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ABSTRACT

Circulation is required for the delivery of oxygen and nutrition to tissues and organs, as well 
as waste collection. Therefore, the heart and vessels develop first during embryogenesis. 
The circulatory system consists of the heart, blood vessels, and blood cells, which originate 
from the mesoderm. The gene expression pattern required for blood vessel development is 
predetermined by the hierarchical and sequential regulation of genes for the differentiation 
of mesodermal cells. Herein, we review how blood vessels form distinctly in different tissues 
or organs of zebrafish and how vessel formation is universally or tissue-specifically regulated 
by signal transduction pathways and blood flow. In addition, the unsolved issues of mutual 
contacts and interplay of circulatory organs during embryogenesis are discussed.
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INTRODUCTION

Blood vessels form a network to deliver blood cells and plasma to peripheral organs and 
tissues, through arteries and arterioles, and function as drainage system from peripheral 
organs and tissues, through capillaries, venules, and veins.1,2 The initial blood vessel network 
is formed by endothelial cells (ECs). Subsequently, mural cells, including pericytes and 
smooth muscle cells, emerge close to the EC-derived network to support blood vessels.3 
Furthermore, the adventitia surrounds the smooth muscle cell layer in arteries.

EC precursor cells, or angioblasts, first assemble and differentiate into ECs to form a primary 
vascular plexus through a process called vasculogenesis.4 Those primitive ECs then give rise 
to either arterial ECs or venous ECs. Two types of EC precursors appear in the trunk and in 
the tail in zebrafish (Fig. 1, unpublished data). These 2 types of ECs emerge distinctly from 
the lateral plate mesoderm and the tail bud.5,6 There is another type of segregation: artery 
and vein. The primitive vascular cord is divided into the dorsal aorta (DA) primordium 
and cardinal vein primordium in the trunk vessel of zebrafish.5,7 In addition, the other type 
of arterial EC differentiation from venous ECs is reported in the tail fin of zebrafish.8 The 
differentiation of angioblasts into ECs and that of primitive ECs into veins/arteries are 
predetermined by the hierarchy of gene expression. The gene-encoded molecules determine 
the fate and character of ECs.
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Zebrafish are widely used to clarify vascular development because of their translucency, the 
early growth of the circulatory system, their small size, and their extra-maternal growth. 
Importantly, many studies have shown that the morphological and molecular mechanisms 
involved in vascular development are conserved between zebrafish and humans.9,10 These 
advantages enable developmental biologists to study circulatory system development using 
several kinds of live-imaging microscopes, including confocal, spinning disk, light-sheet, 
and super-resolution microscopes. In addition, multiple useful transgenic zebrafish lines 
for the fluorescent imaging of EC movement and signaling have been developed. These 
imaging techniques enable simultaneous investigations of the morphological changes and 
physiological functions of ECs using living embryos; these changes are triggered by EC-
specific ligand/receptor-mediated intracellular signaling cascades. Thus, we review these 
EC-specific signaling and signal-dependent responses shown in zebrafish.

Recently, EC heterogeneity and organ/tissue-specific ECs have become a topic of interest 
in vascular biology and regenerative medicine.11 For example, structural and cell biological 
differences are present among sinusoidal ECs, fenestrated ECs, and high ECs, which are 
found in the liver, endocrine organs, and lymph nodes, respectively.12 Venous ECs and 
arterial ECs have specific characteristics in veins and arteries. During embryogenesis, tissue/
organ-specific cell-cell interactions between parenchymal cells and ECs are regulated by 
angiocrine and paracrine mechanisms.13 Moreover, the blood flow in lumenized blood vessels 
also affects the heterogeneity of ECs, indicating the importance of the environment of the 
surrounding blood vessels in addition to cell-autonomous regulation of ECs.

Beyond organ-specific blood vessel pathways, blood vessel formation follows a common 
pattern (i.e., angiogenesis). ECs sprout from pre-existing vessels; form branches by 
proliferation, migration, and intercellular adhesions; and thereby form new lumenized 
vessels.14 Previous studies have tried to identify the molecular mechanisms underlying 
angiogenesis and maintenance/maturation in various tissues/organs.15-18 However, some 
issues have yet to be fully clarified, including the origin of ECs, vascular niches, and tissue-
specific mechanisms of angiogenesis.19 We summarize the current understanding of vascular 
development and highlight the unanswered issues of vascular development in zebrafish.
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Fig. 1. Two types of emergence of endothelial precursors in the trunk and tail of the zebrafish embryo. A 
Tg(fli1:EGFP) embryo is imaged at 22 hpf. The endothelial cell precursors in the trunk and those in the tail appear 
simultaneously, but separately. The boxed region of the scheme of the embryo is imaged. 
hpf, hours post-fertilization.



GENERAL CIRCULATORY SYSTEM

Circulation requires the heart, vessels, and blood as a pump, conduit, and carrier/content, 
respectively. The cardiomyocytes of the heart, ECs and mural cells of blood vessels, and blood 
cells are derived from mesodermal cells. The cooperative development of these 3 cell types 
efficiently and promptly starts the circulation to deliver oxygen and nourish parenchymal cell 
growth in the peripheral tissues and organs. At the very early stage of embryogenesis before 
the start of circulation, oxygen delivery depends upon diffusion.

The cooperation of blood cells and ECs is shown in hemogenic ECs, which are the origin 
of both hematopoietic stem and progenitor cells (HSPCs) and ECs.20 Another aspect of 
the cooperation between these 2 cell types is that vascular ECs form a vascular niche for 
HSPCs in the caudal hematopoietic tissue (CHT) and the kidney marrow in zebrafish.21 The 
molecular mechanism underlying the interaction of HSPCs and ECs has become a topic of 
interest in stem cell biology.

The coordinated growth of the myocardium and coronary vessels of the heart that supply 
oxygen to cardiomyocytes has been explored (Fig. 2, left). Endocardial ECs sprout and 
grow on the surface of the heart according to chemokine secretion from the myocardium.22 
Endocardial ECs also become the source of blood cells as the hemogenic endothelium 
in the heart. Following coronary vessel development, lymphatic vessels grow along pre-
existing coronary vessels on the surface of the heart.23 Of note, cxcr4a mutants, which lack 
coronary arteries, fail to exhibit lymphatic vessel growth. Therefore, the development of the 
myocardium, coronary vessels, and lymphatic vessels is regulated in a coordinated manner in 
the developing heart.

To pump out blood from the heart, the heart and great vessels must be connected (Fig. 2). 
However, it remains unclear how ECs connect to the endocardial cells of the heart (Fig. 2, 
right). The endocardial ECs of the outflow of the heart are likely to be connected to the ECs 
of the aortic arch, while those of the inflow tract are connected to the common cardinal vein 
(CCV). Although the migration and lumenization of ECs in the CCV have been investigated, 
as a process referred to as “lumen ensheathment,”24 it remains elusive how endocardial ECs 
are connected to CCV ECs. These 2 connections allow the heart to pump out blood and 
establish the closed circulation in zebrafish.
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Fig. 2. Vessels of the heart. The surface coronary vessels of a zebrafish heart at 1.5 mpf is visualized by fluorescence 
of Tg(fli1:EGFP) (left). The outflow tract (single arrow) and inflow tract (double arrows) of endocardial endothelial 
cells (red) are imaged with myocytes (green) using Tg(fli1:myristoylated-mCherry);(myl7:GFP-tagged with CAAX 
motif of small GTPase Ras) (right). 
Ao, aortic root; CCV, common cardinal vein; mpf, months post-fertilization; hpf, hours post-fertilization; dpf, days 
post-fertilization.



BLOOD VESSELS IN THE TRUNK, TAIL, AND BRAIN OF 
ZEBRAFISH
Previous studies mainly focused on the trunk blood vessels, such as the DA and posterior 
cardinal vein (PCV) (Fig. 3, top right). Angiogenic sprouting from the DA and PCV is 
categorized as primary sprouting and secondary sprouting.10 The primary sprouts initially 
form inter-somitic vessels (ISVs) and the vessels that reach the most dorsal part form dorsal 
lateral anastomosis vessels (DLAVs). The secondary sprouts connecting to the preformed 
ISVs become venous ISVs (vISVs), whereas unconnected ISVs become arterial ISVs (aISVs). 
Thus, blood flow follows the path of DA-aISV-DLAV-vISV-PCV. The primary sprouts are 
mainly regulated by vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR) 
2, while the secondary sprouts are promoted by VEGF-C and VEGFR3.25-27

The vessels in the posterior part (i.e., the caudal vessels) have also been characterized. The 
caudal vein plexus (CVP) changes its shape and differentiates into the caudal vein. ECs of the 
CVP proliferate in response to bone morphogenetic protein (Bmp).28 We have demonstrated 
that Bmp-induced β-catenin-dependent signaling is activated in the ECs that preferentially 
differentiate into the caudal vein.29 During somitogenesis, both arteries and veins need to 
extend posteriorly to oxygenate the posterior trunk and tail. We have previously shown that 
new ECs emerge in the tail during somitogenesis in addition to the proliferation of the pre-
existing ECs that are located anteriorly.30 Of particular note, the extension of the DA towards 
the tail depends upon the proliferation of the pre-existing ECs of the DA (unpublished data), 
whereas the origin of new venous ECs that contribute to the extension of trunk vein remains 
unclear. Interestingly, the CHT develops in parallel with venous development in the tail (Fig. 3,  
bottom right). Venous, but not arterial, ECs of the most dorsal CVP function as a vascular 
niche for HPSCs.31 HPSCs that originate from the hemogenic ECs of the DA move to the CHT 
and finally migrate into the kidney marrow, which mirrors the function of the bone marrow in 
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Fig. 3. Vessels in the brain, PAA, trunk, and CHT. The vessel images were obtained from the transgenic fish 
embryos indicated at the top or bottom of the panels. 
Yellow arrowheads point to vessel protrusion. White arrowheads and white arrows indicate the primary sprouts 
from the DA and secondary sprouts from the PCV, respectively. 
PAA, pharyngeal aortic arch; DA, dorsal aorta; PCV, posterior cardinal vein; ISV, inter-somitic vessels; CHT, caudal 
hematopoietic tissue; dpf, days post-fertilization; hpf, hours post-fertilization.



mammals, and remain there to produce various kinds of blood cells in juveniles.21 Therefore, 
the transient vascular niche for HPSCs in the CHT consists of characteristic ECs that appear 
only for this period. The difference between these dorsal venous ECs and the ventral venous 
ECs of the CVP, which are β-catenin signaling-positive cells, is unclear. Therefore, the origin 
and function of these vascular niche ECs should be characterized in the future.

The blood vessels in the brain form a network to oxidize and nourish neural tissues. In 
the brain, a paired lateral DA is established and connected to the posterior DA.32 During 
this period, the first primitive veins, the primordial hindbrain channels (PHBCs), develop. 
Following PHBC formation, the basilar artery and central arteries assemble in the hindbrain 
(Fig. 3, bottom left).15,18 The blood-brain barrier (BBB) is a specific anatomical and functional 
structure between ECs and neurons that restricts the infiltration of inflammatory cells into 
the nervous system. In contrast, it efficiently exchanges molecules that are required for active 
metabolism in neurons and glial cells, including astrocytes, oligodendrocytes, and microglia. 
Astrocytes participate in forming the BBB, whereas other cells—including pericytes and 
capillary ECs—need to assemble together with astrocyte feet to form the BBB. We have 
previously shown that pericytes in the brain emerge after the establishment of the network 
of ECs.33 The feet of pericytes seem to seal the junctions of ECs. However, we have not 
simultaneously monitored the assembly of ECs, pericytes, and astrocytes in the brain. Thus, 
more advanced in vivo imaging will help understand how the BBB functions to exchange 
molecules in the neural tissues.

In addition to exchanging molecules in the brain, the glymphatic system in the mouse has 
become an attractive focus of research into the clearance of wastes from the brain.34 In 
zebrafish, waste from the central nervous system (CNS) can be removed through 2 pathways, 
the meningeal lymphatic vessels and the glymphatic system, which drains glial water and 
functions like the lymphatic system.35 Upon injury of cerebrovascular system, lymphatic 
vessel invasion precedes the regeneration of blood vessels.36 During the investigation of 
meningeal lymphatic vessels, mural lymphatic ECs (muLECs), also termed brain lymphatic 
ECs, were identified as a novel lymphatic cell type.35,37 The muLECs express lymphatic 
markers, but do not form vessels. Therefore, the function of mural lymphatic vessels should 
be clarified in the clearance of waste products from the CNS.38

The aortic and pharyngeal arch artery (PAA) of zebrafish is unique, because zebrafish lack 
pulmonary circulation, which is required for mammals. The ECs of the PAA were shown to 
come from Nkx2.5 and Tcf21 double-positive mesodermal cells.39,40 However, depletion of 
these progenitors of the pharyngeal arch does not result in deformation of the PAA, suggesting 
a compensatory function of ECs from other vasculature. The shape of the PAA is different 
from that found in sprouting angiogenesis, which is commonly regulated by VEGF-A. The 
branching or sprouting of pre-existing vessels is not observed during PAA formation, whereas 
protrusion of ECs is found (Fig. 3, top left, unpublished data). Edn1 and hand2 might be 
involved in the outgrowth of ECs to form a bulging protrusion of pre-existing vessels.41

ORGAN-SPECIFIC ECs: BLOOD VESSELS IN THE EYE, 
FIN, AND INTERNAL ORGANS OF ZEBRAFISH
The development of the eye requires 2 vascular systems: the intraocular hyaloid vessels 
and the superficial choroidal vessels.42 The former vessels are transient and become retinal 

149https://doi.org/10.12997/jla.2021.10.2.145

Tissue- or Organ-Specific Vascular Development

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



vessels. On the surface of the zebrafish eye, venous-derived superficial vessels develop prior 
to the formation of an elaborate network of choroidal vessels. Live imaging has revealed that 
ECs sprouting from the venous primordial midbrain channel form arteries through Notch 
signaling and chemokine signaling.43

Amputation and crush injury models have been developed to study fin regeneration.8,44 
Injury triggers tissue vascularization to oxygenate tissues. Like other organs and tissues, 
revascularization of injured bones has been investigated. In the caudal fin amputation model, 
the tip cells are derived from venous ECs and move backward to form the plexus. Therefore, the 
arteries of regenerated fins are derived from vein-derived tip cells. There is a striking difference 
between amputated and crushed fins. In the bone crush injury model, the main arteries in the 
intra-ray tissues are damaged. At a later stage, mis-patterned blood vessels are found in the 
crushed ray, probably due to the prolonged bone repair. These fin regeneration models may 
provide crucial insights into the relationship between tissue repair and vascular regeneration.

Internal organs such as the intestine, liver, and pancreas must be vascularized during 
development. The gut needs to efficiently absorb nutrition, which is transferred to the 
liver through the portal vein. The sinusoidal ECs have specific structures for nutrition 
absorption.12 Moreover, as an endocrine organ, the pancreas has endocrine organ-specific 
capillary characteristics. In zebrafish, blood vessels in these organs originate from the 
floor of the PCV. The initial plexus that covers the internal organs is referred to as the sub-
intestinal plexus.17 Sub-intestinal vessel growth is first regulated by Bmp and secondarily by 
VEGF. Interestingly, the blood vessels in the internal organs are derived from venous ECs, like 
the superficial vessels of the eye and arteries of the fin after amputation.

ECs are required for parenchymal cell development and, conversely, parenchymal cells 
produce paracrine factors to stimulate maturation of the blood vessel network.12 For example, 
tissue hypoxia induces angiogenesis by producing angiogenic signaling (VEGF). In turn, 
the tissue-specific paracrine system, from ECs to parenchymal cells, is important for organ 
and tissue development or maintenance. Therefore, this system is called angiocrine.11 In 
zebrafish, ECs control hepatocyte polarization during liver development.45 There are many 
angiocrine cues from ECs toward parenchymal cells in several organs.11 For this reason, the 
importance of organotypic ECs has been highlighted in recent research.

ANGIOGENIC CUES AND FLOW-MEDIATED SIGNALING

Several conserved signals are mediated by ligand-receptor or mechano-transduction in 
ECs (Fig. 4). Some are commonly used beyond the vascular beds, while others are tissue-
specifically or EC type-specifically regulated. In this section, we summarize those angiogenic 
and flow-mediated signals in zebrafish.

1. VEGF
Zebrafish have angiogenic signaling that is conserved in mammals.38,46 VEGF is the common 
angiogenic cue during vascular development. Zebrafish have 4 VEGFR-related genes: 
flt1(VEGFR1), kdr (VEGFR2), flt4 (VEGFR3), and kdrl (the fourth VEGFR), although mammals 
have 3 genes.38 There are 3 agonists for VEGFRs; VEGF-A, VEGF-B, and VEGF-C. VEGF-A 
and its receptor Kdr- or Kdrl-mediated signaling is crucial for blood vessel formation in 
most vascular beds,25 while VEGF-C and its receptor Flt4-mediated signaling is active during 
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lymphangiogenesis.27 The former is observed in primary sprouts from the DA, whereas 
the latter is found in secondary sprouts from the PCV. The expression of VEGFs and their 
receptors is spatially close to each other. In ISV sprouts, VEGF-A and VEGF-C are found 
in the notochord and DA.32,47 VEGF-VEGFR signaling depends upon the tyrosine kinase 
activity of VEGFR. The downstream signaling of VEGFR has been extensively investigated to 
understand the physiological contribution of VEGF-dependent signals to angiogenesis. EC 
proliferation and migration are regulated by NFAT and ERK downstream of VEGFR2, while 
cell survival is controlled by PI3K-Akt-FoxO.48

2. Angiopoietin (Ang)
Another family of tyrosine kinase receptors, Tie1 and Tie2, are required for vascular remodeling, 
maturation, and lymphangiogenesis.49 Ang1, Ang2a, and Ang2b are ligands for Tie1 and Tie2 
in zebrafish. In mammals, Tie2 is thought to play a central role in EC biology, because cultured 
ECs expressing Tie2 respond to Ang1 and thereby exhibit distinct cell behaviors: EC migration 
or quiescence.50,51 In contrast, tie2 mutant zebrafish do not exhibit any abnormal phenotypes. 
The group of Stainier has extensively studied Tie2 in zebrafish and found that no mutants of tie2 
show any morphological deficiencies or growth defects.52 Therefore, depletion of tie1 is required 
to understand the roles of Ang-Tie signaling in zebrafish.
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Fig. 4. The main signals that regulate vascular development and stabilization. These signals include tyrosine 
kinase-activating signaling (VEGF-VEGFR and Ang-Tie) and GPCR-mediated signaling (Apln-Aplnr and Cxcl12–
Cxcr4). In addition to these receptor-mediated signaling pathways, mechanosignaling induced by blood flow 
(shear stress) also regulates the intracellular signaling of ECs, including Klf2 expression and nuclear translocation 
of Yap. PDGF-b released from ECs activates its PDGFR expressed on mural cells. Of note, Ang1 is released from 
mural cells to activate Tie2 expressed on ECs to regulate mutual interactions between ECs and mural cells. VE-
cadherin is an endothelial-specific cadherin that is essential for adherens junction formation. Adherens junctions 
are strengthened by the actin cytoskeleton to maintain tissue integrity. The ECM can activate various signaling 
pathways directly to regulate vascular development. 
VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; Ang, angiopoietin; 
Apln, apelin; Aplnr, apelin receptor; EC, endothelial cell; VE, vascular endothelial; ECM, extracellular matrix; PDGF, 
platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; GPCR, G protein-coupled receptor.



3. Chemokines (Cxcl12–Cxcr4)
Chemokines contribute to cell migration in a tissue-specific manner. In mice, depletion 
of either cxcl12 or its receptor cxcr4 (a G protein-coupled receptor [GPCR]) results in 
impaired vascular development, especially in the gastrointestinal tract and kidney.53,54 In 
zebrafish, Cxcl12b and Cxcr4a function to develop the initial network of brain vasculature, 
consisting of the PHBC and central artery.18 Additionally, cxcr4a mutants exhibit impairment 
of coronary vessel growth.22 Indeed, Cxcr4a is expressed on the ECs of coronary vessels. 
Chemokine-like factor superfamily MARVEL transmembrane 3 (CMTM3) is involved in the 
regulation of vascular endothelial cadherin (VE-cadherin)-dependent adherens junction. 
Silencing of CMTM3 using a morpholino in zebrafish impairs ISV formation.55 In the fin, 
Cxcl12b functions as a blood vessel regulator during regeneration.8 Cxcl12b is expressed 
in mesenchymal cells in the fin and promotes the growth of blood vessels.56 Furthermore, 
lymphatic vessel growth along the aISVs is inhibited in either cxcl12b or cxcr4a mutants.57

4. Apelin (Apln)
Apln is a secretory peptide that acts on a GPCR, Apln receptor (Aplnr). Elabela (Ela) and 
Toddler, as well as Apln, activate Aplnr.58 Using zebrafish, a gene knockout study elegantly 
uncovered the specific roles of Apln family members.59 During the initial vasculogenesis, 
Ela guides angioblasts to the midline to form the axial vessel.60 Then, Apln is required for 
angiogenic sprouting from the DA and subsequently for the leader cells to become tip cells, 
as evidenced by alpn or aplnra/aplnrb mutants. The essential roles of Aplnr-expressing ECs were 
confirmed by a cell transplantation assay. In addition to this study, the requirement of Apln-
Aplnr signaling for lymphatic vessels has been demonstrated in alpn or aplnr morphants.61 
During fin regeneration, Apln is required for angiogenesis.62

5. Bmp
Both in mice and zebrafish, Bmp signaling controls venous identity via the Alk3 receptor 
and Smad1/Smad5.63 Bmp-dependent venous differentiation and angiogenesis have been 
shown in the zebrafish caudal vein.28,29 Alk1 or Alk2 depletion in mice suggests the pro- or 
-anti-angiogenic action of BMPs because of the combination of downstream transcription 
factors (Smads). Hereditary hemorrhagic telangiectasia is caused by mutations in various 
genes, including those encoding transforming growth factor-beta and its receptors. The 
loss of Alk1 has been investigated in zebrafish. While arterial EC proliferation is normal, the 
EC movement of lumenized vessels is altered in the brain.64 During network formation in 
the brain, blood flow affects the maturation of vessels. Therefore, Alk1-dependent signaling 
for vessel formation functions together with blood flow-dependent signaling. Consistently, 
mutants of the Alk1 ligands, bmp9 and bmp10, exhibit impaired vascular development.65 
Another study has demonstrated the importance of Bmp-mediated signaling in arteriovenous 
differentiation. Bmp endothelial precursor-derived regulator (BMPER) regulates the 
expression of an arterial marker (Ephrin-B2) and a venous marker (EphB4), as evidenced in 
bmper morphants.66

6. Ephrin/Eph
In addition to Bmp, arteriovenous fate is determined by the expression of Ephrin-B2 and 
EphB4. The repulsive action between Ephrin-B2 and EphB4 demarcates arteries and veins 
through bidirectional signaling. In zebrafish, the demarcation of the DA and PCV has been 
clearly revealed by high-resolution imaging.7 Silencing of EphB4 using a morpholino in 
zebrafish resulted in defects of brain vessel formation,67 and abnormal growth of caudal 
vessels was observed in ephb4 morphants.68
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7. Extracellular matrix (ECM)
ECM molecules function as a scaffold of blood vessel growth. In zebrafish, Col1a2 and 
Col5a1 are expressed by fibroblasts along ECs of the ISVs. Gene silencing of col5a1 resulted 
in hemorrhage in the trunk and irregular ISVs.69 Upon binding to ECM, integrins activate 
intracellular signaling in ECs. Filopodia formation is consistently suppressed in integrin 
b1b mutants. The importance of integrin-dependent signaling has also been confirmed by 
the overexpressed dominant-negative form of integrin.70 The adaptor molecule of integrin, 
Shc, has also been reported to be essential for ISV development.71 Moreover, ECM binds to 
VEGF-A to guide angiogenesis. Synaptic proteins (b-neurexin and neuroligin) synergistically 
promote the CVP and subsequent sub-intestinal vessel growth with ECM-bound VEGF-A.72 
Epidermal growth factor-like domain 7 (Egfl7) is a secretory molecule highly expressed in 
ECs that binds to the ECM to regulate angiogenesis.73 In zebrafish, Egfl7 is required for the 
establishment of the vascular lumen, likely by providing a permissive environment.74 For 
dynamic remodeling of vessels during embryogenesis, the ECM must be reshaped to guide 
blood vessels. To this end, matrix metalloproteinase-2 regulates the deposition of the ECM. 
Lymphatic vessel development is consistently impaired in mmp2 morphants.75

8. Blood flow
Blood flow regulates the development, remodeling, and stabilization of vascular networks 
in various tissues. ECs sense the flow as a force, although the identification of the 
mechanosensor is still undergoing. A mechanosensitive cationic channel, Piezo1, has been 
characterized as a sensor that directly responds to flow.76 A mechanosensory complex at 
cell-cell junctions, consisting of VE-cadherin, PECAM-1, and VEGFR2, is thought to be 
a candidate mechanosensor.77,78 Recently, plexin D1 has been characterized as a sensor 
for the mechanosensory complex.79 Integrin-dependent signaling also functions as 
mechanosignaling.80 The requirement of flow for vascular development has been reported 
by several groups using zebrafish. During the initial sprout of ISVs from the DA, flow-
mediated pressure has been shown to be important for lumen formation.81 In addition, 
blood flow facilitates artery-vein specification in the ISVs by regulating Notch signaling.82 
During this arterial and venous EC switch, the direction of flow determines the fate of ECs. 
In the DA, ventral extrusion of ECs is also negatively regulated by flow and cyclic stretching 
induced by heartbeats.83 A transcription factor, Klf2, is downstream of the flow-dependent 
signaling cascade and regulates vascular stabilization of ECs through nitric oxide synthetase 
expression.84 We have shown that a transcription cofactor, YAP, translocates into the nucleus 
in response to flow to stabilize the vessels in a tissue-specific manner in zebrafish.85

9. Models of diseases to understand pathophysiology
Zebrafish can be used for understanding cardiovascular diseases. Cranial hemorrhage is a 
common disease in developed countries, and hereditary cerebral cavernous malformation 
(CCM) has been molecularly and genetically investigated. The mutations found in CCM 
patients are Ccm1/Krit1, Ccm2/malcavernin and Ccm3/programmed cell death 10. These 
molecules assemble with heart of glass (Heg1), which is a single membrane-spanning 
molecule. In zebrafish, either heg1 or ccm2 morphants can form the normal patterned 
trunk vessels, but lack a lumen.86 Krit1 is a binding partner of a small GTPase, Rap1, which 
is known to stabilize inter-EC-cell junctions. Consistent with Rap1-dependent cell-cell 
adhesion, rap1 morphants exhibit abnormal hemorrhage in the brain.87 CCM deficiency alters 
endocardial and endothelial gene expression (klf2 and klf4).88 Of note, blood flow inhibits 
vascular defects in the CCM zebrafish model, suggesting that blood flow-dependent signaling 
affects CCM-dependent signaling in zebrafish.89
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Importantly, most human genes related to cardiovascular diseases have zebrafish orthologs.90 
Therefore, as described above, analyses of disease-related genes using zebrafish have led 
to insights into the molecular mechanisms of cardiovascular diseases. Because sequence 
conservation between zebrafish and humans is relatively high, many drugs that target human 
cardiovascular diseases have similar pharmacological impacts on zebrafish.90 In fact, several 
small molecules identified using zebrafish are now in the clinical trial phase.91,92 Zebrafish are 
becoming a useful model in the field of cardiovascular diseases.

CONCLUSION

The usefulness of zebrafish when studying embryogenesis has been widely accepted in vascular 
biology. Herein, we summarize many reports demonstrating the essential roles of molecular 
pathways involved in general or tissue-specific vascular development. We emphasize again the 
important point that using zebrafish embryos enables us to visualize morphological alterations 
and cell signaling simultaneously. Molecular probes can be easily introduced into the genome, 
enabling the establishment of useful transgenic zebrafish. In addition, recent advancement 
of gene manipulation using TALEN or CRISPR/Cas9 systems has allowed researchers to test 
requirements and compensatory mechanisms in a tissue- or cell-type-specific manner. Using 
this excellent model system, we can continue to investigate how creatures live from fertilization 
to the end of life under conditions of environmental changes.
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