Skip to main content
. 2021 May 27;11:11166. doi: 10.1038/s41598-021-90824-0

Table 3.

Hierarchical multiple regression analysis to predict the contribution of the treatment protocol towards the VAS pain scores after 24 h of treatment (n = 84).

Model* Predictors Unstand Co Stand Co t Sig 95% CI for B
B SE Beta Lower bound Upper bound

Model 1

R2 = .008

(Constant) 4.753 3.930 1.209 .230 − 3.068 12.574
Gender .087 .624 .016 .140 .889 − 1.155 1.329
Age − .094 .157 − .067 − .597 .552 − .405 .218
Affected tooth .133 .284 .053 .471 .639 − .431 .698

Model 2

R2 = .771

(Constant) − 4.475 1.981 − 2.258 .027 − 8.418 − .531
Gender .035 .301 .006 .116 .908 − .565 .635
Age − .002 .076 − .002 − .030 .976 − .153 .149
Affected tooth .054 .137 .021 .393 .695 − .219 .327
Treatment protocol 4.875 .300 .877 16.246  < .0001 4.278 5.472

R2 = Coefficient of determination, Unstand Co = Unstandardized coefficient, Stand Co = Standardized coefficient, B = Beta statistics, SE = Standard Error, t = t statistics, Sig = Significance of probability (P value), CI = Confidence intervals.

*Significance of F statistic change was P = .886 and P < .0001 for Model 1 and Model 2 respectively.