Skip to main content
. 2021 Mar 15;45(6):1284–1297. doi: 10.1038/s41366-021-00785-7

Table 3.

Structural equation model for fat mass gain during feeding trial and serum HDL cholesterol concentration after the feeding trial.

Conditioned and unconditioned QTL scans
Phenotype Model Condition QTL LOD (−log10(P value))ξ
Fat mass gain (during feeding trial) (g)

Combined (both sexes, both diets)

(y ~ sex * diet + marker)

Unconditioned Fmgq1 4.02*

Combined (both sexes, both diets)

(y ~ sex * diet + m + HDL)

Serum HDL cholesterol concentration (after feeding trial) (ng/mL) Fmgq1 4.58*
Serum HDL concentration (after feeding trial) (ng/mL)

Combined (both sexes, both diets)

(y ~ sex * diet + marker)

Unconditioned Hdlq1 11.94

Combined (both sexes, both diets)

(y ~ sex * diet + marker + fat mass gain)

Fat mass gain (during feeding trial) (g) Hdlq1 10.86
Causal network analysis
Relationship Model P value AIC BIC
Fat mass gain ← serum HDL cholesterol (Fat mass gain ~ HDL) ~ sex * diet + top marker at Fmgq1 0.0046a 2181 2209
Fat mass gain → serum HDL cholesterol (HDL ~ fat mass gain) ~ sex * diet + top marker at Fmgq1 0.0252a 4204 4232
Structural model
Variable Predictor Path coefficient (% variation explained) t-statistic of path coefficient
Fat mass gain (during feeding trial) (g) Sex 0.43 (17.19%) 9.89
Sex * diet −0.09 (1.02%) −2.03
Fmgq1 0.19 (3.99%) 4.40
Fmgq2 −0.21 (5.19%) −4.87
Fmgq3 −0.11 (2.56%) −2.55
Serum HDL cholesterol concentration (after feeding trial) (ng/mL) Sex 0.44 (17.37%) 10.09
Sex * diet −0.01 (0.04%) −2.03
Hdlq1 0.31 (9.59%) 7.20

ξLOD (−log10(P values)) is provided for the top marker in each confidence interval.

aCausal inference is significant at Holm–Bonferroni corrected P < 0.05.