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The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and
autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D),
psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient
transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells
(Tcq)- Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these
effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global
physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of
folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation
and maintenance of T,,, we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent
induction of GI tract T, particularly colonic T, via anergic T cells (T,,). Hence, folate supplementation has potential

prophylactic and/or therapeutic benefit in AID/AD.

1. Introduction

Autoimmune diseases (AD) develop when there is break-
down of immunological tolerance to self-antigen in the adap-
tive immune system while autoinflammatory diseases (AID)
occur when there are defects or dysregulation in the innate
immune system [1]. In both cases, a disordered microbiome
has been implicated and, by inference, an altered bacterial
flora including its secreted products [2]. Classical AD such
as multiple sclerosis (MS) [3], type 1 diabetes (T1D) [4],
and rheumatoid arthritis (RA) [5] is kept at bay by a healthy
microbiome, while probable AID such as inflammatory
bowel disease (IBD), Behget’s uveitis, and ankylosing spondy-
litis (AS) are negatively affected by a disordered microbiome
(reviewed in [6]). Psoriasis, a debilitating skin inflammation,
and uveitis, a major sight-threatening disease in which infec-
tion may be a direct or indirect cause, are considered in many
cases to be either an AD or an AID [7, 8].

In both AD and AID, there is failure of immune regula-
tion (tolerance) and a disturbed microbiome. Identifying

possible causal links between these two biological domains
is a major focus. In adaptive immunity, tolerance (homeosta-
sis) is maintained by autoreactive T cell deletion/anergy or
suppression by T regulatory cells (T',). T, are also effective
in controlling innate immunity by regulating the activity of
myeloid and NK cells [9] and so contribute to preventing
AID. Circumstantial evidence for their role in AD and AID
is the decline in T', numbers in many of these conditions
such as AS [10] as well as the effectiveness of adoptive T,
therapy in experimental models of AD and AID.

2. The Colonic Microbiota Shapes the
Host’s Health

The prenatal GI tract is sterile due to the protective immuno-
logical placental barrier preventing bacterial translocation
into the fetal organism. Microbial colonialization develops
gradually when environmental contact first occurs upon
delivery. This has significant implications for overall health
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in later life [11, 12]. For instance, the expanding gut micro-
biome exerts its effects on brain- (CNS-) related immune
privilege (IP) in that the blood-CNS barriers only reach
maturity in the neonatal period [13-15]. A key colonic
metabolite that can modulate the immune system is folate.
Naturally, occurring folate/vitamin B9 (pteroyl-glutamic
acids and oligo-glutamic acid conjugates) and its synthetic
form folic acid (FA) are water-soluble B vitamins that must
be ingested through the diet (e.g., legumes and leafy greens
[16, 17]) or supplements [18]. Commensal bacteria [19] are
also capable of synthesizing folate and other B vitamins. Glu-
tamic compounds [20] occur in the body as different metab-
olites with variable bioavailability [21] and the terms folate
and FA are often used interchangeably. The role of folate in
hematopoiesis, reproductive health and foetal development
are well known, and an extended role for the vitamin partic-
ularly in later life is recognized in preventing a decline in cog-
nitive and neurological functioning [16, 22, 23]. Indeed, most
likely due to inadequate intake, folate deficiency is more
prevalent in the older population [24] contemporaneously
with a higher incidence of chronic disease.

Hence, a balanced microbiome with adequate folate and
micronutrient production maintains homeostasis. Recently,
however, the microbiome has come under scrutiny as a source
of pathogenic antigens capable of inducing or promoting AD
[25-28]. This is particularly linked to dysbiosis [29] and may
be the result of infection with pathogenic bacteria, loss of com-
mensal bacteria, or reduction in microbial diversity [30]. The
human intestinal epithelium covers as much as 400 m* of sur-
face area [31] with more than ten times as many resident
microbes as the total number of cells in the body [32]. Overall,
the gut microbiota comprises five phyla and about 160 species
in the large intestine [33], and the number of genes of the
intestinal microbiota is 150 times greater than the human
genome [34]. Qualitative and quantitative changes in the
microbial flora, their metabolic activity, and their local distri-
bution [35] are a typical feature of IBD [36] that is otherwise
characterized by the infiltration of the lamina propria with a
mixed leukocyte population expressing proinflammatory
cytokines [37]. Whether dysbiosis represents the cause or
result of IBD (reviewed in [38]), it is a correlated biomarker
of extraintestinal inflammatory disease (reviewed in [25,
39]). While mechanistic evidence is still limited, dysbiosis
has long been linked to AD [40], including noninfectious uve-
itis [41-43], (reviewed in [25]), often occurring simultaneously
with acute flare-ups of colitis [44]. Thus, it can be seen that
dysbiosis and similar microbiota-related environmental fac-
tors impact up to 70% of all AD [45, 46], and while the etiology
of IBD itself is not fully understood, it is considered to be the
result of an interplay between environment/nutrition, micro-
biota, gastrointestinal immunity, and epigenetics.

3. The Microbiome Promotes Immunological
Tolerance via an Immune Privilege-
Like Mechanism

Immune privilege is a relative property of all tissues reflecting
various degrees of tissue-based immunological tolerance [47]
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and has particular relevance for the large intestine, now con-
sidered a secondary immune organ [48, 49]. “Unconven-
tional” IP of the gut [50] tolerates trillions of commensals
and has two components, a physicochemical barrier and an
immunological barrier [51]. The physical barrier is provided
by the two cellular barriers which prevent translocation of
pathobionts from the intestine to the general circulation
(reviewed in [47]). These include a monolayer of enterocyte
epithelium (i.e., an intestinal epithelial barrier, IEB) covering
the entire mucosa and the subjacent lamina propria and a
stringent gut-vascular barrier (GVB). The physical barrier
to the passage of small molecules is provided by immunolog-
ically responsive [50] intraepithelial tight junctions [52]
while a chemical barrier derives from specialized enterocytes
(mucus-producing goblet cells and Paneth cells) which
secrete antimicrobial peptides (reviewed in [53, 54]). A fur-
ther physical barrier to hematogenous passage of any patho-
gens which may have penetrated the epithelium is provided
by the GVB [55] with its closely associated pericytes and
enteric glial cells which serve a vital function in retaining bar-
rier properties [56-60].

The immunological component of the gut barrier is pro-
vided by a wealth of immune cells in the gut, including tol-
erogenic DC, several types of classical T cells including T,

three sets of innate lymphoid cells (ILC), myeloid suppressor
cells, and mucosa-associated invariant T (MAIT) cells. These
cells regulate aspects of both the adaptive and innate immune
systems and are under the control of secreted factors both by
host cells and the microbiome. For instance, flagellin associ-
ated mostly with gram-negative bacteria (e.g., E.coli and Sal-
monella) binds TLR5 on CD103" mucosal DC which secrete
IL23 to act on ILC which in turn release IL22 to then induce
the gut epithelium to release antimicrobial peptides [30], and
colonic Clostridia through their metabolic activity have been
found to induce and impact the colonic distribution of T, in
mice [61-63]. T, are known to be stabilized by folate [64~
66], that in turn is synthesized by some commensals includ-
ing Clostridia, Lactobacilli, and Bifidobacteria [67]. These
findings point to a tolerizing immunological role for the
commensal microbiome that has the potential to exert effects
on disease induction and progression. How gut-derived leu-
kocytes might cross distant barriers at target sites and induce
AD/AID remains to be clarified. Several mechanisms have
been proposed [25] viewed from both the perspective of an
adaptive immune response (TCR activation) and dysregula-
tion of the microbiome.

4. The Microbiome Mediates Immunological
Tolerance via the Products of
Microbial Fermentation

Microbial fermentation in the gut generates secreted prod-
ucts which directly modify immune activity (Figure 1). These
include products of tryptophan metabolism, short-chain
fatty acids (SCFA), and folate.

4.1. Tryptophan. Tryptophan is an essential amino acid (AA)
that is delivered through the diet, particularly dairy products
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FIGURE 1: Bioavailable folate (B9) produced by certain phyla of the human microbiome (Proteobacteria, Firmicutes, Actinobacteria, and
Verrucomicrobia [84]; green microbes) and short-chain fatty acids (SCFA) locally stabilize T regulatory cells (T,.,) in the colon, thereby
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increasing their abundance (a). T cells traffic from the colon to distant sites [85, 86] where they accumulate and exert their respective
functional properties. The inflamed colon ((b); characterized by structural damage—“leaky gut”) is frequently accompanied by dysbiosis
(red microbes). This qualitative and quantitative shift in bacterial colonization is associated with decreased microbial folate and SCFA
production and a consequential relative increase in autoreactive immunogenic T effector cells (T ) [87]. T, have been shown to traffic
from the colon to target sites of autoimmunity [85, 86] (e.g., intraocular tissue in the case of autoimmune uveitis), skewing the ratio of
immunogenic (T.) to regulatory cells (T,) at target sites [88-90], ultimately breaching ocular immune privilege (IP) through unknown
mechanisms, and thereby triggering autoimmune disease. Due to impaired intestinal barrier integrity in dysbiosis, pathogenic
bacterial/viral/fungal/environmental antigens have facilitated access to the circulation, possibly triggering inflammation through adjuvant
effects at affected sites (following antigen presentation; APC) (b). In the case of uveitis, we propose that when a sufficiently high T
precursor frequency is generated [91], activated T cells access retinal tissue where they adopt a pathogenic phenotype upon further

activation by retinal self-antigen and/or microbial antigen [92].

and fish. Host metabolic pathways of tryptophan include the
serotonin and kynurenine routes, the latter of which via
indoleamine 2,3 dioxygenase (IDO) is a major tolerizing
pathway in DC and macrophages. Its downstream products
such as kynurenic acid (KA), 3-hydroxy-anthranilic acid
(HAA), quinolinic acid (QA), and niacin (vitamin B3) sup-
press both innate and adaptive immunity and promote
immunological tolerance and gut homeostasis (reviewed by
[68]). Tryptophan can also be metabolized by microbiota-
generating metabolites that interact with the aryl hydrocar-
bon receptor [69]. The IDO pathway and the AhR system
are active in many cell types and important in homeostasis,
e.g., in epithelial health. In immune cells, it mediates toler-
ance and suppresses inflammation via DC-mediated induc-
tion of T,

4.2. Retinoic Acid. Induction of T,,, in the gut may also
require supplementation of dietary vitamin A (retinol) which
is directly converted to bioavailable all trans-retinoic acid
(atRA) by gut-associated lymphoid tissue DC [70] and in
both mice and humans promotes conversion of naive T cells
into tissue-specific (mucosa homing) FoxP3"T,, through
FoxP3 promoter histone acetylation [71]. Moreover, atRA
prevents the IL6-induced conversion of T, into Th17 cells
and boosts the generation of TGFS-induced T,
were effective in suppressing inflammation in a colitis model
[72]. Similarly, atRA stabilized T\, in an experimental auto-
immune encephalitis model (EAE) through a TGFf-depen-
dent pathway [73], and in an experimental autoimmune
uveitis (EAU) model, atRA acted as an adjuvant to induce

in vitro that

antigen-specific type 1 T'
[74].
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4.3. SCFA. SCFA produced by the microbiome are major
effectors of immunomodulation. Three main SCFA are rec-
ognized: acetate, butyrate, and propionate. Acetate accounts
for ~50-70%, propionate ~20%, and butyrate, which is selec-
tively restricted to certain Clostridia species, makes up the
remainder [75]. SCFA regulates intestinal T',, and macro-
phages, and the majority of SCFA produced remain in the
gut generating beneficial effects locally, while only negligible
quantities escape into the general circulation [76]. Dysbiosis
in IBD (colitis) patients is typically associated with a reduced
number of bacteria that produce SCFA particularly butyrate
and propionate (Figure 1(b)). These include Firmicutes such
as cluster IV Clostridia next to Bifidobacteria. Propionate and
butyrate suppress inflammation by promoting the generation
of tolDC and T e (reviewed in [77]). In germ-free mice
treated with antibiotics, stool butyrate concentrations were
decreased relative to littermate mice [78]. Oral acetate sup-
plementation in NOD mice reduced autoreactive T cells in
lymphoid tissues in a B cell-mediated fashion. A butyrate-
rich diet increased T, while a combination of both SCFA
improved gut barrier function and decreased diabetogenic
IL21 in serum of NOD mice [79]. Colonic concentrations
of SCFA, including butyrate, correlated with the number of
FoxP3" T, in the caecum of mice [62]. Furthermore, oral

administration of butyrate to mice increased the FoxP3
expression in T, higher numbers of 7', in mucosal tissues,

and an enhanced ability of DC to induce T\, differentiation.



These data suggest that butyrate (and to a lesser extent propi-
onate) promotes extrathymic differentiation of T, [78].
Recent findings from human trials investigating AD (MS
and neuromyelitis optica) support this hypothesis [80, 81].

Vitamin B3 (niacin) also exerts immune-modulatory
functions by increasing T\, cell numbers and functioning
[82, 83] together with butyrate through activation of its
receptor Gprl09a, thereby protecting against colon inflam-
mation [83].

Mechanistically, SCFA act by inhibiting histone deacety-
lases (HDAC) [78], in antigen-presenting cells affecting atRA
and IL10 production [93]. HDAC also induce apoptosis in
T cells [94] and engage in loosening of chromatin, thus
enabling transcription factor accessibility to the DNA back-
bone. These findings suggest a balancing effect of SCFA on
mucosal and systemic immunity, possibly affecting inflam-
mation in secondary organs, since mucosal inflammation is
typically associated with epithelial damage (“leaky gut”).
Fukuda et al. [95] demonstrated that acetate (produced by
Bifidobacteria and Clostridia) may improve leaky gut by
restoring gut epithelial integrity through activation of the
inflammasome and IL18 [96].

4.4. Folate. Folate is synthesized de novo from phosphoenol-
pyruvate and guanosine triphosphate (GTP) and secreted by
commensals of the phylum Bacteroidetes (Prevotella, Bacter-
oides, Porphyromonas [97]) (reviewed in [98]) (Figure 2). In
contrast to dietary vitamins that are mostly absorbed in the
small intestine, microbial folate metabolites are mainly
absorbed in the colon where they are produced [99, 100]
and assimilated into host tissues [100-102]. Various gluta-
mylation profiles for commensal gut microbes (i.e., species-
specific patterns of folate derivatives) may affect folate bio-
availability in the intestine [84] and the general circulation
[67], and the colon is recognized as a significant folate depot
[19]. Folic acid deficiency is associated with disruptions of
intestinal integrity and persistent diarrhea (reviewed in
[103]). A folate-producing microbiome likely influences the
T cell methylome, but the mechanism is unclear [94]. Rats
fed a probiotic formulation of folate-producing Bifidobac-
teria exhibited increased plasma folate levels, confirming
in vivo production and absorption of the vitamin. The same
supplement when administered to humans raised folate con-
centration in feces (reviewed in [67]). A sufficient folate sta-
tus therefore is likely to reduce the risk of AD/AID
including uveitis.

5. Microbiome-Mediated Immune Tolerance Is
Maintained through Regulatory and Anergic
T Cells under the Influence of Folate

Deletion, anergy, and induction of T, are the tenets of
immune tolerance. T, are generated centrally in the thymus
de novo (natural T, nT,.,) and in the periphery (pT,
from conventional T cells (T,,,). Most autoreactive T,
are deleted in the thymus or periphery but a proportion
may enter a state of anergy (T,,) as they become tolerized
[104-107]. pT,,, in the gut are recognized as major contrib-
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FI1GURE 2: Bacterial route of de novo folic acid synthesis. Certain
commensals of the human colonic flora produce folate de novo
through the chorismate pathway (from phosphoenolpyruvate +
guanosine triphosphate, GTP),. Further, 77% of the bacterial
genome is capable of synthesizing folate using freely available
p-aminobenzoic acid (pABA) and dihydropteroate diphosphate
(pteridine), [84]. The pathway engages a series of enzymatic
reactions (red protein symbols) including dihydropteroate
synthetase and  dihydrofolate synthetase. The resulting
dihydrofolate (via the dihydropteroate intermediate) must be
enzymatically reduced (through dihydrofolate reductase) to
generate biologically active tetrahydrofolate. This process can be
blocked by the folate antagonist methotrexate (Mtx), used for
controlling some forms of autoimmune disease including anterior
uveitis. Folate metabolites synthesized by commensals are used by
the bacteria themselves (e.g., for DNA-synthesis or anabolic
pathways such as generation of amino acids, AA). The remaining
unused folates are released into the gut lumen and absorbed in a
receptor-mediated fashion absorption into the circulation.

utors to immune homeostasis and generated in response to
tryptophan metabolites or SCFA secreted by the microbiome.

Less is known about the role of microbiome-generated
folate in colonic Treg formation. However, an important
property of pT,., is the high expression of the folate receptor,
FR4 [65]. In addition, a developmental relationship between
T,.; and T, has been suggested [105, 106, 108, 109]. Both
cell types have some overlapping features such as expression
of the folate receptor FR4 [108]. Moreover, on adoptive
transfer, anergic FoxP3" CD44" CcD73" FR4M Nrpl* cells
gave rise to FoxP3"T,, in an autoimmune arthritis model
and reduced the susceptibility of mice to IBD [110], through
acting as progenitors for T, cell differentiation. Both T,
and T, rely on similar tightly regulated epigenetic programs
to retain function [105, 109, 110]. nT,,, contain highly meth-
ylated CpG-rich regions in the conserved noncoding
sequence 2 (CNS2) of the FoxP3 locus ([111, 112]; reviewed
in [113]) since pT,, are induced in the periphery, this level
of methylation is lost allowing stable FoxP3 expression
(summarized in [114]). Thus, systemic folate may be more
important in the generation of nT,, rather than stable pT,.,
as exist in the colon. However, the increased number of total
methylation sites in T, in the periphery [115] probably
allows a necessary degree of instability to permit intercon-
version of T,, and pT,.. This points towards a potential
indirect T, replenishing effect of folate through epigenetic
modifications in T,,. Microbiome-derived folate might thus
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generate a pool of T,, from T, which have the option of
losing their methylation sites and becoming stable T,,. This
degree of flexibility underpins the properties of immunolog-
ical tolerance.

The mechanism whereby folate modifies T,., appears to
be through inhibiting cell death specifically by induction of
Bcl-2. Adoptive transfer of T,.,-depleted cell suspensions
induced autoimmune gastritis in susceptible nude mice [65]
while adoptive transfer of folate-supplemented T, pro-

longed the cells’ survival and protected the mice from the dis-
ease. Mice treated with the folate antagonist methotrexate
(Mtx) show impaired survival of T,,, and decreased expres-
sion of Bcl-2, while in vivo depletion of dietary folate resulted
in a reduction in T, cell numbers in the small intestine. In
this study, folate was required for the survival of differenti-
ated nT,,, but not for the conversion of naive T cells into
pT.e; [66]. Remarkably, this effect is different from that of
atRA, and less so vitamin D3, which both enhance the differ-
entiation of naive T cells into pT,., (72, 116-119], emphasiz-
ing a unique role for folate in the generation of nT,,, [113].
This selective effect of folate on maintenance of FoxP3" T,
has been further demonstrated [64], while a diet deficient in
folate resulted in a marked reduction of FoxP3" T, but
not other T cell populations, in the colon. In the same study,
blockade of FR4 and treatment with Mtx, led to decreased
colonic FoxP3" T, and increased autoimmune bowel
inflammation. These data have implications for human biol-
ogy but remain to be verified in man, particularly as T,

exhibit some degree of phenotypical variation between mice
and humans [120, 121].

6. FoxP3 in T Regulatory Cells Controls the
Expression of the Folate Receptor

At a molecular level, folate stabilizes overall cell proliferation,
controls DNA modification (histone methylation), and met-
abolically detoxifies the prooxidative AA intermediate homo-
cysteine, by recycling it to the essential sulphur-rich AA
methionine (Figure 3) or alternatively, the semiessential AA
cysteine (not depicted in Figure 3).

Folate is delivered to cells through three known routes:
(1) via folate receptors (FR)/folate-binding protein (Folbps)
[122], (2) the reduced folate carrier, and (3) through the
proton-coupled folate transporter [123]. In humans, there
are four FR isoforms, namely, a, 3, y, and &, with tissue-
specific expression patterns [122, 124]. Initially, three FR iso-
forms with greater than 70% homology were identified in
humans (i.e, &, 8, and y) and two in mice (ie., « and )
[125]. The human receptor homologue for murine FRS (also
known as FR4 or folate binding protein 3) is expressed on
splenic and thymic lymphocytes [126] and is particularly
abundant on both nT,., and pT,.,, in both mice and humans
[65, 127, 128]. Since FR4 is a glycosyl phosphatidylinositol-
anchored protein, adapter molecules may assist the receptor
in the maintenance of T\, cell survival [129, 130] but little

is known about its precise role. Importantly, based on its
Tg-specific expression, FR4 can be used to discriminate

T\ from T, following antigen stimulation [65].
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FIGURE 3: Pathways of folate metabolism and the interrelationships
of folate-dependent reactions. Dihydrofolate (DHF) from
nutritional sources and the gut microflora is enzymatically
reduced engaging dihydrofolate reductase (DHFR) to biologically
active tetrahydrofolate (THF), a process that is competitively
blocked by the folate analogue methotrexate (Mtx). This has
implications for cell proliferation, division, and survival. Folate
metabolism branches out into anabolic pathways including
synthesis of amino acids (AA) and amines (=NH) as well as
purines and thymidylate for DNA production. Importantly, folate
in the form of 5-methyl tetrahydrofolate (5-metTHF) serves as a
methyl-group (CH;) donor in the detoxification of proatherogenic
homocysteine to the AA methionine. SAM is the universal CH,
donor in histone- and DNA-methylation. This function gives
folate powerful mediating properties at an epigenetic level with a
potential role in thymic CD4" nT,, expansion. Abbreviations:
MTR: methionine synthase requiring the co-factor vitamin BI12
(cobalamin) as a methyl transfer vehicle (methyl cobalamin, CH;-
B12); MTHFR: 5,10-methylenetetrahydrofolate reductase (requiring
the co-factor NADPH, not shown); THEF: tetrahydrofolate.
Methionine cycle metabolites: SAH: S-adenosylhomocysteine;
SAM: S-adenosylmethionine; =NH: amines.

The high folate requirement of murine nT,,, is met via
upregulation of the FR4 surface expression, under the con-
trol of FoxP3 [65], suggesting a tight crosstalk between the
transcription factor and receptor expression. Folate may
also influence other T, molecular pathways (summarised

in [114]).

7. The Microbiome in Uveitis

Uveitis (intraocular inflammation) is an AD/AID which
causes significant blindness and visual handicap worldwide
(10-15% in the developed world) [131]. A failure of T\ as
an underlying pathogenesis is suggested by the reduced num-
bers of circulating T, in patients with uveitis, and since the
number of circulating T\, correlates with certain taxa in the
colonic microbiome and become stabilized in vivo by bacte-
rial metabolites ([61, 63] see above), this supports a role for
a dysregulated microbiome in uveitis. Uveitis occurs in two
broad forms, anterior uveitis involving the iris and ciliary
body and is closely linked to ankylosing spondylitis (AS) in
many cases, and posterior uveitis involving the retina which
is protected by the blood retinal barrier (BRB). Both forms
of uveitis are subject to changes in the microbiome,



particularly anterior uveitis, in conjunction with AS and IBD
[132]. Specific autoantigens for human uveitis have been
intensively sought but not identified (reviewed in [7]).

Recently, an experimental model of spontaneous uveitis
(experimental autoimmune uveoretinitis, EAU) in a trans-
genic TCR mouse with specificity for a retinal protein (poten-
tial autoantigen: interphotoreceptor retinol binding protein,
IRBP), in which the mice next to uveitis also develop dysbio-
sis, has been described. It was suggested that the pathogenic
antigen was an unidentified commensal protein which was
crossreactive with the IRBP-TCR and, due to the loss of
colonic IP (leaky gut), bacterial forms translocated across
the gut wall and activated T cells in the gut draining lymph
node. Included in this T cell population were autoreactive
IRBP-specific T cells which in this mouse model are in
increased frequency (~20%) [133]. Once activated, circulat-
ing T cells crossed the BRB and were further activated on
contact with cognate antigen in the retina causing uveitis
and retinal damage. The definitive proof-of-principle experi-
ment was that no uveitis occurred in germ free IRBP-TCR
specific mice, i.e., animals lacking a microbiome. Whether
the commensal antigen translocated freely in lymphatics or
was carried as cargo by trafficking antigen presenting cells
is not clear, but trafficking of leukocytes to and from the
gut occurs in both health and disease [85, 86], emphasizing
a tight immunological crosstalk between the intestine and
extraintestinal tissues. While an interesting hypothesis, a
similar prevention of EAU was shown in germ free mice
[26, 134] in which EAU was induced using a standard proce-
dure of IRBP peptide emulsified in Complete Freund’s Adju-
vant (CFA) [135]. In this model, disease is induced by a
specific antigen in IRBP-specific T cells, in which the precur-
sor frequency of antigen-specific T cells is vanishingly low. In
this case, the effect of the microbiome on the induction of
uveitis is more likely to be indirect. In another model, in
which EAU develops spontaneously due to lymphopenia
and imbalance in [T o:T ] ratio, we have shown that disease
can be prevented by adoptive transfer of antigen-experienced
T eg> but not by naive T e Furthermore, there was evidence
of Ty, to T\, conversion [90].

It is therefore relatively unexplained how the microbiome
influences susceptibility to uveitis and in the context of this
review, what might be the role of folate? Recent studies
(reviewed in [136]) proposed that EAU in mice might be
mediated through epigenetic changes possibly involving
Tbx21 and Rorc—two transcription factors important for
the differentiation of T', and Th17 cells [137]. Interestingly,
hypomethylation of these factors (along with FoxP3) was
found in the retinas and RPE-choroidal tissues of B10.RIII
mice developing CFA-induced EAU after IRBP immuniza-
tion, together with an increase in proinflammatory IFNy
and IL17 and reduced DNA-methyltransferase 1 (DNMT1)
expression in these tissues corresponding to the genes’ meth-
ylation status ([138]; reviewed in [136]). These findings high-
light a requirement for folate to modulate inflammation at an
epigenetic level in the prevention of AD and although not
stated in that paper, may be linked to the interconversion

of T, to generate stable T, all under the control of FoxP3.
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In a separate study, upregulation of miRNA-223 was detected
in IRBP-specific Th17 cells from an induced EAU mouse
model [139] as well as in uveitis patients’ sera [140]. The lat-
ter study revealed a pattern of six miRNAs that were linked to
inflammatory signalling cascades, such as MAPK, FOXO,
and VEGF. Of those miRNAs highlighted, miRNA-223 stood
out, as it not only promoted an inflammatory response
through activation of DC and T cells but also hinted at
a dysbiotic microbiome [141-143] with reduced colonic
folate synthesis/bioavailability. Interestingly, hyperhomo-
cysteinaemia, and its underlying polymorphisms in folate
metabolism-associated genes [144], occurs in autoinflam-
matory (Behget’s) uveitis patients [145] indicating a link
for FA in noninfectious uveitis [146].

It is clear thus that in the model of autoimmune uveitis,
both experimental and clinical there is a strong association
with dysbiosis and dysregulated folate metabolism. There is
also a clear deficiency in the T\, function and/or numbers.
Since folate is required for T, physiology [65] the link
between folate, T, and autoimmune uveitis speaks for itself
[64, 66, 77]. We propose that folate deficiency as part of a
dysfunctional microbiome is part of the backdrop to autoim-
mune uveitis and probably other AD/AID.

8. The Microbiome and Its Metabolites as
Therapeutic Intervention

There is much interest in potential therapeutic modulation
of AD using microbiome-based metabolites including
fecal microbial transplantation (FMT), SCFA, folate, and
probiotics.

8.1. FMT. FMT has been proposed for treatment of AD but it
is as yet unclear whether this approach may have a beneficial
or deleterious effect [147]. FMT from patients with autoim-
mune Vogt-Kayanagi-Harada disease (VKH) exacerbated
EAU in mice [148]. To date, there are no studies of FMT in
uveitis patients.

8.2. SCFA. SCFA have been shown to be reduced in patients
with RA and in mice with experimental arthritis and interest-
ingly, treatment of such mice with SCFA induced upregula-
tion of the AhR in regulatory B cells [149]. SCFA such as
butyrate and propionate have also been effective in reducing
inflammation in experimental models including in EAU [86]
and endotoxin-induced uveitis [150] but to date have not
been translated to clinical use in uveitis. However, the SCFA
propionate has been trialed in patients with MS, and a signif-
icant shift in the balance towards T\, vs Th1/Th17 cells was

observed [151].

8.3. Folate. Folate and folate supplementation have also been
proposed for therapy of AD. In a focal model of EAE, a novel
folate-aminopterin construct (EC2319) was found to be tol-
erated and provided anti-inflammatory benefit by suppress-
ing CD68" macrophage activity [152]. Similarly, a novel
FR-targeted drug EC0746 was found to be effective in the
treatment of EAE and EAU [153]. The folate receptor FRf
is expressed on activated macrophages and has been



Journal of Immunology Research

suggested as a target in AD including RA [154]. However, we
suggest here that the preferential expression of FR4 on T,

promotes their expansion, particularly of colonic T,,, which

then have the ability to suppress macrophage activity.

8.4. Probiotics. Delivery of dietary folate to supplement
microbiome-generated folate is also a promising approach
and may be incorporated in probiotics [155] in combination
with prebiotics [156]. Folate-producing lactic acid bacilli,
Streptococcus (Strep.) thermophilus CRL 808 and Strep. ther-
mophilus CRL 415, have been shown to prevent intestinal
inflammation in experimental models and proposed for the
treatment of dysbiosis [157]. Probiotics have been proven
to prevent EAU in mice, and delivery of folate-producing
probiotics offers a safe and tolerable supplement in the treat-
ment of AD [158].

The mechanism of action of folate is distinctly different
from other known vitamin-based immunomodulators such
as vitamin A/atRA and D, as well as SCFA. While atRA, cho-
lecalciferol (vitamin D3) and SCFA had been found to
enhance the peripheral differentiation of naive T cells into
pT,e, [72, 116-118], and folate is required during clonal
expansion of nT,,, [66]. Hence, folate exerts its modulatory
effects at two levels in vivo, namely, (1) as a mediator of epi-
genetic control in thymic nT,.,; and (2) as an antiapoptotic
signal in induced pT,., supporting their survival in the circu-
lation. As adoptive transfer of antigen-experienced T\, pre-
vents development of EAU [88, 90], it would be interesting
to see whether folate-treated antigen-experienced (or even
naive) T,., were more effective in control of AD. This could
be combined with SCFA to maximize the differentiation of
naive T cells to T,.,. Complementary effects of the two

metabolites are likely based on their different modes of
action.

9. Folate Deficiency and Current
Therapy for AD

Folate deficiency has strong implications for overall health
and may also complicate the management of AD. Methotrex-
ate (Mtx; amethopterin) is routinely used to manage a range
of AD including certain types of uveitis. As indicated above
(see Figure 2), the drug’s effectiveness and toxicity vary
among individuals and are likely determined by polymor-
phisms in folate, pyrimidine, and purine metabolic enzymes
[159]. The mechanism of action is presumed to be inhibition
of T cell proliferation but overall, the efficacy of Mtx in uve-
itis is limited [160-163]. This may be due to the drug’s com-
petitive antifolate effects. Macrophages are major agents of
tissue destruction in AD including uveitis [164, 165] and
require high amounts of folate to remain active via high sur-
face expression of the folate receptor FRf [166, 167]. Mtx is
structurally similar to folate with 1000-fold higher affinity
for the enzyme dihydrofolate reductase (DHFR) [168, 169]
(Figure 3). It thus starves cells with high folate requirement
such as activated macrophages, thereby abrogating the cells’
survival and halting disease progression. While this might
be of benefit to control tissue-damaging macrophages in
noninfectious uveitis [170], there may be a negative side-

effect on the T, function. Thus, the action of Mtx is likely

to be rather complex having both antiproliferative and anti-
inflammatory roles and targeting activated macrophages as
well as T',. In the event, Mtx seems to be more effective in
acute AU (with significant myeloid involvement) than in
sight-threatening chronic PU (with Thl and Th17 T, cells
being the main drivers of disease).

An alternative mechanism for the immunosuppressive
effect of Mtx and other immunosuppressants has been pro-
posed: in humans, hypomethylation of the TSDR (T,-spe-

cific demethylated region) is required for the functional
stability of peripherally expanding FoxP3" pT,,, [171] and
correlates with the duration of oral immunosuppressive ther-
apy. This indicates that in patients, conventional immuno-
suppression can induce pT,., leading to remission of the
disease (reviewed in [172]). This finding is particularly inter-
esting with regard to folate being a mediator of epigenetic
programming (Figure 3) and emphasizes the importance of
coordinating appropriate treatment regimens with the
dynamics and kinetics of disease progression.

10. Conclusions

Folate as one of the colonic bacterial fermentation products is
a powerful micronutrient with a broad spectrum of well-
known functions at various levels. Its importance in ocular
health is well established [144-146, 173-179], but its immu-
nomodulatory properties represent an emerging concept for
functional T, stabilization. The colon is a significant folate
depot [19] that participates in metabolism and contributes
to bioavailable folate levels. It is an important immunological
organ with “unconventional IP” properties [50] with a core
function in oral tolerance [180] and prevention of microbial
antigen escape into the general circulation. Pathological
structural (“leaky gut”) and/or environment-induced proin-
flammatory changes (dysbiosis) in the gut therefore jeopar-
dize this role, allowing for the transmigration of commensal
antigen into the blood stream. The use of folate- and
SCFA-producing microbes has the potential to form the basis
for a novel approach to prophylactic control of AD. While
emerging data suggests oral probiotics [158, 181] or alterna-
tively FMT [182] might help eliminate dysbiosis, knock-on
effects on colonic folate synthesis/bioavailability and its
implications for immune cell functioning remain to be
explored. As dysbiosis has been found to occur in a range
of AD, including uveitis [36, 183, 184], targeted administra-
tion of certain beneficial folate-producing bacteria or even
direct oral folate treatment in AD merits clinical evaluation
as a low-risk effective adjunctive treatment option. A daily
oral folate supplementation of 5,000-10,000 ug (i.e., 25-50
times the daily recommendation) is generally well tolerated
by healthy, nonpregnant individuals. Neurological side-
effects have been reported in cases of pernicious anemia
(B12 hypovitaminosis), and interference with intestinal zinc
absorption has been demonstrated in animals which is likely
irrelevant in humans (reviewed in [185]). Some evidence sug-
gests that long-term folic acid supplementation can promote
the progression of preexisting malignant lesions in advanced



age [186]. Importantly, as T, phenotypes between mice and

humans vary to some degree [120, 121], research is needed to
clarify those differences and assess whether those AD-
attenuating folate effects observed in mice are equally valid
in humans. Regardless, folate is an important and underva-
lued micronutrient with powerful direct and indirect effects
in the organism and a potential regulatory role in autoimmu-
nity and chronic inflammation.
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