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Abstract

Background: Although many studies demonstrated reduced mortality risk with higher 

greenness, few studies examined the modifying effect of greenness on air pollution–health 

associations. We evaluated residential greenness as an effect modifier of the association between 

long-term exposure to fine particles (PM2.5) and mortality.

Methods: We used data from all Medicare beneficiaries in North Carolina (NC) and Michigan 

(MI) (2001–2016). We estimated annual PM2.5 averages using ensemble prediction models. We 

estimated mortality risk per 1 μg/m3 increase using Cox proportional hazards modeling, 

controlling for demographics, Medicaid eligibility, and area-level covariates. We investigated 

health disparities by greenness using the Normalized Difference Vegetation Index (NDVI) with 

measures of urbanicity and socioeconomic status.

Results: PM2.5 was positively associated with mortality risk. Hazard ratios (HRs) were 1.12 

(95% confidence interval (CI) 1.12, 1.13) for NC and 1.01 (95% CI 1.00, 1.01) for MI. HRs were 

higher for rural than urban areas. Within each category of urbanicity, HRs were generally higher in 

less green areas. For combined disparities, HRs were higher in low greenness or low SES areas, 

regardless of the other factor. HRs were lowest in high-greenness and high-SES areas for both 

states.

Conclusions: In our study, those in low SES and high greenness areas had lower associations 

between PM2.5 and mortality than those in low SES and low greenness areas. Multiple aspects of 

disparity factors and their interactions may affect health disparities from air pollution exposures. 
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Findings should be considered in light of uncertainties, such as our use of modeled PM2.5 data, 

and warrant further investigation.
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Introduction:

Epidemiologic studies have consistently reported associations between long-term exposure 

to fine particles and mortality.1–5 Previous reviews of studies covering wide geographic 

areas indicate higher risk of all-cause mortality associated with higher long-term PM2.5 

exposure, with substantial heterogeneity across studies.6,7 Differences in several 

characteristics such as particle composition, populations, and methodologies may explain 

observed heterogeneity.5,8 However, comparatively fewer studies evaluated which factors 

modify associations of long-term PM2.5 exposure and mortality. Better understanding of the 

factors that may contribute to differences in health impacts, and their interactions, would aid 

decision-makers in establishing more efficient policy to address PM2.5 and vulnerable 

populations.

A growing body of literature on direct effect of greenness demonstrates associations of 

higher greenness with reduced risk of mortality.9–11 Green space promotes physical activity, 

psychological well-being, and general public health.12 Unequal distribution and access to 

green space is increasingly recognized as an environmental justice issue.13 However, few 

studies examined residential greenness as an effect modifier of air pollution–health 

associations.14–16 One study reported decreasing risks of PM2.5-related mortality with 

increased greenness.17 Another study found that the association between air pollution and 

cardiovascular mortality was reduced by higher greenness in areas with low socioeconomic 

status (SES).18 Previous findings on residential greenness as an effect modifier of air 

pollution’s impact on health are inconsistent, with limited studies showing conflicting 

results. One study found lower PM10 impacts on non-accidental mortality in less green 

areas.19 Other work found no evidence of effect modification by neighborhood greenspace 

on the association between air pollution and stroke.20

Some studies suggested regional differences by urbanicity in PM2.5 health effects.21,22 Most 

epidemiologic studies investigating air pollution and health were conducted in urban areas as 

most regulatory ambient monitors are located in populated areas; rural areas are 

underrepresented. PM2.5 health effects in rural areas may differ from those in urban centers 

due to different characteristics of exposure and/or population (e.g. PM composition, baseline 

health status, health care access, health behaviors, and other environmental factors). For 

example, greenness types and quality may differ by urban and rural features. Research is 

needed including on nonurban areas and differences between urban and rural areas.

We selected the relatively large and diverse states of North Carolina (NC) and Michigan 

(MI) with geographies that include extensive agricultural regions and forests, coastal areas, 

and multiple medium-large urban cities. Both states are heterogeneous in social and 
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environmental characteristics (e.g., poverty patterns, urban–rural population distribution, 

economic systems).

We evaluated residential greenness as an effect modifier for long-term PM2.5 exposure and 

mortality for Medicare beneficiaries in NC and MI. We considered differences by urban 

versus rural areas and investigated combined disparities by greenness and SES.

Methods

Data

We obtained the Medicare beneficiary denominator file from the Centers for Medicare and 

Medicaid Services (CMS), for Medicare enrollees (≥65 years). We constructed an open 

cohort of all Medicare beneficiaries residing in NC and MI for 2001–2016, with individual-

level data on sex, race, age, residential ZIP code, eligibility for Medicaid, and date of death. 

This study was approved by the Institutional Review Board of the Harvard T. H. Chan 

School of Public Health. We estimated ambient PM2.5 levels at 1×1km resolution using 

previously published ensemble modeling that integrated multiple machine learning 

algorithms and predictor variables including satellite data, meteorologic variables, land-use 

variables, elevation, and chemical transport model predictions.23 We generated PM2.5 

predictions by an ensemble of three machine learning algorithms including neural network, 

random forest, and gradient boosting. We used geographically weighted generalized additive 

modeling to combine PM2.5 predictions from each learner. The model achieved excellent 

performance, with high agreement between monitored and predicted PM2.5.23

We used annual ZIP-code level averages of maximum daily temperatures and relative 

humidity based on area-weighted averaging of 4×4km gridded rasters from Gridmet via 

Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/

IDAHO_EPSCOR_GRIDMET). For each calendar year (2001–2016), we assigned long-

term PM2.5 exposure as annual average concentration. Annual average maximum daily 

temperature and relative humidity were based on residential ZIP code.

We estimated greenness using Normalized Difference Vegetation Index (NDVI) derived 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra 

satellite image from NASA’s Earth Observing System. We used global MODIS product 

MOD13Q1 version 5, which has been corrected for atmospheric contamination from water, 

clouds, and aerosols. This product is a 16-day composite at 250m spatial resolution. NDVI is 

an indicator of amount of vegetation cover and defined as the ratio of the difference between 

near-infrared reflectance and red visible reflectance to their sum. NDVI values range from 

−1 to +1; values close to +1 indicate high density of greenness; −1 represents water features. 

Areas with no vegetation have NDVI close to zero and very low NDVI (<0.1) represents 

barren areas of rock, sand, or snow; moderate values (0.2–0.3) represent shrub and 

grassland, and higher values indicate higher density of vegetation.24 We calculated average 

NDVI by ZIP code and year. We categorized greenness as tertiles of low, medium, and high.

We used ZIP code level variables from 2010 Census data: percentage Black, percentage 

Hispanic, median household income, percentage >65 years living below the poverty level, 
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and population density. We used urbanicity classification (i.e., urbanized areas, urban 

clusters, and rural) based on 2010 Census data. Census categorization includes two types of 

urban areas: 1) Urbanized Areas (UAs) of ≥50,000 people; and 2) Urban Clusters (UCs) of 

>2,500 and <50,000 people; rural areas are defined as those not included within an UA or 

UC.

Statistical analysis

We applied Cox proportional hazard models to estimate hazard ratios (HRs) of mortality 

relative to long-term PM2.5. Standard Cox proportional hazards models assume HR as 

independent of time. However, environmental exposures such as air pollution are time-

dependent, so we used an extended Cox model with time-dependent variables, which 

requires no proportional hazards assumptions. Use of time-dependent survival methods 

allows exposure for survivors at the time of each death and ensures that effects are examined 

relative to other participants for the same follow-up interval. We calculated person–years 

from enrollment year to date of death or end of follow-up. Models were controlled for 

individual-level sex, race/ethnicity (Non-Hispanic White, Non-Hispanic Black, other), age 

(65–69, 70–74, 75–79, 80–84, 85+ years), Medicaid eligibility as a proxy for individual-

level SES, area-level percentage Black, percentage Hispanic, median household income, 

percentage >65 years living in poverty, and population density, in addition to the regional 

cluster variable that could relate to compositional differences in PM2.5, and year. We 

assessed potential effect modification by residential greenness and several factors (e.g., SES, 

urbanicity).

We evaluated combined disparities of greenness and SES (e.g., low SES neighborhood with 

low greenness), and greenness and urbanicity (e.g., urban green vs. rural green). SES group 

was based on lowest and highest quartiles of median household income. Greenness was 

divided into tertiles (low, medium, high) within each urbanicity group in each state. We 

performed additional analysis: (1) using the same cutoffs of greenness to categorize 

greenness across all urbanicity groups in each state; and (2) using the same cutoffs for 

tertiles of greenness across states. We conducted sensitivity analysis to examine robustness 

of effect modification of estimates using PM2.5 monitor values rather than prediction 

modeling estimates. We stratified by state, disparity factor, and combinations of factors. We 

present results for increments of 1 μg/m3 PM2.5. We used SAS software, version 9.4 (SAS 

Institute Inc., Cary, NC, USA).

Results

Figure 1 shows spatial distributions of PM2.5, NDVI, and urban and rural areas in NC and 

MI. High urban areas generally had higher PM2.5 and low greenness in both states.

Our cohort consisted of 1,263,689 participants for NC and 1,318,558 for MI. The total 

number of deaths was 179,329 (14.2%) for NC and 187,802 (14.2%) for MI. Table 1 

provides distributions of greenness and PM2.5 by greenness group by state. Annual average 

PM2.5 during the study period ranged from 3.61 to 15.73 μg/m3 for NC and 1.80 to 17.33 

μg/m3 for MI. PM2.5 concentrations were lower in areas with higher greenness for both 

states. Annual average PM2.5 concentrations were 8.78 for those living in low-green areas 
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and 7.63 μg/m3 for high green areas in NC and 8.75 in low and 7.55 μg/m3 in high green 

areas for MI. Average greenness values in total and by greenness group were lower for MI 

than NC, with similar mean values in the lowest greenness group for NC (0.55) and the 

highest greenness group in MI (0.52).

Table 2 shows characteristics of the study population. Generally, distribution trends of 

individuals by sex, average age at entry, percentage Hispanic, and percentage Black were 

similar across greenness group for both states. However, we observed distinct spatial 

patterns for racial distribution or poverty patterns by greenness group. Distributions by race/

ethnicity and eligibility for Medicaid showed similar patterns for both states, with higher 

percentage of Non-Hispanic Black and Medicaid eligibility in the low greenness group; 

however, the pattern by greenness group was more substantial in MI than NC. For example, 

in NC, the percentage of Non-Hispanic Blacks living in areas with low greenness was 

44.8%, compared with 74.5% in MI. For median household income and poverty, we found 

opposite patterns across greenness groups in NC compared with MI. In NC, community-

level SES was lower in the highest greenness group. Those living in high greenness areas 

lived in neighborhoods with lower SES (i.e., median household income was lower and 

percent of persons living in poverty was higher in high greenness areas), whereas 

neighborhood-level SES was lower in the lowest greenness group for MI (i.e., median 

household income was lower and percent of persons living in poverty was higher in low 

greenness areas).

eTables 1 and 2 present correlations between study variables by state. NDVI in NC was 

negatively correlated with population density. Median household income was negatively 

correlated with poverty and education. Poverty and education were positively correlated. In 

MI, NDVI was positively correlated with humidity and median household income and 

negatively correlated with percentage Black, population density, poverty, and low education 

(less than high school). The link between higher NDVI and lower population density was 

stronger in MI (r=−0.69) than NC (r=−0.43).

We observed positive associations overall between PM2.5 and mortality in both states (Table 

3). HRs between PM2.5 and mortality were 1.12 (95% confidence interval (CI) 1.12, 1.13) 

for NC and 1.01 (95% CI 1.00, 1.01) for MI. The higher overall risks associated with PM2.5 

exposure were more pronounced in NC than in MI. Findings across greenness groups 

showed that higher greenness was associated with protective (i.e., beneficial) effects of 

PM2.5 on mortality for both states. Living in high greenness areas was associated with lower 

PM2.5-associated mortality risk compared to living in areas with low greenness for both 

states.

Figure 2 and eTables 3–5 show HRs for PM2.5–mortality associations by urbanicity and 

greenness. Associations were higher in less urbanized areas than urban areas for both states, 

although effect estimates were slightly higher for urban clusters than rural areas. Within 

each urbanicity category, HRs were generally higher in less green areas for both states. 

Additional analysis using the same cutoffs for greenness across all urbanicity groups 

provided generally similar results (eTable 6).
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In stratified analysis by combinations of greenness and SES (Figure 3, eTable 7), we found 

that regardless of each factor (i.e., greenness and SES), those in high SES or high greenness 

areas had lower PM2.5–mortality risks than those in low SES or low greenness areas. People 

in both high greenness and high SES areas had lower PM2.5–mortality associations for both 

states. Similarly, those in both low SES and low greenness areas had the highest estimated 

PM2.5–mortality effects for both states.

As a sensitivity analysis, we compared effect modification by greenness using PM2.5 

monitor versus PM2.5 prediction estimates, for the subset of areas with monitors. 

Distributions of PM2.5 concentration for total and by greenness were substantially similar 

between predicted and measured values for both states (eTable 8). Effect estimates for total 

area and by greenness group showed generally similar patterns between PM2.5 prediction 

estimates and monitor values for both states (eTable 9). Results using the same cutoff for 

greenness across states showed similar patterns with original findings, which used state-

specific cutoffs for most groups; however, we found different findings for the high greenness 

group in NC due to the relatively low cutoff for high greenness group (eTables 10 and 11). 

This indicates that the approach using the same cutoffs across states may not reflect relative 

greenness across areas.

Discussion

We investigated effect modification by residential greenness for long-term PM2.5 exposure 

and mortality for Medicare beneficiaries in NC and MI. We considered differences by urban 

versus rural areas and evaluated combined disparities by greenness and SES. We observed 

positive associations between long-term PM2.5 exposure and mortality in both NC and MI. 

Our findings show generally protective effects of greenness on PM2.5–mortality associations 

in both states. When we looked at combined disparities by urbanicity and greenness, HRs 

were higher for rural than urban areas. Within each category of urbanicity (urbanized areas, 

urban clusters, rural areas), HRs were generally higher in areas with less greenness. 

Associations between PM2.5 and mortality were higher in low greenness or low SES areas, 

regardless of the other factor. In particular, positive associations between PM2.5 and 

mortality were lower in areas with both high greenness and high SES.

Our results indicating positive associations between long-term PM2.5 exposure and mortality 

in NC and MI are consistent with previous studies.1,14,25–27 A recent nationwide cohort 

study of persons ≥65 years in China reported positive associations between long-term PM2.5 

exposure and all-cause mortality over a broad range of PM2.5 concentrations.4 Another study 

examining a large cohort of Medicare beneficiaries (≥65 years) in seven southeastern US 

states identified positive associations between long-term PM2.5 and mortality.5 Despite 

differences in study population and methods, previous findings were generally similar to our 

results.

Our estimates indicate potential beneficial associations of PM2.5 with mortality in high 

greenness areas for NC and MI, which warrants further study. The distribution of PM2.5 was 

similar across greenness groups. This indicates that greenness may be an effect modifier 

rather than confounder in PM2.5–mortality associations. Alternatively, PM2.5’s chemical 
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composition in high greenness areas may differ from that in other areas, even if overall 

PM2.5 levels are roughly similar. There may exist differences in PM2.5 sources across areas 

with different greenness levels. Consistent with our findings, previous studies examining 

greenness as an effect modifier of PM2.5–mortality associations in Canada observed no 

PM2.5–mortality association in the two greenest quintiles.17

Higher greenness exposure may benefit health through several pathways such as mitigation 

of air pollution, heat, and noise; increased immune system by psychological restoration for 

stress and anxiety; and increased physical activity and social cohesion.12, 28 For example, 

vegetation may reduce air pollution exposure through direct filtering of pollutants such as 

particles, sulfur dioxide, and carbon monoxide or open spaces may influence indirectly 

through improving urban air circulation patterns affecting the dispersal of pollutants.11,29 

High greenness areas may provide generally less-stressful environments with lower noise 

and cooler temperature.13 Another possible mechanism is the environmental biodiversity 

hypothesis suggesting that contact with nature is beneficial for human microbial and 

immunomodulatory capacity.30

We found generally higher PM2.5–mortality associations in NC than MI. This may result 

from several factors such as different populations and/or environmental characteristics 

across regions and their interactions. We found different correlations among variables 

between the two states, including for correlation between greenness and other covariates. 

Also, we observed distinct spatial patterns of racial distribution or poverty by greenness 

group by state. For example, in NC, community-level SES was lower in the highest 

greenness group, whereas neighborhood-level SES was lower in the lowest greenness group 

for MI. Another possible reason for different magnitude of effect estimates is within-area 

variation of exposure and/or within-area distribution of SES across regions. However, 

although the magnitude of effect estimates differed by state, we observed generally similar 

patterns of associations by urbanicity, and across greenness groups for both states. Several 

previous studies found high PM-mortality associations in greener areas.2,14,17 Different 

patterns of effect estimates by region within a given level of greenness and between areas 

with high and low greenness may involve several factors such as greenness assessment and 

differences in health behavior of people living in high vs. low green areas. Greenness 

measures such as NDVI do not reflect different types of greenness, quality, size, and 

accessibility, which may differ between the states. Also, potential benefits of greenness 

could be affected by other factors such as healthy lifestyles, smoking or drinking patterns, 

and car dependency. Further studies in different locations are needed to evaluate the role of 

residential greenness in air pollution–health outcomes associations.

Although evidence on the direct effect of greenness and health outcomes is well 

documented, relatively few studies have been conducted on effect modification by 

residential greenness in the air pollution–health associations and such findings on effect 

modification by greenness are inconsistent. We observed that people in low greenness areas 

had higher risks of death associated with PM2.5 than those in higher greenness areas. 

Although the distributions of some of demographic characteristics and several indicators of 

SES across greenness group showed different patterns between NC and MI, we observed 

generally similar patterns of associations by urbanicity, and across greenness group for both 
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states. Consistent with our findings, a recent study by Sun et al.16 examined the modifying 

effect of residential greenness on the air pollution–respiratory mortality association. They 

found that elders living in low greenness areas had higher risk of pneumonia mortality 

associated with air pollution than those living in higher greenness areas. On the other hand, 

Kioumourtzoglou et al.25 examined effect modification by greenness on the PM2.5–mortality 

association in 207 U.S. cities and reported that those living in the highest greenness area had 

the highest effect estimates, with positive correlations between greenness and some variables 

such as proportion of black or elderly residents and smoking rates. de Keijzer et al.14 found 

higher greenness was associated with lower mortality only in areas with lower SES. Another 

study reported no evidence of effect modification by greenness.20

In this study, we found higher effect of PM2.5 exposure on mortality in less urban areas. The 

associations were higher in less urbanized areas than those for urbanized areas for both 

states, although the effect estimates for urban clusters were slightly higher than those for 

rural areas. Several studies have reported higher health effects of air pollution in rural areas, 

consistent with our findings. Garcia et al.2 found that estimated impacts of PM2.5 were 

higher in rural areas for mortality from cardiovascular disease, cardiopulmonary disease, and 

all causes. Another study investigating long-term exposure to PM2.5 in China reported that 

the risk of all-cause mortality in people ≥65 years was higher in rural than in urban areas.4 

On the other hand, Wang et al.5 found a higher effect of long-term PM2.5 exposure on 

mortality in urban than in rural areas. The different patterns of effects between urban and 

rural areas may result from differences in characteristics of the population, health behavior, 

time spent outdoors, access to health care, PM2.5 composition from different sources and 

weather patterns, and other environmental factors between urban and rural areas. For 

example, people living in rural areas may have less access to high quality of health care or 

larger proportion of PM2.5 in rural areas may derive from biomass fuels. Also, low greenness 

in rural vs. urban areas may differ. Measure of total greenness by a single indicator does not 

differentiate between different types of land use between urban and rural areas. For example, 

large urban areas with high population density tend to lose natural resources and have 

anthropogenic urban green areas (e.g., urban park vs. natural grassland). Medium cities like 

urban clusters in our study may be more complex due to several factors such as within area 

variation of some factors (e.g., SES) than those in large urban areas and some areas may 

have mixed urban and rural characteristics as our urban and rural classification in this study 

was based on the population density.

Our findings suggest that regardless of SES, people living in high greenness areas had lower 

effect of PM2.5 exposure on mortality than those living in less green areas. Also, regardless 

of greenness level, people living in high SES areas had lower effect of PM2.5 exposure on 

mortality than those living in low SES areas. Moreover, people living in areas with both high 

SES and high greenness had substantially lower effects for PM2.5 exposure on mortality for 

both states. Our findings indicate that people living in low SES areas with high greenness 

may benefit by having a lower effect of PM2.5 on mortality than those living in low SES 

with low greenness. Crouse et al. observed similar findings to our study.17 They found that 

residents in economically deprived neighborhoods with high greenness had lower 

associations between PM2.5 and mortality than those living in deprived areas with less 

greenness. Another study also suggested that disadvantaged populations such as those with 
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lower SES may benefit more from greenness than those of higher SES.12 The different 

findings around health disparities may result from various combinations of several 

demographic and/or environmental characteristics; factors that often contribute to health 

disparities are often correlated (e.g., differences in SES between/within greenness group). 

Thus, further research is needed to consider complex interaction among possible disparity 

factors on the air pollution–health outcomes association. Our findings of combined 

disparities contribute to understandings of how multiple disparity factors may affect 

associations between air pollution and health outcomes (as illustrated in eFigure 1).

Our study has several limitations. We used satellite-derived NDVI data as an indicator of 

residential greenness. Using a single measure for vegetation does not reflect different kinds 

of vegetation, accessibility, and quality of greenness, although NDVI is a widely used 

effective measure of greenness. Moreover, we had no information of actual exposure to 

green space such as frequency of visiting or using green space. Additional studies 

considering different types of greenness and detailed data for activity patterns are needed to 

further evaluate the roles of greenness on the air pollution–health outcomes association. A 

previous study reported that the use of a predicted exposure can bias the health effect 

estimate unless all of the confounders included in the health effect regression model are also 

included in the exposure prediction model.31 In this study, we used predicted PM2.5 

estimates from previously published prediction models. Our ensemble model combined 

three complementary algorithms (neural network, random forest, and gradient boosting) and 

achieved excellent performance, with better agreement between monitored PM2.5 and 

predicted PM2.5 (spatial R2=0.89, spatial RMSE=1.26μg/m3, temporal R2=0.85).23 The 

algorithms used a large number of predictor variables including satellite data, meteorologic 

variables, land-use variables, and chemical transport model predictions. Our health effect 

model controlled for several individual- and community-level covariates including regional 

cluster variable to consider compositional differences in PM2.5, meteorologic variables. The 

complex prediction model used to estimate PM2.5 concentrations23 used greenness as one of 

the many input variables. As noted, the model shows very good agreement with monitor 

values; however, if the prediction model performance differs by greenspace, our results 

could be affected. However, we confirmed robustness of effect estimates by greenness 

between PM2.5 prediction estimates and monitor values using the subset of areas with PM2.5 

monitors. We adjusted for many individual- and community-level variables in our analysis, 

but residual confounding may remain, for example because of differences in health 

behaviors among people living in different greenness groups. Future studies considering 

more detailed individual-level behavioral data are needed. Strengths of our study include 

that we could estimate the effect of PM2.5 exposure with large spatiotemporal coverage and 

high spatiotemporal resolution. Our analysis included a large population of elderly (65 years 

of age or order) from the Medicare cohort from all areas including rural areas across both 

states followed for up to 16 years. Future work could investigate whether the association 

between ambient exposure and personal exposure differs by residential greenness among 

other relevant factors. Further, we considered multiple dimensions of disparity factors, 

which can influence the air pollution–mortality association.
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Conclusions

We found suggestive evidence that people living in neighborhoods with high greenness have 

lower mortality risk from long-term exposure to PM2.5 than those living in neighborhoods 

with low greenness, although there may remain uncertainties due to differences in 

population characteristics, PM2.5 sources and composition, and other environmental factors 

across greenness groups. Additionally, in our study, we estimate that people living in low 

SES areas with high greenness benefited from a lower effect of PM2.5 on mortality than 

those living in low SES areas with low greenness. The findings from this study contribute to 

the growing body of literature on greenness as an effect modifier in the air pollution–health 

outcomes associations. Moreover, our findings regarding combined disparities estimate that 

multiple aspects of disparity factors and their interactions may contribute to disproportionate 

mortality burdens from air pollution exposure.
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Figure 1. 
Spatial distribution of (A) annual average PM2.5 (2001–2016), (B) annual average NDVI 

(2001–2016), and (C) urban and rural areas in North Carolina and Michigan
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Figure 2. 
Estimated effects of PM2.5 on mortality by urbanicity (overall, urbanized areas, urban 

clusters, rural areas) and level of greenness (low, medium, high) in North Carolina and 

Michigan

Note: Hazard ratio (HR) calculated per 1 μg/m3 for PM2.5. Urbanicity classification (i.e., 

urbanized areas, urban clusters, and rural) was based on 2010 Census data (Urbanized Areas 

(UAs) of 50,000 or more people; Urban Clusters (UCs) of at least 2,500 and less than 50,000 

people. Rural areas are defined as all population, housing, and territory not included within 

an urbanized area or urban cluster). Levels of greenness were defined separately by state; 

greenness was divided in groups of low, medium, and high as tertiles.
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Figure 3. 
Effects of PM2.5 on mortality by greenness and socioeconomic status (SES) in North 

Carolina and Michigan.

Note: Hazard ratio (HR) calculated per 1 μg/m3 for PM2.5. SES group was based on the 

lowest and highest quartiles of median household income. The shape of the central estimate 

indicates SES (circle for lowest quartile, triangle for highest quartile of median household 

income); the color of the result indicates level of greenness (black for low, green for high).
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Table 1.

Distribution of greenness and PM2.5 concentration by greenness group in North Carolina and Michigan, 2001–

2016.

Mean SD Min 25% 50% 75% Max IQRw

NC

NDVI Total 0.62 0.07 0.00 0.60 0.63 0.66 0.74 0.06

Low 0.55 0.08 0.00 0.54 0.58 0.60 0.61 0.05

Medium 0.63 0.01 0.61 0.62 0.63 0.64 0.65 0.02

High 0.67 0.02 0.65 0.66 0.67 0.69 0.74 0.03

PM2.5 Total 8.30 1.45 3.61 7.63 8.35 8.89 15.73 1.25

Low 8.78 1.37 4.16 8.00 8.54 9.09 15.73 1.09

Medium 8.49 1.24 4.02 8.00 8.44 8.85 15.12 0.85

High 7.63 1.47 3.61 6.64 7.76 8.55 15.10 1.91

MI

NDVI Total 0.46 0.06 0.00 0.42 0.48 0.50 0.62 0.08

Low 0.39 0.04 0.00 0.37 0.40 0.42 0.45 0.05

Medium 0.47 0.01 0.45 0.46 0.48 0.49 0.49 0.03

High 0.52 0.02 0.49 0.50 0.51 0.53 0.62 0.02

PM2.5 Total 8.23 1.57 1.80 7.53 8.05 9.01 17.33 1.47

Low 8.75 1.61 1.80 7.63 8.32 9.53 17.33 1.90

Medium 8.39 1.31 2.98 7.69 8.11 9.15 16.15 1.45

High 7.55 1.50 2.77 6.97 7.84 8.14 15.57 1.18

Greenness was divided in groups of low, medium, and high as tertiles; state-specific cutoffs for greenness group: low (<0.61), medium (0.61–0.65), 
and high (≥0.65) for NC; low (<0.45), medium (0.45–0.49), and high (≥0.49) for MI

SD indicates standard deviation; Min, minimum; Max, maximum; IQRw interquartile range width; NDVI, Normalized Difference Vegetation Index

Epidemiology. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Son et al. Page 18

Ta
b

le
 2

.

C
ha

ra
ct

er
is

tic
s 

of
 s

tu
dy

 p
op

ul
at

io
n 

in
 N

or
th

 C
ar

ol
in

a 
an

d 
M

ic
hi

ga
n

C
ha

ra
ct

er
is

ti
cs

N
C

M
I

E
nt

ir
e 

co
ho

rt
G

re
en

ne
ss

E
nt

ir
e 

co
ho

rt
G

re
en

ne
ss

L
ow

M
ed

iu
m

H
ig

h
L

ow
M

ed
iu

m
H

ig
h

Po
pu

la
tio

n

Pe
rs

on
s

1,
26

3,
68

9
41

8,
70

1
42

3,
13

8
42

1,
85

0
1,

31
8,

55
8

43
8,

90
5

43
7,

48
6

44
2,

16
7

To
ta

l d
ea

th
s

17
9,

32
9

77
,2

62
 (

43
.1

)
61

,3
22

 (
34

.2
)

40
,7

45
 (

22
.7

)
18

7,
80

2
99

,3
69

 (
52

.9
)

55
,1

07
 (

29
.3

)
33

,3
26

 (
17

.8
)

Se
x 

(n
, %

)

M
al

e
59

0,
49

1
19

4,
45

6 
(3

2.
9)

19
6,

64
5 

(3
3.

3)
19

9,
39

0 
(3

3.
8)

62
6,

91
3

20
4,

11
9 

(3
2.

6)
20

7,
80

7 
(3

3.
2)

21
4,

98
7 

(3
4.

3)

Fe
m

al
e

67
3,

19
8

22
4,

24
5 

(3
3.

3)
22

6,
49

3 
(3

3.
6)

22
2,

46
0 

(3
3.

1)
69

1,
64

5
23

4,
78

6 
(3

4.
0)

22
9,

67
9 

(3
3.

2)
22

7,
18

0 
(3

2.
9)

R
ac

e/
et

hn
ic

ity
 (

n,
 %

)

N
on

-H
is

pa
ni

c 
W

hi
te

1,
00

2,
78

6
30

1,
55

3 
(3

0.
1)

33
7,

28
8 

(3
3.

6)
36

3,
94

5 
(3

6.
3)

1,
11

1,
01

5
30

6,
75

1 
(2

7.
6)

39
0,

60
3 

(3
5.

2)
41

3,
66

1 
(3

7.
2)

N
on

-H
is

pa
ni

c 
B

la
ck

20
9,

78
5

93
,9

90
 (

44
.8

)
69

,8
08

 (
33

.3
)

45
,9

87
 (

21
.9

)
14

7,
54

0
10

9,
93

8 
(7

4.
5)

26
,1

95
 (

17
.8

)
11

,4
07

 (
7.

7)

O
th

er
s

51
,1

18
23

,1
58

 (
45

.3
)

16
,0

42
 (

31
.4

)
11

,9
18

 (
23

.3
)

60
,0

03
22

,2
16

 (
37

.0
)

20
,6

88
 (

34
.5

)
17

,0
99

 (
28

.5
)

A
ge

 a
t e

nt
ry

 (
m

ea
n,

 y
ea

rs
)

65
.1

65
.1

65
.1

65
.0

65
.1

65
.2

65
.1

65
.1

E
lig

ib
le

 f
or

 M
ed

ic
ai

d 
(n

, %
)

16
4,

61
8

60
,6

78
 (

36
.9

)
53

,3
61

 (
32

.4
)

50
,5

79
 (

30
.7

)
12

3,
19

4
62

,8
27

 (
51

.0
)

32
,7

17
 (

26
.6

)
27

,6
50

 (
22

.4
)

M
ed

ia
n 

ho
us

eh
ol

d 
in

co
m

e 
(1

00
0s

 o
f 

$)
49

.5
51

.7
50

.5
46

.3
53

.9
46

.5
57

.1
58

.2

B
el

ow
 p

ov
er

ty
 le

ve
l (

%
)

9.
8

9.
7

9.
4

10
.2

8.
1

10
.7

6.
8

6.
8

Po
pu

la
tio

n 
de

ns
ity

 (
pe

rs
on

s/
m

ile
2 )

70
3.

6
12

67
.5

62
4.

3
22

3.
4

16
03

.5
32

77
.9

99
4.

8
54

4.
4

Po
pu

la
tio

n 
(%

)

H
is

pa
ni

c
7.

8
8.

8
8.

5
6.

0
4.

0
4.

8
4.

2
3.

0

B
la

ck
19

.1
25

.6
19

.4
12

.4
12

.6
26

.9
7.

2
3.

7

M
et

eo
ro

lo
gi

ca
l v

ar
ia

bl
es Te

m
pe

ra
tu

re
 (

°C
)

22
.2

 (
1.

5)
22

.6
 (

1.
0)

22
.3

 (
1.

4)
21

.7
 (

1.
9)

15
.4

 (
1.

4)
15

.5
 (

1.
2)

15
.5

 (
1.

4)
15

.1
 (

1.
6)

R
el

at
iv

e 
hu

m
id

ity
 (

%
)

88
.2

 (
2.

5)
87

.6
 (

2.
9)

88
.1

 (
2.

1)
89

.0
 (

2.
2)

89
.0

 (
3.

1)
87

.2
 (

2.
9)

89
.5

 (
2.

6)
90

.3
 (

2.
9)

G
re

en
ne

ss
 w

as
 d

iv
id

ed
 in

 g
ro

up
s 

of
 lo

w
, m

ed
iu

m
, a

nd
 h

ig
h 

as
 te

rt
ile

s;
 s

ta
te

-s
pe

ci
fi

c 
cu

to
ff

s 
fo

r 
gr

ee
nn

es
s 

gr
ou

p:
 lo

w
 (

<
0.

61
),

 m
ed

iu
m

 (
0.

61
–0

.6
5)

, a
nd

 h
ig

h 
(≥

0.
65

) 
fo

r 
N

C
; l

ow
 (

<
0.

45
),

 m
ed

iu
m

 (
0.

45
–

0.
49

),
 a

nd
 h

ig
h 

(≥
0.

49
) 

fo
r 

M
I

Epidemiology. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Son et al. Page 19

Table 3.

Associations between long-term exposure to PM2.5 and total mortality across greenness groups in North 

Carolina and Michigan

HR (95% CI)

NC MI

Total 1.12 (1.12–1.13) 1.01 (1.00–1.01)

Greenness

Low 1.10 (1.09–1.12) 1.06 (1.05–1.07)

Medium 1.18 (1.17–1.20) 0.93 (0.92–0.94)

High 0.98 (0.97–0.99) 0.96 (0.94–0.97)

HR calculated per 1 μg/m3 for PM2.5; Models were stratified by greenness groups.

Greenness was divided in groups of low, medium, and high as tertiles in each state; state-specific cutoffs for greenness group: low (<0.61), medium 
(0.61–0.65), and high (≥0.65) for NC; low (<0.45), medium (0.45–0.49), and high (≥0.49) for MI

N for low 418,701 persons, medium 423,138 persons, and high greenness 421,850 persons for NC; low 438,905 persons, medium 437,486 persons, 
and high greenness 442,167 persons for MI

Adjusted for sex, race, age group, Medicaid eligibility, cluster of PM2.5 composition, year, temperature, relative humidity, percentage Black, 

percentage Hispanic, median household income, percent below poverty, and population density
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