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Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according 
to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence 
of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimi-
crobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering 
novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve 
this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for 
treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most 
promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal 
therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance 
as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the 
use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light 
stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, 
the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to 
nanoparticles, current challenges, and future prospects were extensively discussed.
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Introduction

Nanoparticles are biomaterials with dimensions between 1 
and 100 nm (nm). Considerable attention has been given 
to nanomaterials due to their wide application in agricul-
ture, pharmaceuticals, consumer products, transportation, 
energy, cosmetics, and more importantly as antimicrobial 
agents. They are currently regarded as viable substitutes and/
or supplements to existing antimicrobials (Li et al. 2017). 

Generally, nanoparticles’ antimicrobial or biomedical prop-
erties depend on their methods of synthesis and formulation 
conditions, such as the nature of the reducing agent, temper-
ature, concentration, and solvent type (Lee et al. 2019; Qing 
et al. 2018; Kedziora et al. 2018). The actions and activity 
of these nanoparticles also mostly depend on their chemical 
composition, shape and size (Shobha et al. 2014). Several 
conditions and parameters need to be modified and varied 
to produce a nanoparticle with effective size, distribution, 
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morphologies, and yield. Factors like temperature, pH and 
metal ion concentration, cell age, and time of reaction also 
affect the antimicrobial activity of nanoparticles. For an 
increase in their activity, nanoparticles can be coated with 
several coating agents (Jaworski et al. 2018). Surface sta-
bilizers, surfactants, polymers and oligonucleotides can be 
used as coating agents. These capping agents help to stabi-
lize the nanoparticles against agglomeration.

Nanoparticles can either be organic (e.g., liposomes, pol-
ymeric, micelles, ferritin) or inorganic (e.g., metal nanopar-
ticles). Both types of nanoparticles have been influential in 
treating several health conditions (Anselmo and Mitragotri 
2016). Organic nanoparticles have been used to increase the 
bioavailability of drugs, enhance efficient drug delivery and 
improve antibacterial activity (Yetisgin et al. 2020). They 
have also been used in treating fungal infection (Mba and 
Nweze 2020) and have shown promises against viral infec-
tions [e.g., severe acute respiratory syndrome 2 (SARS-
CoV-2)] infection (Mba et al. 2021). Currently, available 
nanoparticulate antibacterial systems include liposomes, 
polymeric NPs, micelles, solid lipid NPs (SLNs), nano-
structured lipid carriers (NLCs), nanocapsules, nanotubes, 
quantum dots, dendrimers, emulsions, nanogels, and vesi-
cles. They are nano-scale drug delivery systems that offer a 
slow-release and the delivery of drugs to the targeted cells.

The metallic nanoparticles appear to be the most promis-
ing. They exhibit diverse activities against several multi-
drug resistant pathogens (Liao et al. 2019; Rasheed et al. 
2017; Mba and Nweze 2020). The most widely studied metal 
nanoparticles are silver nanoparticles (AgNps) and gold 
nanoparticles (AuNps). Metallic oxide nanoparticles with 
proven antibacterial activities include copper oxide nano-
particles (CuONps), zinc oxide nanoparticles (ZnONps), 
titanium oxide nanoparticles (TiO2Nps), and magnesium 
oxide nanoparticles (MgONps). Others include calcium 
oxide nanoparticles (CaONps), iron oxide nanoparticles 
(Fe2O3NPS) and manganese oxide (MnO2Nps). AgNps is the 
most studied and most widely used among all the nanopar-
ticles (Mohler et al. 2018). Nanoparticles can also be com-
bined with antibiotics and other nanomaterials for improved 
antibacterial activity.

Moreover, the light-responsive technique specifically has 
been used in the development of drugs. It has also found 
application in the design of drug carrier systems. The light-
responsive structure can easily be regulated, and it has low 
invasiveness (Thang et al. 2019). Its mechanism of activity 
is based on the alteration of the light-sensitive molecules 
when stimulated by light, thus enabling the release of the 
encapsulated or conjugated drug (Linsley and Wu 2017). 
Over the years, the use of nanomaterials in photothermal 
therapy has received considerable attention. Several organic 
and polymeric nanoparticles have been reported to exhibit 
inherent photothermal ability (Zhao et al. 2018).

Therefore, in the face of increasing resistance to frontline 
antimicrobial agents and the rise in infections mostly caused 
by multidrug-resistant organisms, researchers have made 
efforts to develop alternative therapeutic approaches. The 
application of nanotechnology appears to be a viable solu-
tion due to the distinctive properties of nanomaterials. This 
review provides an important update on the issue of antimi-
crobial resistance. Based on recent literature, the mechanism 
of antimicrobial activity displayed by nanoparticles are dis-
cussed. Recent investigations reporting the activity of nano-
particles against drug-resistant bacteria are also highlighted. 
Moreover, insight on the synergistic activity of nanoparticles 
with antibiotics and other nanomaterials are also discussed 
extensively. Also, nanomaterials that can respond to light 
stimuli (photothermal therapy) to kill microbes and facilitate 
enhanced drug delivery and release are discussed. Finally, 
the recently emerging adaptive response tactics of bacteria 
to nanoparticles and current challenges in the use of nano-
particles as well as their future prospects are also presented.

The burden of antibiotic resistance 
and the need for antibacterial nanomaterials

The response of microbes to antimicrobial attack is an 
important illustration of adaptation and the pinnacle of 
evolution. Studies have shown that microbial infection is 
responsible for about 3 million deaths in developing coun-
tries annually. It also causes about 10 million deaths annu-
ally, mostly in the tropical countries (Dye 2014; Global 
Health Estimate 2016; Fenollar and Mediannikov 2018) 
despite the vast advances in diagnoses and therapeutics that 
have been achieved over the years. Developed countries are 
not spared either. Antimicrobial drug resistance has become 
a major global public health issue in medicine. In the US 
alone, the estimated economic burden associated with 
multidrug-resistant (MDR) microbes is about $20 billion 
dollars yearly (Munita and Arias 2016). The issue of resist-
ance often leaves clinicians with no reliable alternative to 
manage infected patients. Also, the emergence of multidrug 
resistant bacteria and super bacteria (bacteria resistant to 
almost all antibiotics) has compounded the problem. This 
is broadly associated with the excessive use of antibiotics 
which subsequently facilitates the generation and evolution 
of strains with genotypic and phenotypic diversities (Wang 
et al. 2017a, b).

Therefore, emergence of MDR and extensively-drug 
resistant (XDR) bacteria persist as a critical challenge in 
public health as it is associated with high mortality, morbid-
ity, and high cost of treatment (Sanchez et al. 2013; Roca 
et al. 2015). This is further exacerbated by the ability of 
several bacterial strains to form biofilms, which is associ-
ated with about 65–80% of human infections (Lebeaux et al. 
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2013). Cells in biofilms are usually 100–1000 times less 
susceptible to antibiotics than planktonic cells (Saginur et al. 
2006). The increase in resistance of drugs by biofilms is due 
to several factors: decrease in drug penetration across the 
extracellular matrix, reduction in drug concentration, reduc-
tion in metabolic rates of bacteria, and transfer of resistant 
genes (Hall-Stoodley et al. 2004; Hall and Mah 2017). MDR 
S. aureus and P. aeruginosa are the leading causes of chronic 
biofilm-associated infections worldwide, often characterized 
by a slower rate of wound healing, failure of catheters, and 
prolonged hospital stays (Nathwani et al. 2014; Sanchez 
et al. 2013).

Furthermore, antimicrobial drug resistance is among the 
three most important global public health threats identified 
in the twenty-first century by the World Health Organization 
(WHO). The ESKAPE group (Enterococcus, Staphylococ-
cus, Klebsiella, Actinobacter, Pseudomonas, Enterobacter) 
are the most critical and have raised the most concerns. They 
are all associated with a high mortality rate. Based on reports 
from WHO, about 80% of the MDR or XDR microbes are 
due to misuse and overuse of antibiotics, and these infec-
tions are associated with severe adverse effects. Currently, 
there are limited therapeutic and prevention options due to 
the expansion of MDR bacteria and other resistant patho-
gens. There is a need for alternative therapeutic options for 
microbial pathogens. The failure of most antibiotics neces-
sitates the search for better treatment options. Also, for effec-
tive infection control, drugs that can treat infection with the 
smallest possible dose is an appropriate approach (Morgan 
et al. 2011; WHO 2015).

Nanotechnology is a promising therapeutic strategy due 
to its high efficacy and therapeutic index against microbes 
(Hussain et al. 2018). Nanoparticles offer a viable alternative 
in the management of most bacterial infections, especially 
those involving multi-drug resistant organisms. Nanopar-
ticles can be used singly or combined with antibiotics pro-
viding excellent synergistic effects. Nanomaterials that can 
respond to diverse endogenous and exogenous stimuli to 
killed microbes and also facilitate enhanced drug deliver 
and release are promising strategies (Hsiao et al. 2015; Qiu 
et al. 2018).

Metallic and metal oxide nanoparticles are 
promising antibacterial agents

AgNps are currently seen as the next generation antibiot-
ics. This is because of their high effectiveness in inhibiting 
microorganisms. Currently, AgNps are the leading nanopar-
ticles among all the commercialized nanomaterials (Arya 
et al. 2019). Research into their use as antimicrobial agents 
has intensified over the years due to their reduced toxic-
ity when compared to other nanoparticles. Attachment and 

penetration of the AgNps nanoparticles to microbial mem-
brane surface is usually the first step in its cytotoxic mecha-
nism (Singh et al. 2015). The damage to internal components 
is caused by the released Ag+ ions which trigger the gen-
eration of ROS and subsequent oxidative stress induction 
which affect the Na+/K+ ATPase pump and signal transduc-
tion pathways (Singh et al. 2015; Flores-Lopez et al. 2019). 
Ag+ ions and AgNps also interact with DNA (phosphorus-
containing compounds) leading to protein inactivation and 
subsequent cell death. In fact, sulphur, chlorine, thiols, and 
oxygen can interact with a great effect on Ag+ ion release 
(Maurer and Meyer 2016).

Also, the rate at which this Ag + ion is released is largely 
affected by the size (Sriram et al. 2012; Abuayyash et al. 
2018). Small size AgNps can easily penetrate the cell wall. 
They also alter the structural integrity and membrane archi-
tecture causing an increase in permeability and subsequent 
cell apoptosis. The type of bacterial species also influences 
AgNps activity. This is because of the different cell wall 
composition, thickness, and arrangement (Tamayo et al. 
2014). The precise antimicrobial activity of AgNps beside 
the generation of ROS is associated with the cell wall and 
plasma membrane damage according to Hamouda et al. 
(2019). This is because of protein inactivation and mem-
brane lipid peroxidation. These activities modify the struc-
tural membrane integrity leading to the disorder of the trans-
port proteins. It also causes potassium leakage.

AuNps are among the most widely researched nano-
particles with good antimicrobial activity (Shamaila et al. 
2016; Tao 2018; Bilal et al. 2017). AuNps exhibit several 
shapes including triangular, spherical, hexagonal, and even 
rod-like shapes (Abdel-Raouf et al. 2017). The triangular-
shaped AuNps as previously reported by Smitha and Gop-
chandran (2013) exhibit strong antibacterial activity against 
several bacteria compared to spherically-shaped AuNps. 
AuNps adhere to the membrane via electrostatic interac-
tion and disrupt membrane integrity (Kundu 2017). They 
can cause leakage of intracellular components by generating 
holes in the membrane. AuNps can bind to DNA inhibiting 
replication and transcription. They can also aggregate with 
biofilm formed by microbes. Interactions between AuNps 
also provoked the formation of ROS essential for cell death. 
They alter membrane potential and decrease ATP synthase 
activities thereby reducing several metabolic activities. 
AuNps just like AgNps disrupt cell membrane integrity and 
structure (Rattanata et al. 2016). AuNps prevent rRNA from 
binding to its subunits, thus preventing translation (Cui et al. 
2012). AuNps also interact with sulphur or phosphorus-con-
taining nucleotides. AuNps supplemented with antibiotics 
usually shows strong antibacterial activity. According to 
a study by Brown et al. (2012), ampicillin integrated with 
AuNp was strongly effective against bacteria (P. aeruginosa, 
E. coli, Enterobacter aerogenes and MRSA) resistant to 
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ampicillin. The AuNp-AMP complex disrupts and inhibits 
the transmembrane pump catalyzing drug efflux. The AuNp-
AMP also overwhelmingly neutralizes the high β-lactamase 
expressed by the bacteria.

Furthermore, copper/copper oxide nanoparticles (CuNps/
CuONps) exhibit antimicrobial activity (El-Batal et al. 2017; 
Asemani and Anarjan 2019). Available report suggests that 
its antimicrobial activity is derived via the electrostatic 
attraction between the nanoparticle and the cell (Bogdanovic 
et al. 2014). The Cu2+ ion can also bypass the lipid bilayer 
and gain access into the cell. Upon penetration into the cell, 
it triggers the production of ROS. Lipid peroxidation and 
protein oxidation is also evident (DeAlba-Montero et al. 
2017). The ability of Cu to alternate between + 1 and + 2 
oxidation state is also responsible for its antimicrobial activ-
ity. A recent investigation reported that CuONps can interact 
with amino acids with a great influence on its bacterial activ-
ity (Badetti et al. 2019).

ZnO nanoparticle is also a promising antibacterial agent 
(Bhuyan et al. 2015). It was previously reported that sur-
face coating of ZnONps could prevent their interactions with 
biological fluid. However, Pranjali et al. (2019) found that 
PEGylated ZnONps strongly bind and interact with peri-
toneal dialysis (PD) fluid, lactic and citric acids leading to 
agglomeration. In addition, a drastic decrease in the bacterial 
inhibition effect was observed for both the ZnONps and the 
PEG-coated ZnONps dispersed in biological fluid. ZnONps 
release Zn2+ ions when in contact with the microbial cell. 
The Zn2+ ions disrupt the cell membrane. The interaction 
between the ions and several intracellular components 
further causes more harm to the cell (Li et al. 2011). In 
addition, Zn2+ causes the generation of ROS (Kumar et al. 
2011; Singh et al. 2020). Recently, Nejabatdoust et al. (2019) 
reported that ZnONPs conjugated with thiosemicarbzide and 
functionalized by glutamic acid modifies the expression of 
efflux pump genes in multiple drug-resistant S. aureus.

TiO2Np produces ROS which is responsible for cell mem-
brane damage and disruption of oxidative phosphorylation 
(Singh et al. 2018). TiO2Np also inactivates signaling path-
ways, reduces the co-enzyme-independent respiratory net-
work as well as the take-up and transport of Fe and P. It also 
decreases the biosynthesis and degradation of heme group 
(Foster et al. 2011). Its activity is also photo dependent. The 
generation of free radicals has also been reported (Wu et al. 
2010). Evidence is also available that it can damage the 
peptidoglycan, lipopolysaccharide, in addition to the phos-
pholipid bilayer (Liu et al. 2010). Similarly, MgONp can 
produce ROS that is highly detrimental to cells (Krishna-
moorthy et al. 2012; He et al. 2016). Nguyen et al. (2018) 
reported that MgONps reduce biofilm forming ability of S. 
epidermidis and damages the membrane of E. coli causing 
cell apoptosis. The authors suggested that the production 
of ROS, Ca2+ concentrations and quorum sensing are the 

mechanisms contributing to their antimicrobial activity. 
In addition, the MgONp cell surface attachment damages 
membrane integrity and cause leakage of intracellular com-
ponents. In a recent study, MgONps and MnONps were 
biosynthesized using Matricaria chamomilla L extract. The 
results showed that the nanoparticles invade the cells and 
damage the membrane. This led to the leakage of intracel-
lular cytoplasmic content (Ogungemi et al. 2019). According 
to Ogungemi et al. (2019) MgONp antimicrobial activity is 
also achieved by the production of Mg2+ ion, cell membrane 
interaction and pH changes.

Also, a recent study showed that Fe3O4Nps reduce 
H+-flux through bacterial membrane. Fe3O4Nps specifi-
cally inhibit ATP-associated metabolism. There was also a 
decrease in membranes associated H2 production (Gabri-
elyan et al. 2019). Several researchers have investigated 
the antimicrobial activity of biosynthesized FeNps and 
Fe2O3Nps (Sathishkumar et al. 2018; Jagathesan and Rajiv 
2018; Madivoli et  al. 2019). Studies are also available 
reporting the antimicrobial potentials of calcium oxide nan-
particles (Butt et al. 2015; Balaganesh et al. 2018; Pasupathy 
and Rajamanickam 2019; Gurav et al. 2020). Figure 1 sum-
marizes the mechanisms of antibacterial activity of nanopar-
ticles while Table 1 shows the recent studies reporting the 
antimicrobial activity of nanoparticles. 

Synergistic antimicrobial activity 
of nanoparticles

The activities of nanoparticles can be greatly enhanced when 
conjugated or coated with other materials. In fact, combin-
ing nanoparticles with antibiotics can help reduce micro-
bial resistance. In resistant strains, variation in the mode 
of action of antibiotics and the nanoparticles enhance the 
susceptibility of the microbe. If a particular strain is resist-
ant to one antimicrobial agent, another antimicrobial agent 
could trigger the killing by using a different mechanism. The 
nanoparticles can also act as carriers of antibiotics thereby 
facilitating access to bacterial cell walls. The antibiotic in 
turn damages the cell wall enabling easy entry of the nano-
particles and its complex.

In a study that combined amoxicillin with AgNps, a 
significant reduction in growth of bacteria was evident (Li 
et al. 2005). The transport of amoxicillin across the micro-
bial membrane was facilitated by the hydrophobic nature of 
the AgNps which interact with the cell membrane. Duran 
et al. (2010) showed that AgNps and amoxicillin synergis-
tic activity was due to sulfur bridge formation between the 
two agents. Fayaz et al. (2010) showed that AgNps-ampi-
cillin complex inhibits the formation of crosslinks in the 
peptidoglycan layer leading to cell death. This complex 
also prevented the unwinding of DNA. It was reported 
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by Panacek et al. (2015) that a very low concentration of 
AgNps is needed for synergistic activity with antibiotics 
with no cytotoxic effect. Wan et al. (2016) showed the syn-
ergistic activity of AgNps combined with polymyxin B and 
rifampicin against A. baumannii. It was also reported by 
Banoee et al. (2010) that ZnONps-ciprofloxacin complex 
interrupts with the endogenous efflux transporter (NorA) and 
the Omf proteins which facilitate the entrance of ciprofloxa-
cin into the cell. The synergistic activity of TiO2Nps and 
several antibiotics against MRSA was also studied by Roy 
et al. (2010). Significant antibacterial activity was observed. 
However, the exact mechanism of its synergistic activity is 
yet to be elucidated. Chamundeeswari et al. (2010) reported 
that AgNps-ampicillin complex exhibit greater antimicrobial 
activity against S. aureus, E. coli and K. mobilis than single 
amoxicillin.

In a more recent investigation, Farzana et  al. (2017) 
reported the antimicrobial behavior of ZnONps and β-lactam 

antibiotics against bacteria. AuNps-antibiotics complex 
also exhibited excellent antimicrobial activity (Shaikh et al. 
2019). Mohamed (2020) reported that AuNps conjugated 
with ampicillin/amoxicillin showed significant antibac-
terial activity and was biocompatible with treated cells. 
Farooq et al. (2019) showed that rifampicin conjugated 
AgNps produced anti-biofilm activity against MRSA and 
K. pneumonia. Surwade et al. (2019) reported that AgNps 
combined with ampicillin showed very strong synergistic 
effects against MRSA. A similar result was provided by 
Sajjad et al. (2019) who studied the synergistic activity 
of AgO2Nps and ceftriaxone against E. coli. Several other 
researchers have reported the synergistic effects of nanopar-
ticles with antibiotics (Shahbazi et al. 2019; Gounani et al. 
2018). Table 2 summarizes other studies that reported the 
synergistic activity of nanoparticles with antibiotics. Moreo-
ver, nanoparticles conjugated with specific antibody exhibit 
excellent activity against resistant pathogens. Al-Sharqi et al. 

Fig. 1   Mechanism of nanoparticles activity against bacteria
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(2019) reported that AgNps conjugated with specific anti-
body showed good antimicrobial activity against S. aureus.

While nanoparticle-antibiotic complex provides a strong 
synergism against pathogenic microbes, the combination 
of two different nanoparticles can help improve their activ-
ity while reducing their toxicity. Coating nanoparticles 
with biomaterials can also enhance their activity. Coating 
AgNps with TiO2 or other metal or metallic oxide materials 
enhances its antimicrobial activity. Hu et al. (2017) showed 
that ZnO/Ag bimetallic nanoflowers exhibit improved 
antibacterial activity. Recent studies by Jaworski et  al. 
(2018) and Cobos et al. (2020) showed that AgNps deco-
rated with graphene oxide nanocomposites exhibit strong 
antibacterial activity. Nunez et al. (2019) also showed that 
nanohybrids mediated AgNps was effective against Gram 
positive and Gram-negative microbes (Nunez et al. 2019). 
Table 3 summarizes some recent studies on nanocomposites/
nanohybrids.

Photothermal therapy using nanomaterials 
is a promising approach to combat 
antimicrobial resistance

Over the years, the use of nanomaterials in photo thermal 
therapy has received considerable attention (Wei et  al. 
2018; Canaparo et al. 2019; Ramezani et al. 2020). The 
light-responsive technique specifically has been used in the 
development of drugs. It has also found application in the 
design of drug carrier systems and as an antibacterial agent 
(Qi et al. 2019). The light-responsive structure can be easily 
regulated and it has low invasiveness (Bao et al. 2016). Its 
mechanism of activity is based on the alteration of the light-
sensitive molecules when stimulated by light, thus enabling 
the release of the encapsulated or conjugated drug (Chen 
and Zhao 2018).

For the treatment of cancer, photothermal therapy uses 
the thermal stress caused by irradiation of light of a spe-
cific wavelength (Cheng et al. 2014a). They have also been 
used for the delivery of anticancer drugs (Yu et al. 2020). 
Although photothermal therapy has found application in the 
treatment of cancer, it is effective at killing pathogens irre-
spective of their drug resistance level or their metabolic state 
within the biofilm (Galanzha et al. 2012). Halstead et al. 
(2016) showed that blue light has a broad-spectrum antimi-
crobial activity against all six ESKAPE members. Further 
investigations also showed that low penetrating blue light of 
about 415 ± 10 nm is preferable for the treatment of wound 
infections as it is associated with low damage to the tissue 
cells (Wang et al. 2017a, b; Katayama et al. 2018). There 
was an inhibitory effect on bacterial growth in a study that 
exposed P. aeruginosa to light-emitting diode (LED) (Sue-
oka et al. 2018). The increase in antimicrobial activity was Ta
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Table 2   Nanoparticles combined with antibiotics for antimicrobial activity

Nanoparticles Synthesis Antibiotics Organisms tested/Activity Reference

AuNps – Ampicillin 2 strains of S. aureus
MRSA
Significant antibacterial activ-

ity, cytocompatible against 
human dermal fibroblasts

Fan et al. (2019)

CuNps Green synthesis Erythromycin
Azithromycin
Norfloxacin

Klebsiella, Pseudomonas, 
E. coli, Shigella

Staphylococcus
At 50, 100, 200, 400 µg/ml, 

all bacteria were resistant to 
antibiotics

Kaur et al. (2019)

AgNps Synthesized using corn leaf 
waste of zea mays extract

Kenamycin
Rifampicin

Bacillus cereus, E. coli, S. 
aureus, L. monocytogenes, 
S. typhimurium

Patra and Baek (2017)

AgNps Synthesized using Adiantum 
philippense extract

Amoxicillin MRSA Kalita et al. (2016)

AgNps Leaf extract of Cassia rox-
burghii

Ampicillin, Polymyxin, 
Clotrimazole

Amikacin, Chloramphenicol, 
Penicillin-G, Tetracycline, 
Amoxiclav, Cefpirome

Gentamycin, clotrimazole

S. aureus, B. subtilis, E. coli, 
P. aeruginosa

Moteriya et al. (2017)

AgNps Spherical shaped Nps
8.57 ± 1.17 nm

Ampicillin, Amikacin E. faecium, S. aureus, A. bau-
mannii,, Enterobacter cloa-
cae, E. coli, K. pneumonia

Morganella morganii, P. 
aeruginosa

Excellent antimicrobial 
activity

Lopez-Carrizales et al. (2018)

CuNps Synthesized using Camel-
lia sinensis (green tea) and 
β-cyclodextrin

Penicillin, Streptomycin, 
Ampicillin

Amoxicillin, Gentamicin, 
Ciprofloxacin

S. pyrogenes, E. coli, S. typhi, 
Micrococcus lutus

Streptococcus mutans

Mandava et al. (2017)

Bimetallic 
Ag-Au nano-
particle

Synthesized using cell free 
supernatant of P. veronii 
strain AS41G on Annona 
squamosal L

Kanamycin, Bacitracin, Gen-
tamycin

Streptomycin,Erythromycin, 
Chloramphenicol

E. coli, B. subtilis, K. pneumo-
niae

Sharma et al. (2017)

ZnONps – Ciprofloxacin
Ampicillin

E. coli (MTCC 739), Kleb-
siella pneumonia (MTCC 
109), P. aeruginosa (MTCC 
741), Salmonella typhi 
(MTCC 98), S. aureus 
(MTCC 737), B. subtilis 
(MTCC 736)

Synergistic effects observed
No antagonistic effect 

observed

Sharma and Jandaik (2016)

ZnONps – Ciprofloxacin
Ceftazidime

A. Baumannii
Combination caused increased 

uptake of antibiotic
It changes the cells from rod 

to cocci form

Ghasemi and Halal (2016)
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possible because the bacteria that withstand the initial PDT 
were subsequently affected by singlet oxygen produced due 
to the excitation of the remaining PS. Photothermal therapy 
leverage the plasmon resonance features of metals, espe-
cially AuNps. There is usually the absorption of energy in 
the visible light spectrum and the omission of energy as heat 
energy to the immediate medium (Jain et al. 2007; Mocan 
et al. 2014).

Several organic and polymeric nanoparticles have been 
reported to exhibit inherent photothermal ability (Zhao 
et al. 2018). Also, AuNps, iron oxide, black phosphorus, 
graphene, and many other polymeric nanoparticles with 
potential for photothermal conversion have been developed 
for antibiotic drug delivery (Ji et al. 2016; Hu et al. 2013) 
and chemo-phothermal therapy against pathogens under 
irradiation by NIR (Hu et al. 2013; Chiang et al. 2015; 
Meeker et al. 2016). Near-infrared (NIR) light is an excel-
lent exogenous stimulus with promising potential against 
drug-resistant pathogens. The induction/activation of pho-
tothermal therapy (PTT) by NIR enables the PTT to enter 
deep into the tissue with little cytotoxicity. PTT can disrupt 
membrane permeability and signaling cascade of patho-
genic organisms, disrupt key enzymes and proteins, and 
cause cell death (Ray et al. 2012; Kim et al. 2015; Korupalli 
et al. 2017). Kuang et al. (2017) demonstrated the photo-
thermal therapeutic potential of IR-780 iodide (IR780) (a 
NIR fluorescence dye) encapsulated in cRGD-conjugated 
solid lipid nanoparticle. The low cytotoxicity, ease of been 
wrapped by hydrophobic carriers (inherent lipophilicity) 
and ease of degradation in the cell make IR780 a suitable 
agent for in vivo photothermal therapy (Ray et al. 2012). 
Also, under near-infrared (NIR) light irradiation, graphene-
based nanomaterials exhibit high photothermal conversion 

efficiency and outstanding, amphiphilicity. This attribute 
enables them to attach to the cell membrane of organisms 
enhancing nanoscale delivery of antimicrobial agents (Yuan 
et al. 2018; Ran et al. 2017).

Recently, it was shown that silica-coated gold-silver 
nanocages (Au–Ag@SiO2 NCs) under NIR laser irradiation 
showed reliable increases in microbial resistance compared 
to Au–Ag NCs alone (Wu et al. 2019). Coating the Au–Ag 
NCs with silicon dioxide improved the surface plasmon 
resonance of Au–Ag NCs (Fig. 2). Also, upon irradiation of 
Au–Ag@SiO2 NCs with NIR laser for 10 min, there was a 
swift temperature rise. Importantly, it was noticed that the 
increase in the concentration of Au–Ag@SiO2 NCs and the 
time of laser irradiation correlated with a rise in tempera-
ture. This showed that the heat produced by this nanomate-
rial was rapid and able to eliminate E. faecium, S. aureus, K. 
pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter 
spp. (ESKAPE) pathogens.

Reports on bacterial resistance 
to nanoparticles are gradually emerging

Not minding the effectiveness of an antimicrobial agent, 
most microbes often find strategies to maneuver these 
agents. The flexibility of microbial genome and the selec-
tive pressure exerted by most biomaterials often facilitate 
the emergence of resistant. Thus, irrespective of the differ-
ent mechanisms of nanoparticle activity against microbes, 
resistance of microbes to nanoparticles have been reported. 
Efflux pumps, biofilm formation/adaptation, electrostatic 
repulsion, alterations of morphology and mutations are 
some of the reported microbial resistance mechanisms to 

Table 2   (continued)

Nanoparticles Synthesis Antibiotics Organisms tested/Activity Reference

AgNps – B-lactam (ampicillin and 
penicillin)

Quinolone (enoxacin)
Aminoglycoside (kenamycin 

and neomycin)
Polypeptide (tetracycline)

Salmonella typhimurium 
DT104

Kenamycin, Enoxacin, 
neomycin and tetracycline 
exhibited synergistic activ-
ity against the pathogen. 
Ampicillin and penicillin 
do not show any synergistic 
activity

AgNps form complex 
with antibiotics (AgNps-
tetracycline). The AgNps-
tetracycline interact strongly 
with Salmonella causing 
Ag+ release. The increase 
in Ag + concentration in the 
cell wall facilitate bacte-
rial growth inhibition and 
subsequent death

Deng et al. (2016)
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nanoparticles as reported by Nino-Martinez et al. (2019) 
in a review.

Previously it was shown by Li et al. (1997) that the down 
regulation of genes coding for the porin proteins causes a 
decrease in nanoparticle penetration into the cell. Jordan 
et al. (2008) showed that the presence of envelop stress 
response (ESR) mechanisms help to maintain bacterial 
membrane integrity, reducing their interaction with posi-
tively charged nanoparticles and alterations of lipopolysac-
charide (LPS) and its constituents. In a subsequent investiga-
tion by Li et al. (2010) it was also reported that the oxidation 
and interaction of nanoparticles with organic matters influ-
ence its antimicrobial activity. Further investigation by 
Hachicho et al. (2014) revealed that P. aeruginosa exposed 
to nanoparticles altered its membrane unsaturated fatty acid 
composition. This alteration causes a change in membrane 
fluidity making it difficult for the nanoparticles to enter the 
cell. Graves et al. (2015) also reported that the exposure of 
microbes to non-lethal concentration of nanoparticles can 
facilitate the increase in resistance due to the development 
of mutations that lead to the upregulation and downregula-
tion of many genes.

The upregulation of RND and CDF transporters, P-type 
ATpase efflux complexes, czcABC and RND family efflux 
system was also reported as the resistant mechanism of P. 
aeruginosa exposed to different concentrations of CuONps 
(Yang et al. 2012; Guo et al. 2017). Other reported mecha-
nisms of bacterial resistance to nanoparticles include, enzy-
matic transformation of nanoparticles (Palomo-Siguero 
et  al. 2016), biofilm formation/adaptation (Wang et  al. 
2016), electrostatic repulsion (Abbaszadegan et al. 2015; 

Nabavizadeh et al. 2017), pigment production (Ellis et al. 
2018), and formation of biomolecule corona around the nan-
oparticles (Siemer et al. 2019). Panacek et al. (2018) showed 
that the production of flagellin (adhesive flagellum protein) 
by E. coli and P. aeruginosa provoked aggregation of nano-
particles leading to resistance. Faghihzadeh et al. (2018) 
reported that the production of extracellular substances by 
E. coli altered the size and zeta potential of AgNps lead-
ing to agglomeration and subsequent resistant to AgNps. 
Furthermore, E. coli exposed to sublethal concentration of 
ZnONps was reported to facilitate conjugative transfer of 
plasmids housing resistant genes (Wang et al. 2018). Qiu 
et al. (2015) in a similar investigation that exposed E. coli 
to TiO2Nps, decrease in growth rate of bacteria with sub-
sequent increase in conjugative transfer of genes coding for 
antibiotic resistance was also noted.

The alteration in the dissolution and release rate of nano-
materials in the biological system in addition to their inter-
action with the biological fluid can allow the microbes to 
modify and enhance their adaptation and fitness strategies. 
It is important to know that prolonged/widespread use of 
nanoparticles induces the expression of antibiotic resist-
ant genes. Already the production of ROS is one of the key 
mechanisms of action of nanoparticles. The presence of ROS 
can lead to a decrease in porins proteins and upregulation 
of oxidative stress resistant genes. However, the ability of 
microbes to generate ROS when exposed to nanoparticles 
can be influenced by interaction with the host environment. 
The availability of oxygen and light can greatly influence 
ROS production (Yu et al. 2018). Under aerobic conditions 
ions can be released while anaerobic conditions can reduce 

Fig. 2   Silica-coated gold-silver 
nanocages (Au–Ag NCs) show-
ing antibacterial activity by a 
photothermal effect. Repro-
duced from Wu et al. (2019) 
with permission
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the chance of ions release. It was also reported by Chen et al. 
(2017) that exposure of microbes to AgNps under anaerobic 
condition decreases the antimicrobial activity of nanopar-
ticles (Chen et al. 2017). Moreover, the alteration in envi-
ronmental conditions can cause a spontaneous rise in muta-
tion and also trigger genome plasticity which can greatly 
facilitate resistance to antimicrobial agents and evolutions 
of strains with increased fitness. Figure 3 summarizes the 
reported resistant mechanisms of bacteria to nanoparticles. 
Table 4 shows nanomaterials with photothermal activity as 
antibacterial agents. 

In summary, nanoparticles have long been seen as poten-
tial solutions to the increasing resistance to conventional 
antibiotics and the evolution of multi-drug resistant bacte-
ria. However, reports on the issue of microbial resistance to 
nanoparticles are gradually emerging. Its frequent clinical 
application raises the issue of resistance to these potential 
biomolecules (Barros et al. 2018; Finley et al. 2015). Future 

studies should explore the possible resistance mechanisms 
of bacteria to nanoparticles. The major challenges in using 
nanoparticles as antimicrobial agents are summarized in 
Table 5.

Discussion

A large portion of the interest in nanomaterials in clinical 
practice stems from their drug delivery potential. Inter-
estingly, the use of nanoparticles as a drug delivery sys-
tem dated back to the early 1990s. Several new genera-
tion nanoparticles with new therapeutic modalities have 
been developed since then. Therapeutic and diagnostic 
nanoparticles fall under two categories: inorganic (AgNps, 
AuNps, CuONps, ZnONps, TiO2Nps, MgONps, CaONps, 
Fe2O3Nps, MnO2Nps, etc.) and organic (liposomes, poly-
meric NPs, micelles, solid lipid Nps (SLNs), nanostructured 

Produc�on of 
flagellin

Biomolecule corona 
forma�on around

nanopar�cles

Inhibi�on of 
nanopar�cles

interac�ons with 
microbes and reduc�on

in their ac�vity

Aggrega�on of 
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Produc�on of 
extracellular substances 

(AgNps: E. coli, P. 
aeruginosa)
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composi�on

Altera�on of cell
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Fig. 3   Resistant mechanisms of bacteria to nanoparticles
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lipid carriers (NLCs), nanocapsules, nanotubes, quantum 
dots, dendrimers, emulsions, nanogels, and vesicles). Sev-
eral inorganic nanoparticles have been successful in clini-
cal studies and have been developed in the clinic for sev-
eral applications (Anselmo and Mitragotri 2015). Organic 

nanoparticles have frequently been used in vaccine produc-
tion and as drug delivery agents. Organic nanoparticles 
delivered intravenously as treatments for several diseases 
are also available (Petros and DeSimone 2010). Organic and 
inorganic nanoparticles have some distinct advantages over 

Table 5   Challenges in using nanoparticles as antimicrobial agents

S. No Challenges

1 Size The size greatly influences antimicrobial potential of nanoparticles. Small size particle has a larger surface area-
to-volume ratio. Parameters like synthesis method and reducing/stabilizing agents also affect the morphology, 
size and stability of the synthesized nanoparticles. Thus, controlling these parameters is a major challenge for 
efficient and highly effective nanoparticles synthesis. Nanoparticles often used as antimicrobial agents usually 
ranges from 1 to 100 nm. However, particle size range from 10 µm to 10 nm are often more effective because 
they can easily penetrate and interact with cells. However, synthesizing nanoparticle with such size is often an 
issue

2 Shape Nanoparticles are often synthesized in different shapes. AgNps for example have different shapes such as spheri-
cal, triangular or pyramid, nanorods, nanowires, flower shaped, octahedral, tetrahedral, nano-prism and nano-
bars. These shapes can influence the antimicrobial activity of nanoparticles

3 Aggregate Nanoparticles can often form aggregates. The formation of these aggregates cause increase in size, thus reducing 
penetration into the cell and also increases toxicity

4 Biodistribution Loss of function due to poor bioavailability is a major challenge in developing effective nanoparticle. Low reten-
tion rates of nanoparticle also reduce efficiency. Even the accumulation of nanoparticles may be detrimental to 
the host

5 Bioavailability Poor dispersion affects nanoparticles activity
6 Cytotoxicity Toxicity is a crucial issue in the use of nanomaterials. Local and systemic toxic issues in addition to being detri-

mental to useful bacteria in human is a major concern (Khan et al. 2016). Both nanoparticle and its degradation 
products can disrupt pathways involved in blood circulation due to its ability to cause hemolysis. Nanoparticle 
can also lead to organ dysfunction and damage. Large size nanoparticles are more toxic to the biological system 
than small size particles (Santos et al. 2014). The use of CuONps, ZnONps and TiO2Nps is mostly limited due 
to their oxidative and DNA damage (Hemeg 2017). CuONps can specifically trigger hepatoxicity and nephro-
toxicity via interaction with components of the cell (Baptista et al. 2018). Although some studies have reported 
no significant in vivo life-threatening toxicity of nanoparticles, there accumulation could be detrimental to body 
cells (Zazo et al. 2016; Sengupta et al. 2014; Wei et al. 2015; Zaidi et al. 2017). Nanomaterials administered 
intravenously can accumulate in different organs in the body. Toxicity evaluation at the cellular and systemic 
levels is very crucial as it carries great clinical relevance

7 Clearance Nanoparticles elimination from the biological system is generally low. This can lead to their prolonged accumu-
lation in the system. The charge and size of nanoparticle greatly affect their elimination from the biological 
system. The kidney can eliminate some nanoparticles while those that were not degraded will be retained in the 
body for a prolong period of time (Lin et al. 2015)

8 Interactions The rapid agglomeration in the use of nanoparticles is a disadvantage in their utilization as an antimicrobial 
agent. For example, naked ZnONps can strongly interact with organic acids in biological system which can lead 
to bioconjugates formation. In addition, the antimicrobial effect of nanoparticles is greatly affected by the pres-
ence of amino acids as previously stated. This protein are highly abundant in biological system and are often an 
issue in getting a safer product design in addition to improved product performance

9 Dosage Dosage is major issue in nanoparticle application. Currently the dose of nanoparticles leading to disruption of 
cells in vitro are very high and almost not possible to use in humans. As of date, only few clinical studies are 
available on nanoparticles dosing. For vital therapeutic targets and reduction in toxicity, dosage optimization 
and evaluation is very crucial (Grumezescu 2018; Hua et al. 2018)

10 Instrumentation High-throughput technology and equipment are also needed to manufacture nanoparticle. This often make con-
tinuous/consistent production of highly quality nanoparticle difficult

11 Scale-up/optimization Proper guideline formulation for the production, scale-up, physiochemical property characterization, biocompat-
ibility, standardization and protocols to draw a comparison on data origination from in vivo and in vitro experi-
ments are lacking. Inconsistency in size, shape, morphology and other properties may also be evident during 
large scale production

12 Prediction The efficiency or potency of nanomaterials is mostly very difficult to predict
13 Quality Producing nanoparticles with uniform size and desired quality and without aggregates is also a major challenge
14 Variation in microbes 

and human diseases
Diversities in strains and infections caused by different microbes may influence nanoparticles activity and also 

complicates treatment
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several intravenously administered pharmaceutical products. 
Compared to free drug counterparts, many organic nanopar-
ticles can be fabricated to provide enhanced drug protection, 
controlled release, prolonged circulation and enhanced target 
to specific tissues (Wang et al. 2012). Moreover, the stimuli-
responsive functions emanating from the surface plasmon 
resonance of inorganic nanoparticles give them an advantage 
over individual drugs or molecules (Torchilin 2014).

Nanomaterials have been effective against several 
microbes. A study by Sarwar et  al. (2017) showed that 
ZnONps form a complex with cholera toxin, compromises 
its structure, and stops its interaction with receptors pre-
sent in the erythrocytes. Also, M. tuberculosis showed 
in vitro susceptibility to AgNps (Tabaran et al. 2020), TiO2 
(Ramalingam et al. 2019), and SeNps (Estevez et al. 2020), 
although their mechanism of action remains unclear. AgNps 
loaded into Ti nanotubes showed promise against biofilm 
cells formed by MRSA. Its mechanism of action was via 
the release of Ag+ (Cheng et al. 2014b). Also, lipid-coated 
MSNps loaded with colistin and conjugated with LL-37 
showed activity against P. aeruginosa-associated pulmonar 
infections through isoniazid bactericidal effect (Rathnayake 
et al. 2020).

Moreover, it was reported that Thymus daenensis oil 
nanoemulsions were effective against bacteria causing 
pneumococcal infections, and its action mechanism was via 
oil-bacterial effect (Ghaderi et al. 2017). FA-CP-FA-coated 
MSNps loaded with ampicillin were shown to be effective 
against S. aureus and E. coli and could be utilized in treating 
S. aureus and E. coli-related infections (Chen et al. 2018). 
Thus, nanoparticles could become an indispensable tool in 
the treatment of various infections. The use of nanoparticles 
in the treatment of both chronic and acute respiratory dis-
ease was extensively summarized in a recent article by de 
Menezes et al. (2021).

Also, the ability of nanoparticles to interact with dif-
ferent components of bacteria and exert their antimicro-
bial mechanisms increases with an increase in the surface/
volume ratio of the nanoparticles (Azam et al. 2012). The 
smaller the size of the nanoparticles, the greater the surface 
area/volume ratio. Agnihotri et al. (2014) synthesized dif-
ferent AgNps with different sizes and observed that their 
antibacterial effect depends on their dose and size. Studies 
have shown that the size of nanoparticles is one of the main 
factors responsible for their antibacterial activity. However, 
this depends on the type of synthesis, precursors, and param-
eters used. Size remains one of the vital factors responsible 
for the bactericidal effects of nanoparticles (Helmlinger 
et al. 2016). Nanoparticles with size < 10 nm can penetrate 
to the interior of the bacterial cell and exert their antibacte-
rial effect (Khalandi et al. 2017), while that > 10 nm cannot 
penetrate the interior of the bacterial cell (Butler et al. 2015; 
Wang et al. 2011). A recent investigation by Osonga et al. 

(2020) reported that the antimicrobial activities of AgNps 
and AuNps were dependent on size, with no associated tox-
icity. Furthermore, the surface charge of nanoparticles is 
also a crucial factor affecting their antimicrobial activity 
(Abbaszadegan et al. 2015). Moreover, the shape of nano-
particles also determines their antibacterial activity (Raza 
et al. 2016).

AgNps are highly effective against bacteria. At lower 
doses, AgNps show low toxicity towards humans (Shahverdi 
et al. 2007). Chen et al. showed that AuNps with sizes of 
8–37 nm were more toxic while AuNps with sizes between 
3 and 100 nm were less toxic (Chen et al. 2009). The toxicity 
was attributed to the synthesis methods and organic reducing 
and capping agents during the synthesis. Often, there are 
conflicts in findings regarding the toxic effects of nanoparti-
cles. These differences are broadly due to a lack of standard-
ized experimental procedures (Tao 2018). Sometimes, simi-
lar experiments lead to different conclusions. Differences in 
experimental techniques, doses, and administration routes 
have not helped the matter. This issue needs proper attention 
and may require a regional or international regulatory body.

Studies have shown that nanoparticles conjugated with 
small molecules (e.g., drugs, antibodies, antibiotics, vac-
cines) are usually more effective than the individual nano-
particles. The combination of nanoparticles with antibiotics 
greatly reduces the dosage of antibiotics to be administered. 
This helps to reduce toxicity associated with several antibiot-
ics and helps to reduce resistance acquisition. Combination 
therapy will pave the way for nanoparticles to be used as 
adjuncts to existing antimicrobials; thus, helping to reduce 
resistance associated with most microbes. Impregnation of 
already available antibiotics with nanoparticles can help 
improve antimicrobial activity against resistant microbes. 
More attention should be given to synergistic interactions 
of nanoparticles with already available antimicrobial agents. 
However, it should be emphasized that the antimicrobial 
effect of antibiotic conjugated (impregnated) with nanopar-
ticles depends on the antibiotics used.

Importantly, before nanoparticles can be efficiently incor-
porated into biological systems, clear insights regarding 
their stability and interaction with biological fluids (e.g., 
plasma, serum, proteins, lipids, electrolytes, and metabo-
lites) are needed. The activity of nanoparticles may be influ-
enced by their interactions with protein molecules present in 
biological systems. The proteins (ligands) can attach to the 
surface of nanomaterials and influence their dissolution, as 
well as their antimicrobial and cytotoxic effects. Although 
it has been reported that surface coating of nanoparticles 
could prevent their interactions with biological fluids, recent 
studies have proven that coating the surface of nanoparticles 
doesn’t prevent their interaction with biological fluid nor 
improve their antimicrobial potential. Therefore, the inter-
action of nanoparticles with biological fluids is a crucial 



World Journal of Microbiology and Biotechnology (2021) 37:108	

1 3

Page 23 of 30  108

area that needs to be exploited. Future studies should look at 
undesirable off-target interactions of combined nanoparticles 
and nanoparticles combined with antibiotics.

It is imperative to also look at the dosage of nanoparti-
cles. Drugs that are useful at low doses may exhibit high tox-
icity at high doses. The doses reported in most studies vary, 
and the number of cells exposed is not usually reported. 
Future studies should look at the toxicity. Due to the prom-
ising potentials of nanoparticles, one important goal of the 
nanomaterials research community is to synthesize nanopar-
ticles or nanoparticles that can conjugate very effectively at 
low doses (concentration). Studies should focus on non-toxic 
biological materials that can accelerate the potency of nano-
particles without increasing the concentration that might be 
toxic to biological systems. The combination of different 
nanoparticles can also help to reduce the dosage. Nanocom-
posites are also more effective than individual nanoparticles. 
Thus, more attention should be given to their formulation. 
Moreover, synthesizing nanoparticles that can bind to pro-
teins, polysaccharides, or small bioactive compounds may be 
crucial in enhancing their antimicrobial potentials.

The underlying mechanism behind the activity of nano-
particles is yet to be adequately understood. The non-avail-
ability of a precise approach for in vitro analysis, in addi-
tion to the complexity of the bacterial membrane, makes 
it difficult to gain proper insight into the exact mechanism 
for antimicrobial activity of nanoparticles. To efficiently 
evaluate the accurate therapeutic potentials of nanoparticles 
and unmask the microbial response to these agents, in vivo 
studies are indispensable. In vivo studies are essential to 
elucidate their utility in biological systems fully. Therefore, 
further studies on the nanomaterial activity at structural, 
genetic, and proteomic levels are needed.

Furthermore, the frequent clinical application of nanopar-
ticles raises the issue of resistance to these potential agents. 
Already, microbial resistance to nanoparticles has been 
summarized above. However, mutation has been one of the 
reported bacterial mechanisms of resistance to nanoparticles 
(Graves et al. 2015). Both metal and metal oxide nanoparti-
cles seem to stimulate the co-selection and co-expression of 
antibiotic resistance genes. In an investigation by Wang et al. 
(2018), E. coli cultures and aquatic microbiota were exposed 
to sublethal concentrations of ZnONps. The exposure trig-
gered the conjugative transfer of drug-resistance plasmids. 
The exposure causes an increase in the cell membrane per-
meability, increasing horizontal gene transfer (HGT) fre-
quency. A similar finding was previously reported by Qiu 
et al. (2015), who exposed E. coli to a high concentration 
of TiO2Nps.

It has also been reported that bacteria exposed to AgNps 
upregulate genes responsible for protecting against oxidative 
stress (soxR, oxyR, sodB, sodA) and genes responsible for 
converting hydrogen peroxide to oxygen (katE and katG) 

(Gou et al. 2010). In their investigation, Zhang et al. (2018) 
showed that Al2O3Nps and ZnONps accelerate mutagen-
esis and the emergence of multiple resistance. According 
to the investigation, two nanoparticles increased mutation 
frequency and an increase in multi-antibiotic resistance in 
the mutation compared to the controls. The nanoparticles 
also enhanced intracellular ROS, leading to a rise in the 
frequency of antibiotic resistance mutagenesis.

Finally, photodynamic light therapy is a promising 
approach for treating infections, especially those due to 
ESKAPE pathogens. It is a minimally invasive and inex-
pensive approach to combat antimicrobial resistance. It is 
highly effective, especially in topical applications. PDT co-
administered or conjugated with antibiotics, nanoparticles, 
antimicrobial peptides, or efflux pump inhibitors show an 
excellent effect. However, comparison of the efficacy of 
the different combinations is always difficult due to lack of 
standardization.

Conclusion

It is becoming obvious that nanoparticles have the poten-
tial to change clinical care by improving current therapies 
or introducing new therapeutic agents. For translation into 
clinical practice, studies on the toxicity and biocompatibil-
ity of the different combinations are needed. To date, the 
resistance mechanisms of microbes to nanoparticles have 
not been properly explored and demands adequate attention. 
To avoid the issue of resistance associated with conventional 
antibiotics, an understanding of the adaptive mechanisms 
of microbial resistance to nanoparticles is warranted and 
should be exploited in future studies. In the years to come, 
nanomaterials will innovate the world of technology due to 
their unique properties. However, one important target area 
of nanoparticle research should be to reduce their toxic effect 
on humans and enhance their bioavailability and stability.
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