the perspective of immunemicroenvironment, innate
immune cells such as DC and adaptive immune cells such as T
cells played an important role in thymoma [13, 42, 43]. There
was a strong correlation between LIPE and immune cells, sug-
gesting that LIPE may participate in the prognosis of thymoma
by regulating the immunity system. Interestingly, we found that
LIPE was also a gene regulated by methylation. DNA and RNA
methylation genes are commonly studied as biomarkers [44,
45], which also seems to be a way for LIPE to participate in
the development of thymoma [46]. On the other hand, genetic
difference in thymoma was also an effective way to screen
potential therapeutic targets [9]. GTF2I mutation occurs at high
frequency in thymoma and is a marker of good prognosis [47].

aD
C

B.
ce

lls
CD

8.
T.

ce
lls

Cy
to

to
xi

c.c
el

ls
D

C
Eo

sin
op

hi
ls

iD
C

M
ac

ro
ph

ag
es

M
as

t.c
el

ls
N

eu
tr

op
hi

ls
N

K.
CD

56
br

ig
ht

.ce
lls

N
K.

CD
56

di
m

.ce
lls

N
K.

ce
lls

pD
C

T.
ce

lls
T.

he
lp

er
.ce

lls
Tc

m
Te

m
TF

H
Tg

d
Th

1.
ce

lls
Th

17
.ce

lls
Th

2.
ce

lls
TR

eg

aDC
B cells
CD8 T cells
Cytotoxic cells
DC
Eosinophils
iDC
Macrophages
Mast cells
Neutrophils
NK CD56bright cells
NK CD56dim cells
NK cells
pDC
T cells
T helper cells
Tcm
Tem
TFH
Tgd
Th1 cells
Th17 cells
Th2 cells
TReg −1

−0.5

0

0.5

1

(c)

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎⁎

⁎ ⁎ ⁎

⁎⁎⁎⁎ ⁎⁎

⁎⁎

⁎⁎⁎⁎ ⁎⁎ ⁎⁎

⁎⁎

⁎⁎

⁎⁎ ⁎⁎

⁎⁎

⁎⁎⁎⁎

⁎⁎

⁎⁎ ⁎⁎

⁎⁎

⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎

⁎ ⁎ ⁎

⁎

⁎

⁎

⁎

⁎ ⁎

⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎

⁎ ⁎ ⁎⁎

⁎⁎

ACTG2

aD
C

B 
ce

lls
CD

8 
T 

ce
lls

Cy
to

to
xi

c c
el

ls
D

C
Eo

sin
op

hi
ls

iD
C

M
ac

ro
ph

ag
es

M
as

t c
el

ls
N

eu
tr

op
hi

ls
N

K 
CD

56
br

ig
ht

 ce
lls

N
K 

CD
56

di
m

 ce
lls

N
K 

ce
lls

pD
C

T 
ce

lls
T 

he
lp

er
 ce

lls
Tc

m
Te

m
TF

H
Tg

d
Th

1 
ce

lls
Th

17
 ce

lls
Th

2 
ce

lls
TR

eg
KLF4

LIPE

MYH6

SULT4A1

TF

Immune_cells

−0.50

−0.25

0.00

0.25

0.50

⁎ P < 0.05
⁎⁎ P < 0.01

CorrelationHub genes cor with immune cells in THYM

(d)

Figure 5: Immune cell infiltration in thymoma. (a) The difference of immune cell infiltration between thymoma and control. The blue line
represents a significant difference. (b) Clustering of immunocytes with differential infiltration. The red line represents the positive correlation
between immune cells, and the blue line represents the negative correlation. (c) Correlation between immune cells in thymoma. Red
represents positive correlation between immune cells, and blue line represents negative correlation. The size of the node represents the
size of the correlation coefficient. (d) Correlation between key genes and immune cells. Red represents positive correlation between
immune cells, and blue line represents negative correlation. ∗P < 0:05 and ∗∗P < 0:01.

11BioMed Research International



Hypermethylated DMPs Hypomethylated DMPs

cg25270788

cg27544288

cg03634592 cg02235894

cg06405765

cg20384325
cg23138608cg18262591cg07846737

cg04510420

0

10

15

20

30

−0.25 0.00 0.25 0.50
Methylation difference (beta−value)

Feature
1st Exon
3’UTR
5’UTR
Body
Island

Opensea
Shelf
Shore
TSS1500
TSS200

51.22 % 48.78 %

6.2%

3.2%

9.3%

39.2%

3.4%

7.3%

1.4%

1.2%

12.1%

16.8%

1stExon

3’UTR

5’UTR

Body

Island

Opensea

Shelf

Shore

TSS1500

TSS200

−
lo

g1
0 

(P
 v

al
ue

)

(a)

chr19: 7%

chr4: 5%

chr7: 6%

chr11: 5%
chr16: 3%chr15: 3%

chr8: 5%

chr12: 7%

chr14: 3%
chr18: 2%

chr10: 5%

chr1: 13%

chr22: 1%

chr6: 7%
chr2: 7% chr3: 5%

chr20: 2%
chr21: 1%

chr17: 6%

chr5: 5%

chr9: 2%

chr13: 3%

(b)

Figure 6: Continued.

12 BioMed Research International



TGFBR2

STX11

LIPE

LAMA4

KRT18

KLC3

HRAS

GPIHBP1

FZD4

FERMT2

ERBB4

EPHA1

CD36

ART4

Exp Methy

Sy
m

bo
l

Type
Exp
Methy

logFC
1
2
3

4
5

Status
UP
DOWN

Heatmap with Hub_Genes Exp in TCGA
Group

Group
Tumor
Normal

−2

0

2

(c)

0

688

NA

N
A

SMARCA4

RYR2

NF1

DNAH3

DNAH17

CYLD

CUBN

CSMD2

CLIP2

BDP1

BCOR

TP53

OSGIN1

HDAC4

DMD

AL022578.1

MUC16

TTN

HRAS

GTF2I

2%

2%

2%

2%

2%

2%

2%

2%

2%

2%

2%

3%

3%

3%

3%

3%

7%

7%

8%

50%

0 62

Masaoka_stage
Vital_status
Race
Gender

Missense_Mutation
Splice_Site
Nonsense_Mutation

In_Frame_Ins
Frame_Shift_Del
Multi_Hit

Gender
Male
Female
NA

Race
Asian
White
NA

Not reported
Black or African American

Vital_status
Alive
Dead
NA

Masaoka_stage
Stage I
Stage III
Stage IIb

Stage IIa
NA
Stage IVb

Altered in 82 (66.67%) of 123 samples.

(d)

Figure 6: Methylation and mutation in thymoma. (a) Differential methylation sites between thymoma and control. (b) The proportion of
methylation sites in different chromosomes. (c) The expression and methylation of methylation factors. Red node represents upregulation,
and blue node represents downregulation. Yellow represents positive gene expression, while blue represents negative gene expression. (d)
The top 20 genes with the highest mutation frequency in thymoma. Each cell represents a sample.

13BioMed Research International



However, this study also had some limitations. Firstly,
conclusions may be limited by small samples, especially con-
trol samples. Secondly, the results of this study had not been
verified by molecular experiments, so the interpretation of
the results may be cautious. In this study, the possible molec-
ular changes and pathogenesis of thymoma were investigated
using the multiomics data from TCGA database. This study
identified key genes related to the prognosis of thymoma,
including LIPE, MYH6, ACTG2, KLF4, SULT4A1, and TF.
The expression of these genes in thymoma may be a promis-
ing biomarker, which needs further study.

5. Conclusion

In this study, potential targets associated with thymoma were
identified by combining thymoma-related gene expression,
methylation, and mutation data. Using a variety of bioinfor-
matics analysis methods, we found that important genes
related to thymoma were associated with immune inflamma-
tory response. LIPE, MYH6, ACTG2, KLF4, SULT4A1, and
TF were the key genes affecting the prognosis of thymoma.
Among them, LIPE was also modified by methylation.
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