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Abstract

Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling 

molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the 

contractility of vascular smooth muscle cells and permeability of endothelial cells in response to 

either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the 

smooth muscle-like trabecular meshwork (TM) cells and Schlemm’s canal (SC) endothelium 

control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The 

mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key 

player as enhancement or inhibition of NO signaling dramatically affects outflow function; and 

polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various 

environmental exposures and glaucoma. Based upon a comprehensive review of past foundational 

studies, we present a model whereby NO controls a feedback signaling loop in the conventional 

outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, 

the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC 

endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, 

relaxing neighboring TM cells and increasing permeability of SC’s inner wall. These IOP-

dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor 

drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to 

cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow 

regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.

*Corresponding author. Department of Ophthalmology, Duke University, DUMC 3802, Durham, NC, 27710, USA. 
dan.stamer@duke.edu (W.D. Stamer). **Corresponding author. Department of Bioengineering, Imperial College London, London, 
SW7 2AZ, United Kingdom. d.overby@imperial.ac.uk (D.R. Overby).
CRediT authorship contribution statement
Ester Reina-Torres: Investigation, Writing - original draft, Writing - review & editing. Michael L. De Ieso: Investigation, Writing - 
original draft, Writing - review & editing. Louis R. Pasquale: Investigation, Funding acquisition, Writing - original draft, Writing - 
review & editing. Darryl R. Overby: Conceptualization, Funding acquisition, Investigation, Project administration, Resources, 
Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing. W. Daniel Stamer: Conceptualization, 
Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, 
Writing - review & editing.

HHS Public Access
Author manuscript
Prog Retin Eye Res. Author manuscript; available in PMC 2021 July 21.

Published in final edited form as:
Prog Retin Eye Res. 2021 July ; 83: 100922. doi:10.1016/j.preteyeres.2020.100922.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Conventional outflow; Glaucoma; Ocular hypertension; Schlemm’s canal; Shear stress; Trabecular 
meshwork

1. Introduction

Despite the vast production of scientific work involving nitric oxide (NO) (more than 

176,000 entries in PubMed to date), the discovery of NO as a molecule with physiological 

relevance is a relatively recent event (Moncada and Higgs, 2006; Murad, 2004). NO was 

previously known as a pollutant, but it was not until the late 1970’s that the role of NO as a 

signaling molecule started to become clear. Furchgott and Zawadzki (1980) described the 

existence of a molecule that was produced by endothelial cells and relaxed smooth muscle. 

At that point, they called the “mediator” endothelium-derived relaxing factor (EDRF). Early 

work on EDRF revealed that acetylcholine, bradykinin and histamine all stimulated its 

production, and that EDRF acted via soluble guanylyl cyclase and was inhibited by 

hemoglobin and methylene blue (Furchgott et al., 1984; Ignarro et al., 1986). Some years 

earlier, Murad and colleagues were already working on the activity of guanylyl cyclase in 

response to NO (Arnold et al., 1977), independently of the EDRF studies.

NO meets all criteria for a prototypical gasotransmitter (Mustafa et al., 2009): it is light 

weight (MW = 30D); it is highly permeable with respect to lipid bilayers; it can be 

endogenously generated; it requires no exclusive cognate cell surface receptors (but it has 

several critical intracellular macromolecular targets); it has associated derivatives (e.g.: 

superoxide, nitrite, nitrate, nitrous oxide, peroxynitrite) that are critical to its function; and 

most importantly, it serves as a signaling molecule for a wide variety of essential physiologic 

functions including, as we will argue, intraocular pressure (IOP) regulation (Wang, 2018). 

There are other gasotransmitters, including carbon monoxide (Bucolo and Drago, 2011) and 

hydrogen sulfide (Han et al., 2019), but these will not be covered in this review because their 

role in ophthalmic physiology has not been studied as extensively as NO.

Leading to the identification of EDRF as NO, there were studies describing the short half-

life of the molecule (Gryglewski et al., 1986) and the realization that EDRF was a free 

radical, due the observation that most of its inhibitors had redox properties that lead to the 

generation of superoxide (O2
−) (Moncada et al., 1986). It was in 1987 when Ignarro et al., 

1987a, 1987b and Palmer et al. (1987) confirmed that EDRF was NO. Later, Palmer, 

Moncada and colleagues showed that L-arginine served as a substrate for NO production 

(Palmer et al., 1988), by NO synthase (NOS) (Moncada et al., 1989), which was isolated in 

1990 (Bredt and Snyder, 1990). After 1990, the scientific production involving NO increased 

exponentially until it plateaued around the year 2000; since then, more than 7000 papers on 

NO are published every year. Due to the significance of these discoveries, NO was named 

“molecule of the year” in 1992 by Science (Culotta and Koshland, 1992) and Robert F. 

Furchgott, Louis J. Ignarro, and Ferid Murad won the Nobel Prize in physiology or medicine 

in 1998 ‘for their discoveries concerning NO as a signaling molecule in the cardiovascular 
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system’ (Nicholls, 2019). Since then, NO has been shown to be a key mediator in most 

vascular beds in the body, including those in the eye.

In the first part of this review, we provide an overview of NO biology and its role in 

endothelial function and dysfunction. This will provide the necessary background to discuss 

the role of NO in aqueous humor dynamics, IOP regulation and pathology leading to 

primary open-angle glaucoma (POAG), which accounts for 75% of glaucoma globally and 

over 50% of glaucoma-related blindness (Quigley and Broman, 2006). Importantly, lowering 

IOP is the only efficacious means to slow POAG progression. Over the past decade, it has 

become clear that NO is a key regulator of IOP homeostasis within the conventional outflow 

pathway. In the second part of the review we provide a comprehensive examination of 

pioneering work in this realm, which together supports a novel mechanism by which NO 

modulates conventional outflow resistance to maintain IOP. Proper functioning of the 

conventional outflow pathway maintains IOP within a few mmHg throughout the lifetime of 

most people (Gabelt and Kaufman, 2005; Toris et al., 1999). However, its dysfunction is 

responsible for high IOP in POAG (Grant, 1951), which has motivated industry partners to 

develop technologies that target NO signaling to treat POAG.

2. Nitric oxide/nitric oxide synthase basics

NO is produced by NOS, which are a family of enzymes made of three isozymes transcribed 

from three different genes: neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), 

and endothelial NOS (eNOS, NOS3). nNOS and eNOS are constitutively expressed, while 

iNOS is “inducible”, being produced under pathological conditions as a mediator of the 

immune response. nNOS and eNOS are found in different cell types and tissues, but their 

names come from the cell types in which they were discovered and where they are more 

abundant (Bredt and Snyder, 1990; Förstermann et al., 1991; Goureau et al., 1993). Due to 

its importance in IOP homeostasis, endothelial-derived NO from eNOS will be the primary 

focus of this review.

2.1. NO production and eNOS structure

eNOS is an enzyme of 1203 amino acids with a molecular weight of 133 kDa that is 

translated from the gene NOS3 found in position 7q35–7q36 in the human genome. eNOS 

catalyzes the oxidation of the amino acid L-arginine to produce NO, L-citrulline and water 

(Palmer et al., 1988). The reaction is facilitated by an electron flux generated from the 

conversion of NADPH to NADP (Fig. 1).

The structure of eNOS supports the chemical reactions that lead to the production of NO and 

its regulation (Fig. 1). The carboxyl terminal (Ct) contains a reductase domain, where 

NADPH is converted into NADP+ + H+ with the consequential release of electrons. Flavin 

adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are co-factors that facilitate 

the transport of these electrons towards the oxygenase domain in the amino terminal (Nt). To 

further promote electron transport, calcium (Ca2+) activated Calmodulin (CaM) binds to the 

CaM binding domain located between the reductase and oxygenase domains. CaM coupling 

is essential for efficient electron transfer and, therefore, enzyme function. In the oxygenase 
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domain, a heme group and the essential cofactor tetrahydrobiopterin (BH4) facilitates the 

production of NO (Chen et al., 1996; Sheta et al., 1994).

eNOS requires the formation of a homodimer to be active. The monomers mostly interact at 

the oxygenase domain, where the binding site for BH4 and the heme moiety form an active 

pocket (Crane et al., 1998; Fischmann et al., 1999). Additionally, there are 2 cysteine 

residues (one per monomer) that form either a disulphide bridge or a zinc thiolate cluster 

(Raman et al., 1998). Finally, a Nt hook domain stabilizes the two monomers when the 

dimer is being formed (Crane et al., 1999). BH4 is also necessary for the formation of a 

stable dimer. Otherwise, the electrons are transferred into the oxygen molecule and 

superoxide is produced instead of NO (Xia et al., 1998), a process known as eNOS 

uncoupling (Vásquez-Vivar et al., 1998). The structure of the Nt containing fatty acylation 

by myristic and palmitic acid facilitates binding to lipid bilayers such as the Golgi apparatus 

and caveolae (Garcia and Sessa, 2019).

2.2. eNOS modulators

eNOS requires both the interplay with accessory molecules as well as posttranslational 

modification of its amino acids in order to synthetize NO. Requisite activities for NO 

formation include: dimerization of the monomers facilitated by BH4, replacement of 

caveolin-1 (CAV1) for Ca2+ dependent CaM, association with heat shock protein 90 (hsp90), 

phosphorylation of Ser1177 and dephosphorylation of Thr495. A brief description of eNOS 

modulators and modifications are given below and displayed schematically in Fig. 2:

CaM is the main protein interacting with eNOS (Bredt and Snyder, 1990). Divalent calcium 

ion is require for CaM to stably bind to the CaM binding domain of eNOS. Without CaM, 

there is no effective electron transfer from FMN in the reductase domain to the heme group 

in the oxygenase domain (Daff et al., 1999; Nishida and Ortiz de Montellano, 1999). 

Typically, 200–400 nM Ca2+ are necessary for CaM to bind to eNOS (Förstermann and 

Sessa, 2012).

CAV1 is an inhibitor of eNOS function. Importantly, CAV1 is a protein scaffold interlaced in 

the phospholipid bilayer that is essential to the biosynthesis of caveolae, and loss of CAV1 

results in loss of caveolae (Drab et al., 2001). Caveolae are specialized cellular domains that 

form “cup-shaped” invaginations in cellular membranes (Richter et al., 2008; Schlörmann et 

al., 2010), and are implicated in a variety of physiological processes including 

mechanosensing (discussed below), regulation of eNOS signaling and (García-Cardeña et 

al., 1996, 1997; Patel et al., 2008), and mechanotransduction (Albinsson et al., 2008; Joshi et 

al., 2012; Yu et al., 2006). eNOS is sequestered in caveolae (Shaul et al., 1996), with CAV1 

binding to the CaM binding domain of eNOS, and negatively regulating it (Bucci et al., 

2000; García-Cardeña et al., 1996, 1997; Ju et al., 1997; Michel et al., 1997): Therefore, 

binding of CaM to the CaM binding domain disrupts the interaction with CAV1, which 

activates eNOS (Michel et al., 1997). Moreover, CAV1 can also play a role in protein 

trafficking, which can limit the accessibility of eNOS to signaling cues preventing further 

downstream activity (Wang et al., 2009).
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Hsp90 is a protein that enhances eNOS function through multiple mechanisms. Hsp90 

promotes the affinity of eNOS for CaM (Pritchard et al., 2001), and it is necessary for Akt to 

interact with eNOS (García-Cardeña et al., 1998; Takahashi and Mendelsohn, 2003a). This 

interaction leads to eNOS phosphorylation (Fontana et al., 2002). Hsp90 also protects Akt 

from degradation (Wei and Xia, 2005). Additionally, Hsp90 can activate eNOS 

independently of Ca2+ (Takahashi and Mendelsohn, 2003b), contributing to eNOS activation 

in response to hypoxia (Chen and Meyrick, 2004). Finally, NO negatively regulates Hsp90 

by S-nitrosylation as a means to limit further NO production (Martínez-Ruiz et al., 2005).

Post translational modifications determine the cellular location of eNOS, which in turn 

define the type of signals (biochemical or biomechanical) that regulate its exposure and 

activity. For example, palmitoylation and myristoylation of its Nt glycine promotes 

localization in caveolae (Shaul et al., 1996).

Phosphorylation of certain serine and threonine residues have a different impact on eNOS 

activity. For instance, phosphorylation of Ser1177, Ser635 and Ser617 stimulate eNOS 

function, mostly by promoting CaM binding (Bhandari et al., 2006) and preventing CaM-

eNOS dissociation (Ser1177) (Dimmeler et al., 1999; McCabe et al., 2000). In contrast, 

phosphorylation of Thr495 and Ser116 inhibit eNOS function (Fleming et al., 2001; Greif et 

al., 2002; Kou et al., 2002).

S-nitrosylation in response to NO itself inhibits eNOS activity, and de-nitrosylation is 

necessary for the enzyme to function. Nitrosylation appears to affect eNOS by modifying the 

substrate or co-factor binding sites, thereby inhibiting electron transport at the interface 

between monomers and by promoting disassembly of the homodimer (Erwin et al., 2005; 

Ravi et al., 2004).

2.3. eNOS activation and regulation

The activity of eNOS is complex and exquisitely regulated, involving both spatial and 

temporal controls along with the synergy of multiple factors. Initially, eNOS requires a 

cellular location that allows its access to extracellular signaling cues to activate the enzyme. 

In particular, eNOS needs to be located at the cell membrane. At thi At this location, signals 

take the form of biomechanical (i.e. shear stress) or biochemical downstream signals from 

signal transduction (i.e. from G protein coupled receptors, GPCR). The activation of eNOS 

occurs through 2 main mechanisms, (i) mobilization of intracellular Ca2+ and (ii) 
phosphorylation in response to PI3K/Akt cascades. Additionally, the interaction with the co-

factors described above is also necessary. Finally, negative feedback mechanisms are in 

place in order to inhibit NO production when needed - these are mostly NO itself and eNOS 

internalization (Fig. 2).

The actin cytoskeleton plays an important role in eNOS translocation from intracellular 

compartments to the cell membrane (Govers and Rabelink, 2001). Additionally, eNOS is 

also internalized and recycled. For this reason, the balance between G-actin and F-actin 

regulates eNOS activity, with greater G-actin being associated with more eNOS activity 

(Kirsch et al., 2013; Su et al., 2003). Regarding these processes, two accessory proteins have 

been found: eNOS interacting protein and eNOS trafficking inducer protein (Dedio et al., 
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2001; Icking et al., 2005) (Fig. 2). These proteins are involved in eNOS internalization and 

trafficking and both inhibit eNOS function (Dedio et al., 2001; Zimmermann et al., 2002). 

eNOS is less active when not attached to caveolae, due to the lack of signaling when the 

protein is internalized and the limited access to Ca2+ (Jagnandan et al., 2005). However, 

eNOS becomes hyperactive in the absence of caveolae in CAV1 knock out (KO) mice, as 

CAV1 negatively regulates eNOS activity (Drab et al., 2001; Elliott et al., 2016). Since the 

biochemical content of plasma membrane does not change, eNOS myristoylation and 

membrane localization is likely to still occur in CAV1 KO mice, allowing the interaction of 

eNOS with Ca2+ and other signaling molecules.

In the caveolae, eNOS is accessible to extracellular signaling (biomechanical and 

biochemical) that would promote eNOS activity by either mobilizing Ca2+ into the cell or by 

phosphorylating its serines. For the relevance of biomechanical signals in outflow function, 

we will discuss in detail how those influence eNOS activity in the next section. In terms of 

biochemical signals that can activate eNOS, the number and nature of factors are very broad 

and are mostly mediated through GPCRs (Fig. 2). Thus, mobilization of intracellular Ca2+ 

can be triggered by molecules such as bradykinin, acetylcholine, histamine, adenosine and 

thrombin, which interact with their cognate receptors. In contrast, serine phosphorylation 

can be triggered by guanine nucleotide exchange factors and guanosine 5′-triphosphate 

(GTP) activated proteins, insulin and hormones such as estrogen and platelet derived 

mediators (Dudzinski et al., 2006). Interestingly, estrogen as an activator of eNOS may be 

particularly important as considerable evidence suggests that relative estrogen deficiency in 

the reproductive and post-reproductive years contributes to elevated IOP (Vajaranant et al., 

2016) and POAG (Vajaranant and Pasquale, 2012). Molecules like vascular endothelial 

growth factor (VEGF) and sphingosine-1-phosphate can activate eNOS through both 

mechanisms, Ca2+ internalization and phosphorylation (Jagnandan et al., 2005). VEGF 

deserves special attention, as it is the most potent eNOS stimulator. VEGF can promote Ca2+ 

mobilization (He et al., 1999), phosphorylate eNOS at Ser1177 within 5 min, de-

phosphorylate Ser116 within 30 min (Kou et al., 2002), and induce eNOS de-nitrosylation 

(Erwin et al., 2005). Therefore, VEGF may activate eNOS though multiple regulation points 

that act over a range of different time scales.

Finally, eNOS also has negative regulatory feedbacks to avoid NO overproduction. These 

mechanisms include internalization and trafficking, and Hsp90 and eNOS S-nitrosylation 

(Erwin et al., 2005; Martínez-Ruiz et al., 2005; Ravi et al., 2004).

2.4. Biomechanical activation of eNOS

Biomechanical activation of eNOS occurs in response to hydrodynamic shear stress or 

mechanical stretch. Several molecular pathways and initial mechanotransducers are involved 

in the biomechanical activation of eNOS, discussed below and summarized in Fig. 3. In 

general, these pathways converge to increase intracellular Ca2+ or to activate PI3K/Akt. 

Biomechanical activation of eNOS has been a topic of other reviews (Balligand et al., 2009; 

Davies, 1995). Here, we focus on the main points necessary to understand the 

mechanosensitive role of eNOS in the context of aqueous humor outflow.
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Local biomechanical regulation of eNOS via shear stress is a principal factor controlling 

arterial diameter. Shear stress is a crucial hemodynamic force in the vasculature as it 

stimulates changes in gene expression, release of vasoactive substances, changes in cell 

metabolism and morphology (Davies, 1995). In endothelial cells, acute shear stress causes a 

transient rise in intracellular Ca2+, which activates eNOS and NO production via Ca2+/CaM 

signaling, however, sustained shear stress triggers NO release in a Ca2+/CaM-independent 

manner (Kuchan and Frangos, 1994). Sustained shear-induced NO production requires 

eNOS phosphorylation by kinases such as protein kinase A (Balligand et al., 2009; Fleming, 

2010) or protein kinase B (Dimmeler et al., 1999; Fulton et al., 1999).

CAV1 and caveolae act as mechanotransducers for shear stress in endothelial cells, initiating 

and integrating signaling cascades (such as eNOS) in response to shear. In fact, Yu et al. 

(2006) showed that loss of endothelial CAV1 and caveolae expression resulted in reduced 

shear stress-induced physiological responses in blood vessels such as vessel dilation/

constriction and eNOS activity, and this loss of function was rescued when CAV1 was 

reintroduced. Caveolae appear to act as scaffolds that hold together signaling molecules 

associated with specific pathways (such as eNOS) in an inactive state, and upon mechano-

stimulation with shear stress, they facilitate fast signal transduction to downstream effectors 

allowing endothelial cells to respond rapidly and efficiently (Frank and Lisanti, 2006; Frank 

et al., 2003; Lisanti et al., 1994). Consistent with this notion, caveolae are enriched with 

molecules involved in shear-induced eNOS activation. For example, cationic arginine 

transporter-1 and several molecules that regulate intracellular Ca2+ concentration localize in 

caveolae (Isshiki and Anderson, 1999; Isshiki et al., 2002; McDonald et al., 1997). Shear-

induced eNOS activation can occur via β1 integrins on the apical surface of endothelial 

cells, and this process is dependent on caveolae structural integrity (Yang et al., 2013). In 

addition, shear stress-induced integrin activation occurs downstream from the VEGF 

receptor (VEGFR)/vascular endothelial cadherin (VE-cadherin)/platelet endothelial cell 

adhesion molecule-1 (PECAM-1) mechanosensory complex (Tzima et al., 2005), and a 

component of this complex, VEGFR-2, associates with CAV1 (Labrecque et al., 2003). 

Caveolae have also been shown to “shelter” shear-sensitive signaling molecules such as 

VEGFR-2 from shear stress, and to allow exposure of these molecules when the plasma 

membrane becomes stretched (Shin et al., 2019), suggesting caveolae play an important role 

in regulating the intensity of response to shear. Finally, caveolae are also necessary for 

glycocalyx-mediated mechanotransduction and subsequent downstream eNOS signaling 

(Zeng et al., 2014).

Another important mechanosensor is Piezo-type mechanosensitive ion channel component 1 

(PIEZO1). PIEZO1 is a non-specific mechanically-gated cation channel expressed on the 

plasma membrane, linking mechanical signals to immediate biological functions (Coste et 

al., 2012; Ge et al., 2015). PIEZO1 is activated by shear stress and regulates shear stress-

induced elevation of intracellular Ca2+, cell alignment, vascular tone, blood pressure 

regulation, adenosine triphosphate (ATP) release, and NO production (Li et al., 2014; Wang 

et al., 2016; Wong et al., 2018), processes necessary for blood vessel formation during 

development, hemodynamics, and vascular structure during adulthood (Li et al., 2014; 

Ranade et al., 2014). Wang et al. (2016) showed that knockdown of PIEZO1 inhibited shear-

induced increases in intracellular Ca2+, eNOS activity, and ATP release. Potentiation of 
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these parameters, including phosphorylation of Akt, was observed following administration 

of a PIEZO1 activator (Yoda1), mimicking the effects of shear stress on endothelial cells 

(Wang et al., 2016). Moreover, eNOS protein was reduced and VEGF-dependent 

phosphorylation of eNOS at Ser1177 was abolished in human umbilical vein endothelial 

cells depleted of PIEZO1 and aorta from mice with haploinsufficiency of PIEZO1 (total KO 

of PIEZO1 is embryonically lethal) (Li et al., 2014).

In endothelial cells, a dominant mechanosensory complex involved in shear stress-induced 

integrin activation is comprised of platelet endothelial cell adhesion molecule-1, VE-

cadherin, and VEGFR-2 complex (Tzima et al., 2005). VEGFR-3 has also been identified as 

a component of the complex (Coon et al., 2015). Shear force is transmitted from the apical 

membranes of endothelial cells through the cytoskeleton to cell-cell and cell-extracellular 

matrix adhesion points. Thus, integrins and adherens junctions sense mechanical changes in 

tension and act as mechanotransducers in endothelial cells (Davies, 1997). Shear stress 

causes integrin activation, mediating physiological responses such as cell alignment, gene 

expression, and modulation of signaling pathways (Tzima et al., 2001, 2002, 2003).

The mechanotransduction activity of VE-cadherin, VEGFR-2 and PECAM-1 are intimately 

intertwined. Both PECAM-1 and VE-cadherin are major cell-cell adhesion molecules in 

endothelial cells (including Schlemm’s canal) with a cytoplasmic domains that binds to β- 

and γ-catenins (Albelda et al., 1990; Newman and Newman, 2003; Vest-weber, 2008). VE-

cadherin is a major component of the adherens junction complex (Taddei et al., 2008) and 

essential for controlling vascular permeability at associated tight junctions (Vincent et al., 

2004). VEGFR-2 is a receptor tyrosine kinase that binds to and mediates angiogenic effects 

of VEGF (Rahimi, 2006). Together, this mechanosensory complex is necessary for the 

activation of a subset of shear-dependent signaling pathways. Cell lines deficient in 

PECAM-1 or VE-cadherin do not exhibit cell alignment or integrin activation in response to 

shear stress, and re-expression of these receptors rescues shear-induced integrin activation 

and cell alignment (Tzima et al., 2005). Separate application of mechanical strain on 

PECAM-1 and VE-cadherin with magnetic beads bound to receptor-specific antibodies 

demonstrated direct mechanotransduction by PECAM-1 and not VE-cadherin, suggesting 

that PECAM-1 is the direct transducer of shear stress in this mechanosensing complex 

(Collins et al., 2012; Tzima et al., 2005), although P2Y2 receptor and Gq/G11 might be 

required for the upstream mechanical activation of the VEGFR/VE-cadherin/PECAM-1 

complex (Wang et al., 2015b). Onset of shear stress induces PECAM-1 phosphorylation, 

which triggers ERK (Osawa et al., 2002), and Src activation (Tzima et al., 2005). Shear 

stress also induces the VE-cadherin-dependent association of PECAM-1 and β-catenin with 

the p85 subunit of phosphoinositide 3-kinase (PI(3)K) (Tzima et al., 2005). VE-cadherin and 

its binding partner, β-catenin, act as a unified adapter protein in this complex, enabling the 

physical association of PECAM-1 and VEGFR-2. VE-cadherin is required for the ligand-

independent activation of VEGFR-2 by Src following induction of flow or mechanical strain 

on PECAM-1 (Conway and Schwartz, 2012; Tzima et al., 2005). The interaction between 

VE-cadherin and VEGFR-2 was originally thought to be indirect via β-catenin (Lampugnani 

et al., 2006), however more recent evidence suggests a direct interaction of transmembrane 

binding domains within both proteins (Coon et al., 2015). Shear-induced VEGFR-2 

activation is required for phosphorylation of the p85 subunit of PI(3)K, which occurs within 
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15 s after the onset of shear stress, and continues to increase for several minutes (Tzima et 

al., 2005). Therefore, PECAM-1 is required for the mechanosensation of shear stress and Src 

activation, while VE-cadherin enables the transmission of this signal to PI(3)K. PI(3)K goes 

on to activate integrins and mediate other signaling pathways such as Akt and eNOS 

(Hughes and Pfaff, 1998; Tzima et al., 2005). Dysregulation of the VEGFR/VE-cadherin/

PECAM-1 complex leads to endothelial dysfunction. For example, PECAM-1 KO mice 

exhibit loss of shear stress-induced NO-dependent dilation of vessels (Bagi et al., 2005; 

Fleming et al., 2005; McCormick et al., 2011). Moreover, shear-induced PECAM-1 

phosphorylation activates Src, and Src mediates eNOS expression in acute and chronic 

responses to shear stress (Davis et al., 2001). Furthermore, inhibition of β1 integrin 

activation reduced shear-induced signaling involving Src-family kinases, PI (3)K, Akt and 

eNOS (Yang and Rizzo, 2013).

The Tie2/PI(3)K/Akt signaling pathway is another mechanosensory pathway involved in 

shear-induced NO production in human endothelial cells. Akt is one of the main regulators 

of shear stress-induced eNOS phosphorylation, and is activated downstream of shear-

induced PI(3)K phosphorylation (Dimmeler et al., 1999; Fulton et al., 1999; Lee and Koh, 

2003). Akt directly phosphorylates eNOS in a Ca2+-independent manner, causing the 

production of NO (Dimmeler et al., 1999; Fulton et al., 1999). Tyrosine kinase with 

immunoglobulin and epidermal growth factor homology domain-2 (Tie2) is widely 

expressed in endothelial cells and plays a role in vasculogenesis, angiogenesis, and 

hematopoiesis during development (Sato et al., 1995). Shear stress activates Tie2 receptor 

tyrosine kinase in human endothelial cells, with maximum phosphorylation occurring at 5 

min (Lee and Koh, 2003). Lee and Koh (2003) suggested that Tie2 is the main contributor to 

the PI(3) K/Akt signaling pathway due to the extent, amount, and time window of Tie2 

activation relative to shear-induced PI(3)K/Akt activity. This theory was later supported 

when Yang et al. (2012) discovered that Tie2 knockdown inhibited shear-induced activation 

of Akt and eNOS in human early endothelial progenitor cells. Therefore, the Tie2/PI(3) 

K/Akt signaling pathway is an important regulator of shear-induced eNOS activity and NO 

production in endothelial cells.

The glycocalyx plays an important role in mechanotransduction and shear-induced NO 

production in vascular endothelium (Pahakis et al., 2007; Tarbell and Ebong, 2008; Tarbell 

and Pahakis, 2006; Weinbaum et al., 2003, 2007; Yao et al., 2007). The luminal surface of 

most vascular endothelium is coated with a variety of membrane-bound macromolecules that 

establish the hydrophilic glycocalyx layer, including glycoproteins with terminal sialic acids, 

proteoglycans, and glycosaminoglycans (Pries et al., 2000; Tarbell et al., 2014). The GAGs 

that make up part of the glycocalyx are heparan sulfate, chondroitin sulfate, and hyaluronic 

acid (Pahakis et al., 2007). Transmembrane syndecans constitute some of the major protein 

core families on the endothelial cell plasma membrane with GAG attachments sites, and the 

cytoplasmic tails of the syndecans associate with the cytoskeleton, enabling the transduction 

of force from the lumen throughout the cell (Pahakis et al., 2007). Enzymatic degradation of 

components of the glycocalyx such as heparin sulfate, hyaluronic acid, and sialic acid, but 

not chondroitin sulfate, inhibits shear-induced NO production in bovine aortic endothelial 

cells (Florian et al., 2003; Mochizuki et al., 2003; Pahakis et al., 2007).
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2.5. NO signaling

As a gasotransmitter, NO is a lipophilic, diatomic and uncharged free radical that despite its 

short half-life can act as both autocrine and paracrine signaling molecule due to its ability to 

diffuse between cell membranes without a transport system (Gryglewski et al., 1986; Hakim 

et al., 1996; Kelm, 1999). NO has a very short life, especially due to the high reactivity it has 

with superoxide anion and oxygen, and its high affinity for the heme moiety of hemoglobin; 

thus, its bioavailability is reduced in environments rich in these products, as such, the half-

life of NO in blood has been reported to range between 0.05 and 1 s (Hakim et al., 1996; Jia 

et al., 1996; Kelm, 1999; Straub et al., 2012; Villamor et al., 2003). In contrast, NO’s half-

life is significantly longer in biological fluids with no heme content but containing serum 

albumin, such as aqueous humor in the outflow pathway, which have significant implications 

in terms of NO signaling and IOP homeostasis. At saturating concentrations (2 mM) the 

half-life of NO in water is < 1 s, and it proportionally increases when the concentration of 

NO is reduced, for instance, the half-life of NO at 5 nM is 70 h (Beckman and Koppenol, 

1996). To our knowledge, the half-life of NO in aqueous humor has not been reported.

There are two main signaling mechanisms and molecular modifications that NO exerts on 

target cells: i) through activation of soluble guanylyl cyclase (sGC) and ii) through post-

translational modification of proteins. NO has a high affinity for the heme group in sGC. 

Upon binding, NO disrupts a His-Fe(II) bond, altering its configuration to an active state 

(Derbyshire and Marletta, 2012). Active sGC catalyzes the conversion of GTP to cyclic 

guanosine 3′,5′-monophosphate (cGMP). The role of cGMP is to activate downstream 

processes that ultimately lead to physiological effects. cGMP signaling can occur through 

three main mechanisms. The first and more prominent is through cGMP-activated protein 

kinases (PKGs or cGKs) (Denninger and Marletta, 1999), which mediate several processes 

such as endothelial permeability and vascular smooth muscle cell contraction. The second 

mechanism involves cGMP-regulated phosphodiesterase, which catalyze the generation of 

adenosine monophosphate (AMP) and GMP from cAMP and cGMP, respectively 

(Degerman et al., 1997). The third mechanism requires the activation of cyclic nucleotide-

gated ion channels, which are non-specific cation channels involved in photo-transmision 

and olfaction (Mazzolini et al., 2018).

NO can also directly or indirectly induce post translational modifications of other proteins, 

which regulate their activity. These modifications include S-nitrosylation (Brown and 

Borutaite, 2004), S-glutathionylation (Adachi et al., 2004) and tyrosine nitration (Souza et 

al., 2008). Its primary modification, S-nitrosylation occurs when NO binds thiol in cysteines 

forming a S-nitrosothiol group, which induces changes in protein configuration and prevents 

their oxidation (Maron et al., 2013). As discussed above, S-nitrosylation is important for the 

negative feedback mechanism that controls eNOS function. Additionally, it can also inhibit 

caspases that trigger apoptosis (Li et al., 1997) or modify the function of hemoglobin and 

cardiac Ca2+ release channel (Xu et al., 1998).

Additionally, NO can compete with O2 for oxidative phosphorylation during respiration at 

physiological concentrations (Clementi et al., 1999). Therefore, NO can inhibit 

mitochondrial respiration, and control apoptosis and generation of reactive oxygen species 

(ROS) (Erusalimsky and Moncada, 2007). Additionally, NO can also activate Ca2+ 
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dependent potassium channels in vascular smooth muscle cells (Bolotina et al., 1994) and 

trabecular meshwork cells (Dismuke and Ellis, 2009).

NO itself is not an oxidant, but it can easily be converted into more reactive molecules, 

known as reactive nitrogen species. For instance, NO can react with superoxide to produce 

peroxynitrite anion (ONOO−), which in turn can act as a signaling molecule (Adams et al., 

2015).

3. Nitric oxide in the vasculature

NO is involved in many aspects of normal physiology depending on the resident cell/tissues. 

For example, NO participates in the regulation of vascular tone, platelet aggregation, 

inflammation, neurotransmission and immune response. Concerning IOP regulation, we will 

focus on the roles that NO plays on both vascular physiology and pathophysiology, 

especially on the effects of endothelial-derived NO in vascular tone and permeability.

3.1. Normal vascular physiology

Vascular tone dictates the extent of tissue perfusion. NO is the most potent endogenous 

vasorelaxant, controlling vascular tone by relaxing vascular smooth muscle (VSM) cells that 

surround endothelial vessels. The tone of VSM is controlled primarily by Ca2+ levels, with 

high Ca2+ concentrations promoting contraction and low calcium promoting relaxation (Wu 

and Bohr, 1991). When Ca2+ levels in the cell are high, CaM activates myosin light chain 

(MLC) kinase (MLCK), which phosphorylates MLC promoting a cross bridge of the myosin 

head to actin filaments resulting in VSM contraction and vasoconstriction (Iida and Potter, 

1986; Raina et al., 2009; Rembold and Murphy, 1993; Van Lierop et al., 2002; Walsh, 1994). 

However, in the case of low Ca2+ levels, MLC phosphatase dominates, mediating MLC 

dephosphorylation that breaks the cross bridge between the myosin head and the actin 

filament and results in cell relaxation/vasodilation (Nakamura et al., 2007). NO-regulated 

cell relaxation mostly occurs through cGMP/PKG signaling, which reduces Ca2+ levels 

through 3 main mechanisms: i) reduction of inositol triphosphate (IP3)-mediated Ca2+ 

release from the sarcoplasmatic reticulum (Geiselhoringer et al., 2004; Xia et al., 2001), ii) 
increased Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPase activation 

(Raeymaekers et al., 1988) and iii) reduced Ca2+ entry by hyperpolarization due to K+ 

channel opening and closure of Ca2+ channels (Chen et al., 2009; Murphy and Brayden, 

1995; Robertson et al., 1993; Schubert et al., 2004; Tanaka et al., 2006). Additionally, NO 

can also trigger relaxation independently of cGMP through production of peroxynitrite that 

can activate SERCA (Adachi et al., 2004; Cohen et al., 1999) and by S-nitrosylation of 

proteins that control G-protein coupled receptors (Aronstam et al., 1995; Ignarro et al., 1981; 

Miyamoto et al., 1997). Moreover, NO inhibits the expression of endothelin-1 (ET1), a 

potent vasoconstrictor and physiological antagonist of NO that is important for controlling 

vascular tone (Haefliger et al., 1992). Importantly, NO and ET1 are potent regulators of 

trabecular meshwork (TM) tone, and thus outflow resistance (Dismuke et al., 2014).

Endothelial permeability is controlled through regulation of cellular junctions and cell 

contraction to allow for molecular movement through the vessel wall. Depending on the 

tissue’s function, the basal level of permeability is different - while the blood brain barrier 
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forms a very tight endothelium, organs like the pancreas and SC have leakier endothelia 

(Claesson-Welsh, 2015; Overby et al., 2009; Ye et al., 1997). Studies with NOS3 KO mice 

showed that eNOS appears not be involved in maintaining basal permeability (Fukumura et 

al., 2001; Hatakeyama et al., 2006). Nonetheless, it is required for mediating the response to 

external stimuli that would lead to the increase in permeability necessary for certain 

physiological processes (He et al., 1999; Marumo et al., 1999; Mayhan, 1999). Products 

such as VEGF and insulin-like growth factor, and shear stress trigger Akt signaling that 

promote eNOS activation through phosphorylation of Ser1177 (Feliers et al., 2005; Fleming 

et al., 2005), increased Ca2+ influx (Bates and Curry, 1997) and eNOS internalization 

(Sanchez et al., 2009). Downstream of NO, permeability is mediated through sGC and PKG 

(He et al., 1998; Yuan et al., 1993) that trigger either ERK-1/2 MAP (Kong et al., 2017; 

Varma et al., 2002) or cGMP/cAMP signaling (Cullere et al., 2005; Rangarajan et al., 2003). 

Ultimately, these cascades lead to reorganization of the cytoskeleton, focal adhesions, and 

intercellular junctions (Garcia et al., 1995; Goligorsky et al., 1999; Moy et al., 2004; 

Predescu et al., 2005; Stasek et al., 1992). NO is also directly involved in VE-cadherin 

phosphorylation and internalization (Di Lorenzo et al., 2013; González et al., 2003; 

Sandoval et al., 2001; Yang et al., 2015). As mentioned above, VE-cadherin is a 

foundational protein of the adherens, which regulates vascular permeability (Bazzoni and 

Dejana, 2004).

3.2. Endothelial dysfunction

Impaired NO signaling leads to endothelial dysfunction, which is implicated in the 

development of cardiovascular diseases, diabetes, metastasis in cancer, retinal diseases and 

glaucoma. Such diseases are usually multifactorial and emerge as a result of a defective 

homeostatic balance between vasodilation and vasoconstriction as well as compromised 

control of endothelial permeability.

Endothelial dysfunction is commonly associated with reduced NO bioavailability. The 

reasons for limited access to NO can be diverse and include both reduced eNOS expression 

and activity as well as increased NO scavenging (Duplain et al., 2001; Oemar et al., 1998; 

Tonduangu et al., 2004). Reduced eNOS activity can also be due to multiple factors such as, 

limited L-arginine availability (Schlaich et al., 2004), altered eNOS phosphorylation (Smith 

and Hagen, 2003; Wagner et al., 2007), eNOS uncoupling due to changes in CAV1 

(Darblade et al., 2001), BH4 (Topal et al., 2004) or hsp90 (Ou et al., 2003) expression, or 

eNOS inhibition by increased presence of asymmetric dimethylarginine (ADMA), a L-

arginine analogue (Boger et al., 1998). In addition, the NO that is produced can be rapidly 

scavenged in the presence of ROS that promote the conversion to peroxynitrite, which can 

lead to further endothelial damage (Cassuto et al., 2014; Csiszar et al., 2002; Mohazzab et 

al., 1994; Scheuer et al., 2000; Sun et al., 2004). Lack of NO has been associated with 

multiple pathologies, for instance, insulin resistance in diabetes, muscular damage due to 

vasoconstriction, atherosclerosis, hypertension and acute myocardial infarction (Bian et al., 

2008; Brenman et al., 1995; Su, 2015).

NO-mediated vascular hyperpermeability can be another cause of disease whereby NO 

abundance is elevated secondary to increased signaling of factors that stimulate eNOS 
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(Tilton et al., 1999). For example, overproduction of VEGF is responsible for the 

uncontrolled angiogenesis and leaky vessels seen in retinal diseases such as age-related 

macular degeneration and macular edema (Jirarattanasopa et al., 2012; Johnson, 2009; Penn 

et al., 2008) as well as in cancer, which contributes to metastasis (Fukumura et al., 2006).

The major risk factor for endothelial dysfunction is aging (Csiszar et al., 2002; Donato et al., 

2011; Ungvari et al., 2010, 2018). Aged vasculature show signs of impaired eNOS/NO 

function, such as increased presence of ROS (Csiszar et al., 2002; Harman, 1956), loss of 

PI3K/Akt-dependent eNOS phosphorylation (Smith and Hagen, 2003), reduced autophagy 

(LaRocca et al., 2012), increased apoptosis (Csiszar et al., 2004) and reduction in production 

and sensitivity to systemic circulating factors that regulate eNOS activity (Mieno et al., 

2006; Ryan et al., 2006). Similar processes are observed in response to other risk factors 

such as smoking (Barbieri et al., 2011; Celermajer et al., 1993; Golbidi et al., 2020; Jefferis 

et al., 2010; Su et al., 1998) and obesity (Gruber et al., 2008; Higashi et al., 2001). Aging 

(Gabelt and Kaufman, 2005; Liu et al., 2018; Rudnicka et al., 2006) is a primary risk factor 

for glaucoma.

Treatments for diseases caused by endothelial dysfunction aim to target the eNOS/NO 

system. For example, antioxidants such as Vitamin C and genistein confer protection against 

ROS (Heitzer et al., 1996; Matsumoto et al., 2003; Vera et al., 2007; Zhen et al., 2012) and 

eNOS expression can be enhanced by angiotensin-converting enzyme inhibitors (Bachetti et 

al., 2001; Fujii et al., 2002), phosphodiesterases-5-inhibitors (De Young et al., 2008; 

Salloum et al., 2003) and statins (Rikitake and Liao, 2005). Statins also stimulate eNOS 

activity by improving PI3K/Akt signaling (Kureishi et al., 2000) and promoting interaction 

with hsp90 (Feron et al., 2001) and BH4 (Antoniades et al., 2011).

Clinical evidence also suggests that POAG patients exhibit features of impaired NO 

signaling. POAG patients demonstrate dysregulated retinal blood flow (Feke et al., 2014; 

Feke and Pasquale, 2008) and impaired brachial artery flow-mediated vasodilation (Fadini et 

al., 2010; Su et al., 2008), phenotypic features felt to be bioassays for NO signaling. 

Interestingly, several genes related to NO signaling have emerged as biomarkers for 

glaucoma or glaucoma related traits (GUCY1A3/B3, ITPR3, NOS3, EDNRB, CAV1; see 

Fig. 4). The question remains regarding how a polygenic risk score for impaired NO 

signaling based on these discovered glaucoma-related loci for glaucoma might be related to 

POAG on an individual basis.

4. NOS3/eNOS, nitrates and risk of glaucoma

4.1. Genetics

POAG is a common, complex disease with multiple target tissues including TM cells, SC 

endothelium, collector channels, ciliary body cells of several types, vascular endothelia that 

supply critical structures in the anterior and posterior segment, glial and other support cells 

and most importantly retinal ganglion cells (Fig. 4). Additionally, POAG is a highly 

heritable (Cuellar-Partida et al., 2016; Wang et al., 2017a) and polygenetic disease (Craig et 

al., 2020). Current genome-wide association studies report 127 genomic loci associated with 

POAG risk (Bailey et al., 2016; Choquet et al., 2018; Gharahkhani et al., 2020; Shiga et al., 
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2018), 2 of which are unique to normal tension variant of POAG (Wiggs et al., 2012). 

Additionally, 112 loci are associated with elevated IOP (Gao et al., 2018; Khawaja et al., 

2018; MacGregor et al., 2018), and many loci are associated with other POAG 

endophenotypes (vertical cup-disc ratio, and optic nerve cup area) (Choquet et al., 2020; 

Springelkamp et al., 2017; Wiggs and Pasquale, 2017). It is important to place loci related to 

NO signaling in context with all emerging variants related to POAG.

Genetic loci related to NO signaling play a central role in the functioning of all these tissues. 

While NOS3 loci are not genome wide variants for POAG, their relation to the disease is 

modified by environmental influences including postmenopausal hormone use (Kang et al., 

2010), oral contraceptive use (Kang et al., 2011a) and smoking history (Kang et al., 2011b). 

The functional significance of NOS3 variants in relation to the glaucomatous process were 

supported when Stamer et al. (2011) reported that mice overexpressing NOS3 had lower IOP 

and increased outflow facility than wild type, mice. Conversely, Lei et al. (2015) reported 

that the NOS3 KO mice developed increased IOP and reduced outflow facility compared to 

wild type mice. As mentioned above, eNOS and CAV1 are biophysically juxtaposed in the 

caveolae of TM cells, which are critical for trans-cellular transport of aqueous humor from 

the anterior chamber into SC. The first meaningful and reproducible genome-wide variants 

associated with POAG were intergenic CAV1/−CAV2 variants (Thorleifsson et al., 2010) 

and their relation to the glaucomatous process was asserted when Elliott et al. (2016) 

reported that CAV1 KO also developed elevated IOP. Protein products of NOS3 and CAV1 
interact in complex ways to regulate aqueous humor outflow and their interplay in this 

process remains under investigation (Song et al., 2019).

Impaired NO signaling clearly produces unfavorable aqueous humor dynamics, and a critical 

question is whether impaired NO signaling can also produce progressive optic neuropathy. 

Buys et al. (2013) knocked out the alpha 1 subunit of sGC in a murine model and found a 

modest age-related increase in IOP with concomitant optic nerve degeneration. As 

mentioned, sGC is the most prominent intracellular receptor for NO (Buys et al., 2013). This 

same model, which shows notable similarities to human POAG, was also used to 

demonstrate that inhaled NO lowered IOP in a sGC-dependent manner (Muenster et al., 

2017). Other common loci involved in endothelial cell function (Khawaja et al., 2018) that 

are also linked to POAG and are expressed in the outflow pathway include endothelial 

tyrosine kinase (TEK, or Tie2), VEGFC, and angiopoietin 2 (ANGPT2, a ligand for TEK) 

(Fig. 4). Interestingly, TEK is implicated in the morphogenesis of the outflow pathway 

(Thomson et al., 2017); in fact, rare loss-of-function variants in TEK are associated with 

congenital glaucoma (Souma et al., 2016).

4.2. Nutrition

The NO signaling pathway is a highly druggable pathway and is also one that could be 

favorably manipulated by dietary interventions (Fig. 5). Chuman et al. (2000) observed that 

an intravenous infusion of L-arginine led to a significant drop in IOP. In another study that 

investigated NO synthesis pathway metabolites in relation to POAG (Javadiyan et al., 2012), 

it was observed that while plasma L-arginine concentrations did not differ, there were 

significant increases in plasma ADMA, another NOS inhibitor, and symmetric 
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dimethylarginine concentrations in 211 advanced glaucoma cases compared with 297 

controls (P ≤ 0.0001). Consumption of nitrogen-fixating vegetables could be a ready source 

of NO via conversion of nitrates to nitrites and ultimately NO through a variety of enzymatic 

and nonenzymatic means (Fig. 5). Kang et al. (2016) postulated that this exogenous source 

of nitrates might reduce the risk of POAG. In fact, using data from two health professional 

cohorts, high dietary nitrate intake derived from vegetable sources was associated with a 

21% reduced risk of incident POAG. Intake of lettuce (e.g., iceberg, romaine), spinach, and 

cruciferous vegetables (e.g., broccoli, kale, cabbage, cauliflower, brussels sprouts), celery, 

potatoes and onions accounted for 80% of nitrate intake from vegetables in this study. It is 

unknown whether a diet high in nitrates from vegetable sources might modify the course of 

glaucoma for patients with existing disease, particularly amongst patients with an overall 

high genetic burden of POAG risk variants.

5. Nitric oxide and aqueous humor dynamics

5.1. Nitric oxide effects on IOP and outflow facility in different species

The importance of eNOS activity and NO bioavailability on IOP homeostasis and outflow 

facility has been studied by either inhibiting or stimulating eNOS function or NO 

supplementation. Shown in Table 1 is a compilation of studies that have assessed the effect 

of NO on IOP and/or outflow facility. The strategies used to study the effect of NO on 

outflow facility and IOP range from genetic modifications that result in over-expression or 

KO of eNOS to pharmacological treatments that inhibit eNOS or donate NO. The often-used 

eNOS inhibitors are L-NG-nitroarginine methyl ester (L-NAME) and cavtratin. Whereas NO 

activity is enhanced by NO donors (sodium nitroprusside or S-nitroso-N-

acetylpenicillamine) or eNOS substrate (L-arginine). Additionally, the route of 

administration also changes between studies. Nonetheless, the consensus is that stimulation 

of eNOS activity results in improved outflow function and reduced IOP; while eNOS 

inhibition results in increased outflow resistance and IOP elevation (Table 1).

Different animal models are used to study aqueous humor dynamics and glaucoma 

(Bouhenni et al., 2012) and the different species are also represented when assessing the role 

of eNOS/NO on outflow regulation. The main difference between animal models is the 

anatomy of the outflow pathway. Primate and mouse eyes have a mature and continues SC 

with lamellated TM (Burgoyne, 2015; Dismuke et al., 2016; Overby et al., 2014a; Smith et 

al., 2001). In contrast, bovine, pigs, sheep and rabbit eyes exhibit a discontinuous and 

tortuous duct known as the angular aqueous plexus (Bergmanson, 1985; Lei et al., 2010). 

Our theoretical model would apply to those models with a true SC.

5.2. NOS expression/localization

In the iridocorneal angle tissues, all three NOS isozymes are expressed by the different cell 

types that participate in the regulation of IOP. Immuno-affinity studies of intact porcine 

tissues show that ciliary epithelial cells express nNOS and iNOS (Meyer et al., 1999) and 

expression is retained by non-pigmented epithelial cells in culture (Shahidullah et al., 2007). 

These findings were validated using a second method, whereby NADPH diaphorase staining 

(reflective of NOS activity) localized to ciliary epithelium of rabbit (Osborne et al., 1993). 
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Another study using a biochemical activity assay of dissected ciliary processes showed 

presence of a constitutive form of NOS (nNOS or eNOS) in bovine eyes (Geyer et al., 1997).

In the ciliary muscle (CM) of human eyes, NOS positive neurons were identified associated 

with anterior circular and reticular CM fibers, but not longitudinal muscle fibers using 

NADPH diaphorase staining (Tamm et al., 1995). In contrast, two other studies detected 

NOS activity in all three CM fiber types using the same method (Chen et al., 1998; 

Nathanson and McKee, 1995). These later findings of NOS activity in neurons associated 

with the longitudinal muscle fibers was called into question when a subsequent study found 

that only species with a fovea centralis express nitrergic neurons in the CM, thought to 

smoothen circular and reticular-mediated contractions during accommodation (Tamm and 

Lutjen-Drecoll, 1997).

In porcine ocular tissues, eNOS was confined to vascular endothelia including ciliary body 

vessels (SC and scleral vessels were not examined) (Meyer et al., 1999). Using eNOS-GFP 

reporter mice, eNOS expression was only observed in vascular endothelia of the ciliary 

body, SC and scleral vessels (Chang et al., 2015). There are conflicting reports of eNOS 

expression by ciliary epithelial cells (Meyer et al., 1999; Shahidullah et al., 2007). This 

contradiction may be related to antibody specificity and can soon be resolved with single 

cell RNA sequencing technology as seen for the TM.

Recent data has shed light on whether TM cells express NOS. NADPH diaphorase activity 

was detected in both the TM and SC in human eyes (Nathanson and McKee, 1995). By 

immunohistochemistry, nNOS was observed in all regions of TM (Meyer et al., 1999). Using 

an alternate method, a biochemical activity assay of dissected TM and ciliary body from 

bovine eyes suggest presence of a constitutive form of NOS, with TM/SC likely containing 

more than one subtype (Geyer et al., 1997). RNA expression of TM in human anterior 

segments showed an increased in iNOS, but not eNOS or nNOS after elevation of IOP 

(Schneemann et al., 2003). Recent breakthroughs in single cell RNA sequencing technology 

reveal in two independent studies of human outflow tissues that TM cells do not express any 

of the three NOS isoforms (Patel et al., 2020; van Zyl et al., 2020) (Table 2). van Zyl et al. 

(2020) also shows similarly negligible expression of NOS isoforms in TM of mice, which is 

noteworthy considering a large number of mechanistic studies are performed using mice. 

Positive labeling or activity may come from the abundant numbers of resident macrophages 

in the TM, which are known to produce NO (Camelo et al., 2004; Margeta et al., 2018; 

McMenamin and Holthouse, 1992; Patel et al., 2020).

5.3. Nitric oxide production by ciliary processes

Consistent with expression studies showing NOS enzymes in ciliary epithelia, isolated 

human and porcine ciliary processes produce NO (Haufschild et al., 2000). Morphine, 

working by activation of mu opioid receptors, raises cGMP levels and induces NO 

production in isolated iris-ciliary bodies (Dortch-Carnes and Randall, 2009). It appears that 

in addition to cGMP, cAMP is important in regulating NO production by ciliary epithelium. 

For example, drugs activating adenylyl cyclase such as forskolin, or cAMP analogues 

increase NO production by isolated porcine ciliary processes (Liu et al., 1998, 1999, 2002; 

Wu et al., 2003). In fact, in enucleated eyes perfused with epinephrine into their posterior 
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ciliary artery increased NO levels are detected at opening of TM by a NO probe (Millar, 

2003). In contrast, ET1 decreases NO levels (basal or forskolin-stimulated) produced by 

isolated porcine ciliary processes (Wu et al., 2003), likely by inhibiting cAMP levels 

(Bausher, 1995).

5.4. NO/cGMP effects on aqueous humor production/ciliary epithelial transport

In anesthetized rabbits, inhibition of tonic NO production by intravenous L-NAME causes 

ciliary vessel constriction, and decreases aqueous humor flow; mathematically accounting 

for 66% of effects on IOP (Kiel et al., 2001). In contrast, perfusion of cyclic GMP, SNP or 

sodium azide into the ophthalmic artery of enucleated pig eyes reduces aqueous humor 

formation (Shahidullah et al., 2005). Thus, there appears to be NO effects both on blood 

flow to the ciliary body, and transport of ions and water across the ciliary epithelia.

Depending upon the experimental paradigm, NO-GC-cGMP activity decreases or increases 

ion and water transport. For example, in isolated porcine ciliary processes activation of the 

NO-GC-cGMP pathway depolarizes ciliary epithelial transmembrane potential, likely by 

stimulating stroma-to-aqueous anionic transport (Fleischhauer et al., 2000; Wu et al., 2004). 

Similarly, cGMP reverses cAMP-mediated inhibition of the Na+/K+-ATPase pumps at the 

aqueous surface of both rabbit and cat ciliary epithelia using whole-cell patch clamping and 

increasing K+-channel activity, thus driving pump activity of the rabbit pigmented epithelial 

cells at the stromal surface (Carre and Civan, 1995). In contrast, NO-mediated increase in 

cGMP and PKG-dependent Src family kinase activation (Shahidullah et al., 2014) inhibits 

Na+/K+-ATPase activity in cultured non-pigmented epithelial cells (Shahidullah and 

Delamere, 2006).

5.5. Nitric oxide in aqueous humor of normal vs. glaucoma

Several studies have measured the amount of NO in aqueous humor of patients suffering 

from different types of glaucoma, using cataract patients as their control group. As displayed 

in Table 3, there is no general agreement on the standard values of NO in aqueous humor in 

health and disease. Regardless, control eyes appear to contain NO within the range of 20–

100 μmolar. It is important to mention that using subjects with cataracts as controls may be a 

confounding aspect itself, and may not be representative of healthy population (Kao et al., 

2002).

Concerning the NO values in POAG, the reports do not agree: Of the 6 studies we found, 2 

report no change, 2 report a significant increase and 2 report a significant decrease in 

comparison to cataract. These studies should be interpreted cautiously as the authors report 

that the development state of the disease, IOP of the subjects at the time of analysis and 

treatment regimens are limitations in their studies that may affect the results. Furthermore, 

these discrepancies may come from differences in study designs of the studies, sample sizes 

and, principally, the analytical tools used to measure NO, as some studies measure nitrite as 

a surrogate for NO. Moreover, these issues are complicated by the reality that NO is short 

lived and reactive, thus probably not a good biomarker of disease.

Regarding the other types of glaucoma, the elevated NO levels observed in neovascular 

glaucoma may be secondary to the increased presence of VEGF in aqueous humor of 
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patients with this pathology (Tripathi et al., 1998; Wang et al., 2015a; Aiello et al., 1994). As 

per angle closure glaucoma, Chang et al. (2000) acknowledge that their patients had 

underwent surgery to lower IOP and showed signs of inflammation, that could result in NO 

production. Similar concerns about chronic inflammation are risen by Ghanem et al. (2011). 

Interestingly, they also suggest that producing NO might be a natural mechanism for the eye 

to lower IOP, but that it fails due to a closed irideocorneal angle.

5.6. NO and unconventional and conventional outflow function

In organ bath, exogenous NO relaxes precontracted longitudinal bovine (Beauregard et al., 

2001; Wiederholt et al., 1994) and monkey (Gabelt et al., 2011) CM strips. However, when 

CM fibers are relaxed by atropine in vivo, outflow facility decreases (Kiland et al., 1997). 

This is consistent with (i) anatomical connection of the CM and TM via an elastin fiber 

network and (ii) the contractile dominance of CM over TM in intact systems (Wiederholt et 

al., 2000). Since NO lowers IOP, NO appears to preferentially relax the TM compared to 

CM (Heyne et al., 2013; Schuman et al., 1994). In fact, in ex vivo studies that functionally 

isolate the conventional outflow pathway, NO donors increase, and NOS inhibitors decrease 

outflow facility (Dismuke et al., 2008; Schneemann et al., 2002). Moreover, direct activation 

of sGC or perfusing exogenous NO in enucleated mouse eyes also increases outflow facility 

(Chang et al., 2015; Ge et al., 2016). Lastly, outflow facility is double that of wild type 

littermates in transgenic mouse eyes overexpressing eNOS in SC endothelia (Stamer et al., 

2011), whereas outflow facility was diminished by 30% in eNOS KO mice (Lei et al., 2015).

NO appears to have two primary sites of action in the conventional tract: cells of the 

juxtacanalicular tissue (JCT) and smooth muscle-containing vessels distal to SC (e.g. 

collector channels and intrascleral venous plexus). In the JCT, NO relaxes TM cells 

(Dismuke et al., 2014; Wiederholt et al., 1994) and reduces their cell volume (Dismuke et 

al., 2008; Ellis et al., 2010), which alters conventional outflow tissue geometry and flow 

passages for aqueous humor to increase outflow. Also in the JCT, NO is hypothesized to 

increase the permeability of SC endothelium by promoting the disassembly of cell-cell 

junctions (see below) and has been shown to decrease cell volume (Dismuke et al., 2008). 

Together, these two mechanisms are thought to open paracellular flow passageways, or so-

called “B-pores” (Ethier et al., 1998). To functionally isolate the second site of NO action 

(the vasoactive vessels distal to SC), the TM in human and porcine anterior segments was 

removed by trabeculotomy and distal vessels kept viable in perfusion organ culture. Under 

this paradigm, NO significantly increases outflow facility and alters the diameter of distal 

vessels (McDonnell et al., 2020; Waxman et al., 2018). This behavior is consistent with 

location of nitrergic neurons that terminate on these intrascleral veins distal to SC, likely 

innervating associated smooth muscle cells (Overby et al., 2014a).

5.7. TM contractility

The TM has smooth muscle-like contractile properties, as many TM cells express contractile 

proteins such as α-smooth muscle actin and myosin, although the TM is a heterogenous 

tissue and not all cells have the same properties (Coroneo et al., 1991; de Kater et al., 1990, 

1992; Ko and Tan, 2013; Stamer and Clark, 2017). Accordingly, TM contractility can be 

modulated by NO (Dismuke et al., 2014). Furthermore, TM contraction has been associated 
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with reduced aqueous humor outflow (Bertrand et al., 2020; Wiederholt et al., 1995) while 

TM relaxation increases outflow (Rao et al., 2001; Zhang and Rao, 2005), both affecting 

IOP (Luna et al., 2012). Similar to VSM cells, targeting PKC to activate MLCK relaxes TM 

cells affecting outflow facility and IOP (Rao et al., 2005; Tian et al., 2009). NO also relaxes 

the TM through cGMP signaling (Wiederholt et al., 1994) and Ca2+−dependent maxi-K+ 

channels (Stumpff et al., 1997). Additionally, genes regulating vascular tone are associated 

with POAG (Kang et al., 2014).

On the other hand, molecules that are elevated in aqueous humor of glaucomatous eyes such 

as TGF-β and ET1 alter TM tone (Choritz et al., 2012; Cousins et al., 1991; Junglas et al., 

2012). ET1 contracts the TM of bovine eyes in a Ca2+−independent manner through the 

GTPase Rho and ROCK signaling (Rao and Epstein, 2007; Renieri et al., 2008; Thieme et 

al., 2000), as a consequence, ROCK inhibition relaxes the TM (Nakajima et al., 2005; 

Tanihara et al., 2008). Additionally, loss of α-smooth muscle actin in the TM is associated 

with aging (Flügel et al., 1992).

5.8. SC permeability

SC is a leaky endothelium but is also responsible for forming part of the blood-aqueous 

barrier that keeps blood products from entering the anterior chamber. Aqueous humor 

crosses SC’s continuous endothelium containing tight junction through either paracellular 

(border pores or B-pores) or intracellular pores (I-pores) to access the canal’s lumen 

(Braakman et al., 2016; Epstein and Rohen, 1991; Ethier et al., 1998), with B-pores 

providing the main fluid path (Braakman et al., 2015). The integrity and hydraulic 

conductance of SC is maintained and regulated through the expression of tight junction 

proteins (mostly Claudin-11, ZO-1 and tricellulin) (Alvarado et al., 2004; Bhatt et al., 1995; 

Raviola and Raviola, 1981; Tam et al., 2017) and adherens junction proteins (mostly VE-

cadherin and PECAM-1) (Heimark et al., 2002; Perkumas and Stamer, 2012). SC 

permeability is clearly a contributing factor to outflow resistance generation and may be 

compromised in disease. For instance, pore density is reduced in glaucoma (Allingham et 

al., 1992; Johnson et al., 2002) and inhibition of tight junctions in SC results in increased 

outflow facility (Ethier and Chan, 2001; Tam et al., 2017). Moreover, cell junctions change 

with changing pressure (Burke et al., 2004; Ye et al., 1997), suggesting dynamic regulation 

in response to IOP. Products known to increase endothelial permeability such as NO (see 

Table 1), VEGF (Reina-Torres et al., 2017), and Rho-GTPase inhibitors (Lu et al., 2008; Rao 

et al., 2001) increase outflow facility. On the contrary, products that reduce endothelial 

permeability like dexamethasone (Overby et al., 2014b; Underwood et al., 1999), Rho-

GTPase activators (Kumar and Epstein, 2011) and pigment epithelium-derived factor 

(Rogers et al., 2013) decrease outflow. NO is likely involved in the effects observed in 

response to these products but there is no direct evidence in outflow tissues (Brook et al., 

2019; Igarashi et al., 2013; Mayhan, 1999; Ming et al., 2002; Sugimoto et al., 2007). S1P, 

despite being an eNOS activator (Igarashi and Michel, 2008), is known to reduce endothelial 

permeability (McVerry and Garcia, 2005). As such, treatment with S1P increases peripheral 

actin in human SC cells, suggesting increased junctional assembly (Sumida and Stamer, 

2010) and reduces outflow facility (Boussommier-Calleja et al., 2012; Mettu et al., 2004; 

Stamer et al., 2009).
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Studying the specific role of eNOS/NO on SC permeability and their effect on outflow 

resistance regulation is not easy. As already mentioned, NO produced by SC cell can have 

autocrine and paracrine effects; therefore, the physical proximity between SC and JCT 

makes it difficult to separate their relative effects. An alternative testing strategy would be to 

perform in vitro tests on isolated SC cells in culture. However, cultured SC cells do not form 

proper cell junctions (Johnson, 2006; Perkumas and Stamer, 2012; Stamer et al., 1998). 

Hence, traditional permeability assays and measurements of hydraulic conductance are not 

as informative for SC physiology as they are for endothelial monolayers that form better cell 

junctions in culture.

5.9. NO transport within the conventional outflow pathway

As a gasotransmitter, NO is a labile molecule with a very short half-life on the order of 

seconds in vascularized tissues. This relatively short half-life is due to its interaction with 

heme, and hemoglobin in particular, which is the main physiological quencher for NO 

activity (Beckman and Koppenol, 1996). However, the conventional outflow pathway is 

avascular and, with the exception of when a hyphemia is present, virtually free of 

hemoglobin. In heme-free aqueous environments, the half-life of NO is typically determined 

by its reaction rate with dissolved oxygen species, such as O2 or superoxide (Beckman and 

Koppenol, 1996). When reacting with O2, NO is predicted to have a half-life on the order of 

minutes (Ford et al., 1993; Hakim et al., 1996; Lewis and Deen, 1994) or longer because the 

half-life of NO increases at lower concentrations of O2 (Beckman and Koppenol, 1996). The 

reaction between NO and superoxide occurs much faster, but superoxide itself is a toxic free 

radical that is buffered by antioxidant enzymes such as superoxide dismutase (Beckman and 

Koppenol, 1996), which are abundant in the ocular anterior segment. In the relatively 

hypoxic anterior chamber where the partial pressure of O2 is typically <25 mmHg (as 

opposed to 150 mm Hg for room air) (Siegfried et al., 2010), superoxide levels are likely to 

be low. Thus, while it remains uncertain exactly how long NO persists within the 

conventional outflow pathway, the absence of hemoglobin and the relatively hypoxic 

aqueous environment suggests that NO will almost certainly persist for longer than it does in 

vascularized tissues, possibly up to several minutes.

The relatively long half-life of NO in aqueous humor has a number of important 

consequences for NO transport within the conventional outflow pathway. Firstly, any NO 

that is produced by SC cells is available for diffusion/transport to the TM, collector channels 

or elsewhere in SC, where it may have a bioactive effect. To appreciate this, we may 

calculate that the residence time for aqueous humor passing through the lumen of SC, which 

can be shown to be on the order of seconds (Braakman et al., 2016). This means that NO 

would have little time to react with dissolved oxygen, which occurs over the time scale of 

minutes, before reaching the collector channels. NO may also diffuse upstream relative to 

the direction of aqueous humor outflow, reaching the contractile TM or JCT cells. Diffusion 

of NO in the upstream direction is justified based on the value of the Péclet number, which 

for appropriate parameter values2 is of order 0.1, indicating that the rate of diffusive 

2The Péclet number (Pe) is defined as Pe = u l/D, where u = 3 μm/ s is the velocity of aqueous humor flow through the TM, l = 100 
μm is the TM thickness, and D = 3 × 10−5 cm2/s is the diffusivity of NO, Zacharia and Deen, 2005.
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transport of NO across the TM is roughly 10-fold faster than the rate of advective transport. 

Diffusion of NO across the TM occurs within seconds, faster than the NO decay rate. This 

allows NO produced by SC cells to reach TM cells despite the continual flow of aqueous 

humor through the outflow pathway.

Alternatively, any hemoglobin that becomes present within the outflow pathway will quickly 

deplete any available NO. The most common cause for such a scenario is blood reflux into 

SC lumen that may occur during periods of hypotony or elevated episcleral venous pressure 

(EVP). As NO regulates outflow resistance generated both within the TM and in distal 

vessels, it is tempting to speculate that blood reflux, by introducing hemoglobin and 

depleting NO, may act as a physical stimulus to increase outflow resistance and thereby 

oppose the reduction in IOP relative to EVP. Such a mechanism could potentially balance 

overproduction of NO.

6. Mechanisms of IOP mechanosensation and homeostasis in the 

conventional outflow pathway

Any model of IOP homeostasis requires a mechanism to sense and respond to changes in 

IOP. Mechanosensory mechanisms for IOP have been mainly attributed to IOP-induced 

stretch in the TM or shear stress due to circumferential aqueous humor flow in SC, although 

alternative models such as mechanosensitive nerve endings in the scleral spur (Tamm et al., 

1994) have been proposed. As the bulk of outflow resistance generation lies within the outer 

TM, mechanisms for IOP mechanosensation within the TM and SC have the important 

consequence that they place the sensors and effectors of IOP change within the same 

anatomical location, allowing for the possibility of local regulation of outflow resistance.

6.1. Mechanosensing of outflow cells

Cells of the conventional outflow pathway reside within a demanding mechanical 

environment. Mechanical forces that act on outflow pathway cells arise due to pressure 

gradients and forces exerted by fluid flow. These mechanical forces are likely to vary 

regionally due to the non-uniform distribution of aqueous humor drainage, known as 

segmental outflow, because regions of higher local outflow may experience greater forces 

than regions of lower outflow. Furthermore, because of the ocular pulse transmitted by the 

cardiac cycle, these mechanical forces are highly oscillatory (~1 Hz in humans and 10 Hz in 

mice). Individual cells may also experience forces that depend on cell alignment or forces 

that vary directionally depending on the properties of the local tissue microenvironment. 

Thus, outflow pathway cells experience dynamic, spatially varying and multi-directional 

mechanical forces that arise due to the pressure drop and fluid drainage through the outflow 

pathway (Stamer et al., 2015).

Despite this complexity, the mechanical forces acting on outflow pathway cells can be 

broadly classified into two types: stretch and shear stress. Stretch arises due to tensional 

forces within the tissue, while shear stress arises due to the frictional forces associated with 

fluid flow. Outflow cells use multiple types of mechanosensors to detect stretch and shear 

stress. This includes Ca2+-dependent and Ca2+-independent mechanisms, caveolae and 
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CAV1, PIEZO1, the VEGFR/VE-cadherin/PECAM-1 complex, the Tie2/PI3K/Akt signaling 

pathway, and the glycocalyx. In this section, we first review how different mechanosensors 

may influence the response to TM and SC cells to stretch and shear stress and their potential 

relationship to outflow function.

6.2. Caveolin-1

As mentioned above, caveolae play a key role in the mechanosensation within the 

cardiovascular system and may have a similar mechanosensory role in the eye (Gu et al., 

2017). One consequence of endothelial cells exposed to stretch, such as occurs with giant 

vacuole formation, is flattening and subsequent disassembly of caveolae (Dulhunty and 

Franzini-Armstrong, 1975; Lee and Schmid-Schonbein, 1995; Parton, 2018; Sinha et al., 

2011). There is an abundance of caveolae expressed in cells of the outflow pathway such as 

the SC and the TM (Herrnberger et al., 2012; Tamm, 2009), and polymorphisms at the 

CAV1/2 gene loci have been reproducibly implicated in POAG and ocular hypertension 

(Chen et al., 2014; Huang et al., 2014; Hysi et al., 2014; Kim et al., 2015; Loomis et al., 

2014; Ozel et al., 2014; Thor-leifsson et al., 2010; van Koolwijk et al., 2012; Wiggs et al., 

2011). Furthermore, using CAV1 KO mice, a functional link between CAV1 expression, 

IOP, and conventional outflow dysfunction has been elucidated (Elliott et al., 2016; Kizhatil 

et al., 2016; Lei et al., 2016). In CAV1 KO mice, IOP and conventional outflow resistance 

are elevated despite concomitant increase in eNOS activity (Elliott et al., 2016). In 

endothelium specific CAV1 KO mice, IOP is still elevated but CAV1 expression in the TM is 

sufficient to rescue conventional outflow defects reported in global CAV1 KO mice (De Ieso 

et al., 2020). Additionally, external elevation of IOP increases eNOS activity in WT but not 

endothelium-specific CAV1 KO mice, where eNOS activity is abnormally elevated, 

suggesting CAV1 and caveolae play a mechanosensory role in the SC and distal vessels 

necessary for pressure-induced eNOS activation (De Ieso et al., 2020). Hyperactivity of 

eNOS was also evident as both global and endothelial CAV1 KO mice were more sensitive 

to reduced outflow facility by treatment with eNOS inhibitor, L-NAME (De Ieso et al., 

2020; Elliott et al., 2016). Thus, it was postulated that eNOS hyperactivity secondary to 

CAV1 KO might partially compensate for another functional deficit in the conventional 

outflow pathway caused by caveolae deficiency (Fig. 6). One possible cause for functional 

deficit in the conventional outflow pathway could be enhanced production of NO-derived 

oxidants due to hyperactive eNOS (Lei et al., 2016; Song et al., 2017, 2019). A modest 

increase in protein nitration was observed in global and endothelium-specific CAV1 KO 

mice (De Ieso et al., 2020), however more investigation is needed to determine the level of 

nitrative stress in the conventional outflow tissues. Nevertheless, it is likely that loss of 

endothelial CAV1 and caveolae expression in the SC results in reduced shear stress-induced 

mechanosensation and regulation of eNOS signaling, similar to the mechanism described in 

Yu et al. (2006).

6.3. PIEZO1

PIEZO1 is expressed in SC of human eyes (van Zyl et al., 2020), and the TM of human 

(Tran et al., 2014) and mouse eyes (Morozumi et al., 2020), and there is some evidence to 

suggest that elevated IOP modulates PIEZO1 expression in mice (Ho et al., 2014). 

Additionally, it was recently shown that PIEZO1 transduces tensile stretch, shear flow, and 
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pressure in the TM. (PMID: 33226641). It would be interesting to further investigate the 

mechanosensory role of PIEZO1 channels in the regulation of IOP and outflow resistance, 

specifically, whether PIEZO1 regulates eNOS activity in SC cells, as observed in endothelial 

cells.

6.4. VEGFR/VE-cadherin/PECAM-1 complex

There are several reasons why this VEGFR/VE-cadherin/PECAM-1 complex located in cell-

cell junctions could also have physiological implications in the regulation of shear-induced 

eNOS activity in the conventional outflow pathway. First, the majority of resistance to 

aqueous humor outflow occurs at the juxtacanalicular region or at the inner wall of the SC 

(Grant, 1963), and this resistance is partly mediated by the intercellular junctions at or near 

the inner wall of SC (Heimark et al., 2002). Second, the SC has a discontinuous basal lamina 

and SC cells might therefore likely rely on the integration of signals between integrins and 

cell-cell junctions (Heimark et al., 2002; Johnstone, 1979). Third, cell-cell junctions enable 

mechanical transduction between cells and allow the outflow tissues to function as a unit 

(Heimark et al., 2002; Wiederholt et al., 2000). Fourth, junctions in SC are very labile and 

pressure-dependent (Ye et al., 1997), and are a likely pathway of most fluid flow (Braakman 

et al., 2015; Ethier and Chan, 2001). Finally, human SC cells express PECAM-1, VE-

cadherin (Heimark et al., 2002) and VEGFR-2 (Kizhatil et al., 2014), and direct activation of 

VEGFR-2 increases outflow in mice (Reina-Torres et al., 2017). SC cells also express 

VEGFR-3 (Aspelund et al., 2014), which is significant because SC is a dual blood and 

lymphatic vessel (Kizhatil et al., 2014), and VEGFR-3 is usually only expressed in 

lymphatics (Kaipainen et al., 1995). Thus, it is likely that the VEGFR/VE-cadherin/

PECAM-1 complex regulates shear-induced eNOS signaling in the SC like in vascular 

endothelial cells, however further investigation is needed to test this hypothesis.

6.5. Tie2/PI3K/Akt

Like blood vascular endothelial cells, SC but not TM cells also express Tie2 (Kizhatil et al., 

2014). Impaired ligand-dependent Tie2 signaling disrupts SC integrity and triggers POAG-

associated pathogenesis, and Tie2 reactivation rescues POAG phenotype and rejuvenates SC 

in aged mice (Kim et al., 2017). It is not known whether Tie2 signaling plays a 

mechanosensory role in the SC; further investigation is required to determine whether shear 

stress induces the Tie2/PI(3)K/Akt pathway in the SC, and whether this mediates 

downstream eNOS activity. Regardless, Tie-2 activation in SC results in increased outflow 

facility and decreased IOP (Li et al., in press).

6.6. Glycocalyx

As in vascular endothelial cells, the glycocalyx is also present in the human conventional 

outflow pathway surrounding TM, SC, within most pores of SC endothelium, and coating 

the inner membrane of giant vacuoles with visible pore collector channels (Yang et al., 

2014). It is theorized that the glycocalyx in SC plays a role in sensing and responding to 

shear stress, particularly with regard to shear-induced eNOS activity. Future work might 

involve investigating the effect of enzymatic degradation of glycocalyx-specific 

glycosaminoglycans on shear-induced NO production in the SC, in order to confirm whether 
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the glycocalyx plays a role in sensing and responding to shear stress in the SC as observed in 

vascular endothelium.

6.7. Stretch-mediated mechanosensation of IOP

As IOP increases, a mechanical force is exerted on the TM and inner wall of the SC as the 

cells of the TM and JCT stretch and expand toward SC’s outer wall (Grierson and Lee, 

1974; Johnstone and Grant, 1973; Moses, 1977; Sherwood et al., 2019; Van Buskirk, 1982). 

Mechanical stretch of the TM induces the production of several factors by TM cells that 

modulate outflow resistance (reviewed by WuDunn (2009)) such as matrix metalloproteases 

(MMPs) (Bradley et al., 2001), adenosine (Wu et al., 2012), and VEGF (Reina-Torres et al., 

2017). Like the TM, the SC inner wall is constantly exposed to variable and transient 

stretching (Ethier, 2002), and increases of up to 50% have been recorded in monkey eyes 

where IOP was increased from 8 to 30 mmHg (Grierson and Lee, 1977; Overby, 2011). 

Mechanical stretch applied to SC cells may trigger pore formation to potentially contribute 

to outflow resistance generation (Braakman et al., 2014; Johnson et al., 1992). Finally, there 

is one study showing that elevation of pressure in perfused human anterior segments 

increased nitric oxide production that was coincident with increased iNOS expression, 

possible by resident macrophages (PMID: 12719994)).

The first model of IOP homeostasis was based on IOP-induced stretch in the TM and was 

proposed by Bradley et al. (2001). In this study, Bradley et al. (2001) exposed human 

anterior segments to elevated mechanical forces imposed by doubling the perfusion flow 

rate. In response to the doubling the flow rate, IOP initially doubled as expected for a 

constant resistance system. However, over several days, outflow resistance decreased, and 

IOP returned to near baseline values (Bradley et al., 2001), with a continual time-dependent 

increase in outflow facility (Acott et al., 2014). The change in outflow resistance coincided 

with an increased MMP production, suggesting that extracellular matrix remodeling within 

the TM is responsible for the change in outflow resistance (Bradley et al., 2001). The 

response appeared to be mediated by stretch because a similar increase in MMP expression 

was observed in stretched human TM cells. Importantly, this homeostatic mechanism 

appears to be disrupted in glaucomatous anterior segments (Raghunathan et al., 2018), 

suggesting that ocular hypertension in glaucoma may be associated with impaired IOP 

homeostasis.

6.8. Shear stress-mediated mechanosensation of IOP

The shear-mediated model of IOP mechanosensation was proposed by Stamer et al. (2011) 

(Fig. 7). According to this model, IOP-induced collapse of SC leads to increased shear stress 

acting on SC cells. The increase in shear stress results from the circumferential flow of 

aqueous humor that must pass through SC lumen in route to a collector channel ostium. As 

the lumen of SC narrows, the hydraulic resistance to flow through SC increases, leading to 

an increase in the frictional force acting on SC cells. Using fluid mechanical principles and 

building on an earlier mathematical model, Ethier et al. (Ethier et al., 2004; Johnson and 

Kamm, 1983) predicted the range of shear stresses acting on SC endothelial cells (Fig. 8), 

and a similar relationship was shown for mice (Stamer et al., 2011). The model considered 

SC to be elliptical in cross-section, with semi-major and semi-minor axes a and b, 

Reina-Torres et al. Page 24

Prog Retin Eye Res. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. With increasing IOP, the pressure drop across the TM and inner wall increases 

in response to an increasing force that constricts SC lumen and decreases b. As b decreases, 

the shear stress acting on SC cells increases non-linearly (Fig. 8). For smaller values of b, 

the SC shear stress increases sharply and reaches values of wall shear stress experienced in 

large arteries (Fig. 8). This work demonstrates how changes in IOP may be sensed via 

changes in shear stress acting on SC endothelium. As SC endothelial cells are shear-

sensitive, this provides a mechanism by which changes in IOP may affect SC cell 

mechanobiology to modulate outflow function, allowing a potential homeostatic mechanism.

Human SC cells express eNOS (Perkumas and Stamer, 2012), and elevated shear stress in 

the SC triggers NO production by endothelial cells (Ashpole et al., 2014) similar to other 

human vascular endothelia (Davies, 1995). Shear stress also stimulates endothelial cell 

alignment near collector channels (Ashpole et al., 2014; Ethier et al., 2004). As detailed in 

the sections above, NO lowers outflow resistance and IOP (Table 1) via several mechanisms, 

including relaxation of the TM (Dismuke et al., 2014; Wiederholt et al., 1994), dilation of 

distal vessels (McDonnell et al., 2018) or increasing the permeability of SC inner wall as for 

vascular endothelia (Durán et al., 2013). Evidence for shear-mediated NO production in 

human anterior segments was recently provided by McDonnell et al. (2020) who reported 

that increased IOP leads to elevated nitrite production in the collected perfusate, consistent 

with increased NO production. Thus, shear induced NO production by SC cells is stimulated 

in response to IOP elevation. As NO is known to lower outflow resistance and thereby 

oppose the increase in IOP, all the pieces of a putative pathway are present to allow NO to 

function as a mechanosensitive regulator of IOP homeostasis. As discussed above, NO 

produced by SC cells is able to reach other outflow pathway tissues, including the TM and 

collector channels, where it may exert a bioactive response that modulates outflow resistance 

such as dilation of distal vessels. More investigation is needed to determine whether dilation 

of distal vessels can occur as a result of NO release from shear stress responses to fluid flow 

in the distal vessels, or solely from local neural responses. Parameters pertaining to shear 

stress-induced regulation of aqueous humor outflow that do not involve NO signaling are 

explored in further detail in the report by (Carreon et al., 2017).

6.9. Pulsatile mechanical forces in the outflow pathway: the effect of the ocular pulse

IOP is not static, but rather oscillates with a sinusoidal waveform having an amplitude of 

several mmHg. These pressure oscillations arise from pulsatile changes in choroidal blood 

volume over the cardiac cycle, known as the ocular pulse (Coleman and Trokel, 1969). This 

pulsatile pressure environment induces pulsatile shear stress in SC and pulsatile strain in the 

TM. To determine the magnitude of these pulsatile forces, Sherwood et al. (2019) developed 

a mathematical model of fluid flow through the TM and SC, building upon the previous 

model of Johnson and Kamm (1983) and accounting for the non-linear relationship between 

IOP and SC height (modelled as a rectangular channel). To mimic the effect of ocular 

hypertension, Sherwood et al. (2019) varied the outflow resistance attributable to the inner 

wall/JCT, rje, which has a value of 2.08 mmHg/(μl/min) in a normotensive eye (Fig. 9). 

Increasing rje led to an approximately linear increase in IOP and in the ocular pulse 

amplitude (indicated by the shaded regions in Fig. 9A). The predicted shear stress in SC also 

increased with rje, curving upwards and becoming highly pulsatile, particularly for values of 
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rje greater than approximately 5 mmHg/(μl/min) corresponding to ocular hypertensive 

conditions (blue shaded curve in Fig. 9B). Likewise, TM stretch also increased with rje, but 

the relationship curved downwards and exhibited a much lower pulsatile magnitude relative 

to SC shear stress (blue shading in Fig. 9C).

6.10. Differential sensitivities of TM strain and SC shear stress to perturbations in 
outflow resistance

The mathematical predictions of Sherwood et al. (2019) support the notion that the outflow 

pathway exploits multiple mechanosensory mechanisms to detect changes in IOP. This can 

be appreciated based on the shape of the relationships describing how SC shear stress and 

TM stretch change as a function of rje (Fig. 9). More specifically, the slope of these 

relationships represents the sensitivity of TM stretch or SC shear stress to perturbations in 

outflow resistance. Note that these slopes vary depending on rje, indicating that the 

sensitivity of TM stretch or SC shear stress also varies depending on whether the eye is 

normotensive (rje ≈ 2 mmHg/μl/min) or hypertensive (rje > 5 mmHg/μl/min, corresponding 

to IOP > 21 mmHg).

TM strain appears to be more sensitive to perturbations of outflow resistance under 

normotensive conditions. This is because the slope of the TM strain versus rje relationship is 

significant around rje ≈ 2 mmHg/(μl/min), but the slope continually decreases for further 

increases in rje. The amplitude of the pulsations in TM stretch is small under normotensive 

conditions and increases slightly with rje, but even for the highest values of rje, this 

amplitude never exceeds 7% of its time-averaged value. This is consistent with the relatively 

small amplitude of oscillatory displacement (typically < 1 μm) measured at the outer margin 

of the TM in living human eyes by phase-contrast OCT (Li et al., 2013; Xin et al., 2017, 

2018).

The model suggests a progressive de-sensitization of TM stretch to further perturbations in 

rje once outflow resistance becomes elevated. In other words, under ocular hypertensive 

conditions, TM stretch becomes less responsive to further elevations in outflow resistance or 

IOP. An alternative way to make this same point is to recognize that TM stretch reaches an 

upper limit once the SC lumen approaches complete collapse. This suggests that TM strain 

would function poorly as an IOP sensor under conditions when IOP was already elevated.

In contrast to the behavior observed for TM stretch, SC shear stress becomes more sensitive 

to perturbations in outflow resistance under ocular hypertensive conditions. As rje increases, 

the slope of the SC shear stress relationship increases continually, indicating heightened 

sensitivity to further perturbations in outflow resistance, with the slope increasing sharply 

for rje > 5 mmHg/μl/min. With increasing rje, SC shear stress also becomes highly pulsatile, 

with the amplitude of the shear stress oscillations being comparable to its mean value (dark 

central curve in Fig. 9B). This suggests that the shear stress in SC may provide a sensitive 

means to detect further perturbations in outflow resistance and IOP under hypertensive 

conditions. The pulsations may also amplify the response of SC cells to shear stress, relative 

to that of steady conditions, as discussed below.
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The findings by Sherwood et al. (2019) suggest that the outflow pathway may exploit 

different mechanosensory mechanisms that are tuned to different ranges of outflow 

resistance. Importantly, this would allow the outflow pathway to compensate for decreasing 

sensitivity on the part of one mechanosensory mechanism stimulus with increasing 

sensitivity of the other, to provide more robust IOP mechanosensation across a broader range 

of normotensive and hypertensive conditions. Further, the differential sensitivities of TM 

stretch and SC shear stress to rje would allow the outflow pathway to differentiate small 

versus large perturbations in outflow resistance, and likely activate different 

mechanotransduction pathways. By exploiting multiple mechanosensory and 

mechanobiological mechanisms, the outflow pathway may thereby achieve a more robust 

homeostatic regulation of IOP that allows fine-tuning of outflow resistance over a wide 

range of physiological or supraphysiological conditions.

6.11. Increased TM stiffness inhibits IOP mechanosensation in the outflow pathway

Increased tissue stiffness is linked with the pathogenesis of several diseases including 

atherosclerosis (Palombo and Kozakova, 2016), fibrotic disease (Wells, 2013; Wynn and 

Ramalingam, 2012), and glaucoma (Last et al., 2011; Overby et al., 2014c; Vahabikashi et 

al., 2019; Wang et al., 2017b). TM stiffness is defined as the propensity for the TM tissue to 

resist deformation when a force or load is applied to it, such as elevated IOP or stretch 

(Wang et al., 2017b). There are currently two methods for direct measurement of tissue 

stiffness; compression (indentation) testing and tensile testing. As stated by Wang et al. 

(2017b), the actual value of the tissue stiffness measurements obtained from either of these 

two methods should be interpreted as a general indication of tissue stiffness, which might 

not be relevant in all situations, such as in vivo. However, if experimental conditions are kept 

constant, direct measurement of tissue stiffness, via compression or tensile testing, is still 

useful if used for relative comparisons of tissue stiffness between comparable samples (such 

as glaucomatous vs. age-matched, healthy). As determined by compression testing, a two-

fold increase in stiffness was recorded in the TM of glaucomatous eyes compared to normal 

human eyes (Vahabikashi et al., 2019), roughly comparable with observations from Wang et 

al. (2017a). A much larger increase in TM stiffness of glaucomatous human eyes (20-fold) 

was observed by Last et al. (2011), however this large increase had been suggested to be 

attributable to differences in apparatus used for measuring tissue stiffness (Vahabikashi et 

al., 2019). TM stiffness is an important target in glaucoma therapy because drugs and factors 

that decrease TM stiffness such as Rho kinase inhibitors (Li et al., 2016; Ren et al., 2016) 

and NO (Dismuke et al., 2008) concomitantly reduce outflow resistance. TM cells relax 

when exposed to NO (Dismuke et al., 2014; Wiederholt et al., 1994). Additionally, factors 

that increase TM stiffness such as dexamethasone also increase outflow resistance and 

elevate IOP (Li et al., 2019; Raghunathan et al., 2015).

Despite studies showing that increased TM stiffness coincides with increased outflow 

resistance (Wang et al., 2017b, 2018), it remains unclear how TM stiffness may affect 

outflow function. The model of Sherwood et al. (2019) predicts that TM stiffness is key a 

factor controlling IOP mechanosensation, and elevated TM stiffness may inhibit IOP 

mechanosensation. In their mathematical model, Sherwood et al. (2019) considered the 

effects of increasing TM stiffness on TM stretch and SC shear stress. Specifically, they 
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examined a 50% and 300% increase in TM stiffness, represented by nξ = 1.5 and 4.0, 

respectively (Fig. 9). The normal physiological TM stiffness (nξ = 1.0) was defined to 

reproduce published histological measurements of SC dimensional changes as a function of 

IOP (Allingham et al., 1996; Van Buskirk, 1982).

With increasing TM stiffness, the TM deforms less in response to pressure gradients, which 

would reduce both TM stretch and SC shear stress, but to varying degrees (Fig. 9C). A 50% 

increase in TM stiffness was sufficient to eliminate virtually all shear stress experienced by 

SC cells, reducing the time-averaged and pulsatile amplitude of SC shear stress by 90% for 

the normal physiological value of rje (Fig. 9B). Only a slightly larger decrease in time-

averaged and pulsatile shear stress (96%) was reported for further increases in TM stiffness 

(up to 300%), indicating that SC shear stress is sensitive to relatively small (<50%) changes 

in TM stiffness, particularly under pulsatile conditions. Increasing TM stiffness also entirely 

eliminated the dependence of SC shear stress on rje, markedly suppressing the elevated time-

average and oscillatory shear stress that would otherwise occur under hypertensive 

conditions. In contrast, the effects of TM stiffness on TM stretch were less pronounced, with 

a 33% and 75% reduction in the time-averaged stretch for nξ = 1.5 and 4.0, respectively. 

Unlike the case for SC shear stress, TM stretch continued to increase with rje when TM 

stiffness was elevated, although with a reduced sensitivity (or slope). These numerical 

simulations of Sherwood et al. (2019) demonstrate how increased TM stiffness may impair 

IOP mechanosensation by suppressing the magnitude of stretch or shear stress experienced 

by TM or SC cells in response to perturbations in outflow resistance.

Mechanosensation in the TM and SC is important because any debris within the anterior 

chamber, such as pigment or other cellular or extracellular material must eventually pass 

through the TM. There it may accumulate and potentially increase outflow resistance. Under 

conditions of normal TM stiffness, this perturbation may be detected based on changes in 

stretch acting on TM cells or shear stress acting on SC cells, and thereby induce a 

compensatory response to oppose the perturbation in outflow resistance. This compensatory 

response may include release of proteolytic MMPs to break down the resistive barrier 

(Bradley et al., 2001), VEGF to increase the permeability of the inner wall of SC (Reina-

Torres et al., 2017) or NO to relax the TM, reduce outflow resistance and allow any 

accumulated material to pass more easily out of the TM. As the TM and SC becomes de-

sensitized to perturbations in outflow resistance, debris and other matter that may 

accumulate in the TM and increase outflow resistance would remain undetected and thereby 

fail to elicit a compensatory response. Over time, this may lead to a progressive elevation in 

outflow resistance and IOP, ultimately resulting in ocular hypertension and potentially 

glaucoma. This may explain how increased TM stiffness could lead to increased outflow 

resistance, by inhibiting mechanosensation of IOP and de-sensitizing the TM and SC to 

perturbations in outflow resistance.

It is worth pointing out an additional mechanism by which TM stiffness, modulated by NO, 

may potentially amplify mechanosensation in the outflow pathway (Fig. 7B). NO relaxes the 

contractile elements in TM cells (Dismuke et al., 2014; Wiederholt et al., 1994), which will 

tend to reduce TM stiffness. For a given pressure drop across the outflow pathway, a 

reduction in TM stiffness will lead to increased TM stretch, which will further narrow SC 
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lumen, thereby increasing SC shear stress as well. In this manner, shear-induced NO 

production from SC may act in a feed-forward manner to amplify TM stretch and SC shear 

stress effectively increasing the mechanosensitivity of the outflow pathway to perturbations 

in outflow resistance or IOP.

6.11.1.  The time scale of NO signaling in TM—A key property of NO signaling is 

that it is relatively fast, allowing it to be responsive on a time scale of IOP variation that 

occurs during the cardiac cycle. Shear mediated NO production occurs within seconds in 

vascular endothelia (Davies, 1995), which is important for controlling vasoregulation over 

short time scales. Shear-induced production of NO by SC cells is likely to be similarly fast, 

as is the effect of NO on TM cell contractility or SC permeability. This is because NO acts 

directly on sGC, VE-cadherin or other molecular targets to rapidly affect signal transduction 

or protein confirmation. Other mechanotransduction mechanisms, such as stretch-activated 

ion channels (Matthews et al., 2010) may be similarly fast. However, any mechanisms 

involving changes in gene expression will occur over a much longer time scale, requiring 

hours to days to exert their effect. This slower mechanotransduction response might utilize 

genes involved in NO signaling that are also associated with POAG, such as NOS3, CAV1/2, 

VEGF-C, ANGPT2, or TEK. Thus, the outflow pathway may exploit multiple 

mechanosensory mechanisms that operate over a range of different time scales. This would 

allow the outflow pathway to differentiate short versus long-term changes in the mechanical 

environment related to IOP.

To explore the rate at which shear-mediated NO production may affect outflow facility, we 

developed an oscillatory pressure system to reproduce the ocular pulse in cadaveric mice 

whilst measuring outflow facility. Our rationale was that the oscillatory pressure should 

impose oscillatory shear stress in SC (Sherwood et al., 2019), which we surmised would 

amplify the production of NO to lower outflow resistance. Within individual eyes, we 

measured outflow facility during alternating periods with and without modest oscillations in 

pressure (~1 mmHg pk-pk sinusoidal waveform at 10 Hz superimposed on an average IOP 

of ~8 mmHg). During periods when the oscillations were on, outflow facility was 16% 

greater than the facility measured in the same eye when oscillations were off (Fig. 10). 

When the pressure oscillations were applied (indicated by vertical blue bars in Fig. 10), there 

was an initial transient response that decayed within a few minutes, by which time the 

facility increase was apparent (Fig. 10). The facility increase was attributable to an active 

response of the eye to pressure oscillations because no change in facility was observed when 

repeating the experiment using a “mock eye” that consisted of a glass capillary and 

compliant tube that were chosen to match the physiological values of outflow resistance and 

ocular compliance for a real mouse eye.

To test the involvement of NO production, we performed the same experiment in the 

contralateral eye in the presence of 100 μM L-NAME, a pan-NOS inhibitor. L-NAME 

decreased the effect of pressure oscillations on outflow facility by nearly half, implicating 

NOS in the facility increase in response to pressure oscillations. Taken together, these 

studies reveal that pressure oscillations mimicking the ocular pulse lead to a near immediate 

increase in outflow facility with roughly half of this effect attributable to NOS. This is 

consistent with shear-induced NO production by SC in response to pulsatile shear stress, 
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which acts to immediately decrease outflow resistance. Such a fast-acting response to 

pulsatile pressure is consistent with proposed mechanosensory mechanism of shear-

mediated NO signaling in the TM.

In the vascular system, there is evidence that oscillatory versus static shear stress will have a 

differential response on eNOS activation, expression, and NO production. In one study, 

oscillatory shear stress attenuated NO production compared to static shear stress in HUVEC 

(Yee et al., 2008). These data were supported by Ziegler et al. (1998), who demonstrated that 

oscillatory shear stress induced higher ET-1 mRNA expression but lower eNOS mRNA 

expression compared with static shear stress in bovine aortic endothelial cells. However, 

contradictory evidence in peripheral vasculature found that oscillatory shear stress enhances 

NO production (Li et al., 2005; Nakano et al., 2000). Future studies need to examine the 

effect of oscillatory shear stress on NO production in SC cells. Oscillatory flow is 

observable in vivo in both normal and glaucomatous eyes, however oscillatory flow is 

reduced in the SC lumen of glaucomatous eyes (Johnstone et al., 2011; Kerr et al., 2003), 

outlining the importance of oscillatory flow dynamics in glaucoma pathogenesis.

6.11.2.  Mechanical model of shear-regulated NO production in the 
conventional outflow pathway—SC is a collapsible endothelial-lined vessel. With 

increasing IOP, the TM expands outwards and the lumen of SC narrows (Grierson and Lee, 

1974; Johnstone and Grant, 1973; Moses, 1977; Van Buskirk, 1982). This leads to at least 

two IOP-dependent biomechanical cues: stretch experienced by TM and SC cells and shear 

stress experienced by SC cells. We and others (Braakman et al., 2014; Bradley et al., 2001; 

McDonnell et al., 2020; Sherwood et al., 2019) have hypothesized that these biomechanical 

cues provide a feedback mechanism for IOP homeostasis. According to these models, IOP-

induced stretch or shear stress induce TM or SC cells to respond in a manner that lowers 

IOP by stimulating pathways that decrease outflow resistance. Given the evidence described 

previously, eNOS and NO appear to be key players of this mechanism that would control 

relaxation of the TM and SC permeability to accommodate outflow resistance in order to 

regulate IOP (Fig. 7). Therefore, TM and SC cells should contribute directly to outflow 

resistance regulation. This notion contradicts the dogma that cells in the outflow pathway act 

as a passive filter, as Bárány (1954) and VanBuskirk and Grant (1974) postulated that 

outflow resistance was insensitive to metabolic inhibitors and changes in temperature 

respectively. Nevertheless, a recent study by Reina-Torres et al. (2020) reports a reduction in 

outflow facility when both glycolysis and oxidative phosphorylation are inhibited 

simultaneously, and that facility is heavily affected by temperature. This supports the idea 

that the cells in the outflow pathway actively regulate outflow. Thus, outflow tissues appear 

to have all the mechanisms necessary for regulate outflow in response to mechanical 

stimulus to maintain IOP homeostasis with NO as a mediator.

7. NO donating therapeutics

Given the hypothesized importance of NO in this IOP-sensitive feedback loop and that NO 

donors efficaciously lower IOP, targeting the NO pathway appears to be ideal for drug 

development to treat glaucoma. For example, in preclinical experiments topical or 

intravitreal administration of a number of different NO-donor molecules dramatically, but 
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transiently decrease IOP in rabbits (Behar-Cohen et al., 1996; Carreiro et al., 2009; 

Kotikoski et al., 2002). Nipradilol, a beta-blocker with a nitroxy group, demonstrates 

significant enhancement of IOP lowering in rabbits, compared to beta-blocker activity alone 

(Orihashi et al., 2005; Sugiyama et al., 2001). IOP lowering effectiveness of NO-donating 

molecules also translated to humans. Organic nitrates given intravenously (nitroglycerin) or 

orally (isosorbide diniatrate), dose-dependently lower IOP in normal or glaucomatous 

human eyes that did not correlate with hemodynamic changes (Wisznia et al., 1970; 

Wizemann and Wizemann, 1980). Moreover, patients infused with L-arginine, the 

endogenous substrate for NO generation also displayed a transient IOP-lowering (Chuman et 

al., 2000).

A recent strategy has been to add NO-donating moieties to drugs already approved to treat 

glaucoma. For example, a series of NO donating modifications were made to the carbonic 

anhydrase inhibitor, dorzolamide. The best candidate, unfortunately only showed modest 

increase (1 mmHg) in IOP lowering over equimolar dorzolamide in rabbits, and thus was not 

pursued (Steele et al., 2009). In parallel, three different analogues of latanoprost were 

produced and examined preclinically. The first was NCX139, having a latanoprost core and 

molsidomine as its NO donor (Impagnatiello et al., 2011). NCX139 demonstrated significant 

IOP-lowering activity in ocular hypertensive rabbits as well as in normotensive and 

glaucomatous dogs; however, it did not appear significantly more efficacious than 

latanoprost alone. The second, NCX125, was formed by combining latanoprost with 

glycerol 1, 3 dinitrite as the NO donor (Borghi et al., 2010). In rabbit, dog, and nonhuman 

primate models NCX125 effectively lowers IOP better than latanoprost alone. The third, 

latanoprostene bunod (LBN, AKA: BOL-303259-X) was produced by combining 

latanoprost with butanediol mononitrite as the NO donor (Cavet and DeCory, 2018). LBN 

was found to be more efficacious than latanoprost at lowering IOP in three different animal 

models (rabbit, dog, and non-human primate) (Krauss et al., 2011). IOP lowering was 

maximal at 1–2 h post treatment and the largest effects were observed in ocular hypertensive 

rabbits, who traditionally respond poorly to PGAs. Moreover, LBN lowers IOP by 1.23 

mmHg in FP receptor knockout mice (Cavet and DeCory, 2018). Of the three modified 

versions of latanoprost, LBN was advanced to human studies.

A series of 6 clinical trials were executed, testing the safety and efficacy of LBN. The phase 

I study, KRONUS demonstrated the efficacy of LBN over a 24 h period, and safety over 14 

days in a small number of Japanese subjects (n = 24) (Araie et al., 2015). Next, the phase II 

study, VOYAGER, was a dose-ranging study that examined effects of LBN compared to 

latanoprost over 28 days (n = 413 subjects with open angle glaucoma or ocular 

hypertension). Maximum effects were observed at 0.024% LBN, demonstrating 1.2 mmHg 

IOP lowering advantage over latanoprost (Weinreb et al., 2015). The next phase II trial was 

CONSTELATION, looking at the 24 h IOP effects of LBN in 24 patients with ocular 

hypertension or early POAG. Like latanoprost, LBN demonstrated superiority to timolol 

during nocturnal hours. A pair of phase III nearly identical studies APOLLO (Weinreb et al., 

2016) and LUNAR (Medeiros et al., 2016) were conducted, examining the safety and 

efficacy studies of LBN 0.024% in patients with open-angle glaucoma or ocular 

hypertension. In each study, LBN was compared to timolol over a 3-month period. Pooled 

data from the studies showed that LBN was non-inferior to timolol at every time point 
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(Weinreb et al., 2018). Moreover, pooled results from the safety extension phases of both 

studies demonstrated that the IOP reduction by LBN was maintained up to 12 months 

(Weinreb et al., 2018). The sixth human trial tested efficacy and safety of LBN in a Japanese 

cohort of patients with ocular hypertension or glaucoma for one year. Here, a mean 

reduction in IOP of 22% was achieved. In all studies, LBN was well tolerated, with a safety 

profile not significantly different from latanoprost.

Another prostaglandin analogue, bimatoprost was also modified for dual action capabilities 

by esterification with the NO-donating moiety 6-(nitrooxy) hexanoic acid (NCX 470). In 

preclinical studies, NCX 470 effectively lowers IOP more than equimolar bimatoprost in 

three animal models of glaucoma (rabbit, monkeys and dogs) (Impagnatiello et al., 2015). 

Subsequently, NCX 470 was advanced to human clinical trials. Here, a recently completed 

phase II clinical study evaluated the safety and efficacy of topical NCX 470 in lowering IOP 

in 656 patients with ocular hypertension or open-angle glaucoma. Three different 

concentrations of NCX 470 (0.021%, 0.042%, and 0.065%) were compared to latanoprost 

(clinicaltrials.gov identifier NCT03657797NCT03657797). While not yet published, Nicox 

announced positive results from this phase II trial and as a result secured funding to support 

a phase III trial (www.nicox.com).

Unfortunately, poor corneal penetration, short duration of action, and a narrow therapeutic 

index of NO-donors, so far have limited their clinical utility in treating glaucoma. In 

response, recent reports show that others are developing novel agents, such as NO-releasing 

polydiazeniumdiolate, which in vitro releases NO steadily over 48 h, however efficacy and 

long-term effects on TM cell contractility and IOP in living rabbits appears minimal (Jeong 

et al., 2020). Using another strategy to address corneal penetration, microporous silica 

nanoparticles were loaded with SNP, and a single topical drop in mice demonstrated 

significant IOP lowering over 30 h (vs. 30 min for SNP alone) (Hu et al., 2018). A third 

platform involved a two-step process to ensure that NO was released at its site of action for 

IOP lowering, the conventional outflow pathway. The goal was in situ NO release via 

enzyme biocatalysis in the JCT to increase outflow facility. This was tested in two phases: 

the first was intracameral injection of encapsulated β-galactosidase, enabling embedding in 

the JCT. The second controlled release of NO in TM by perfusing β-gal-NONOate-loaded 

liposomes into eyes and observing increased outflow facility (Chandrawati et al., 2017).

While steady progress has been made towards developing a viable glaucoma therapy 

involving NO delivery to conventional outflow tissues, two large hurdles remain. Most 

prominent is access of NO to cells of the JCT and sustained delivery of NO to modify flow 

passageways continually. Perhaps NO-donating drugs can be developed and married with a 

suitable biodegradable implants such as was done with bimatoprost and the Novadur™ 

platform, which recently received the U.S. food and drug administration approval (Craven et 

al., 2020). Ocular drug development for glaucoma is moving in this direction due to ocular 

surface problems, poor penetration and patient adherence issues with topical forms of 

medications.
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8. Conclusions and future directions

In summary, NO plays a major role in regulation of IOP and outflow resistance, mediating 

physiological responses in the TM, SC, and distal vasculature. Shear stress is the main 

mechanical stimulus regulating NO production in the outflow pathway, and several factors 

influence how shear stress is detected or transduced such as TM stiffness, oscillations, and 

acute verses chronic shear stress. There is still a gap in knowledge as to how the SC cells 

sense and respond to mechanical stimuli such as shear stress, and how these signals regulate 

NO dynamics. Mechanisms for shear stress-induced NO production are well known in blood 

vasculature, and blood vascular endothelial cells share many phenotypic characteristics with 

endothelial cells of the SC (Kizhatil et al., 2014). As such, researchers have identified 

several mechanosensory pathways known in blood vascular endothelial cells that are 

promising candidates for mechanosensation and NO regulation in SC and other tissues of the 

outflow pathway. Here, we have summarized some of the main candidates including CAV1 

and caveolae, PIEZO1, the VEGFR/VE-cadherin/PECAM-1 complex, the Tie2/PI(3)K/Akt 

signaling pathway, and the glycocalyx. However, SC also exhibits several unique 

physiological characteristics; fluid flow and pressure is basal to apical unlike blood 

vasculature (Ethier et al., 2004), and the SC is a hybrid blood/lymphatic vessel as it has to 

maintain blood-aqueous barrier and regulate fluid to flow out of eye (Kizhatil et al., 2014). 

Thus, it is important to apply our understanding of the systemic vasculature to the unique 

nature of the SC when investigating these mechanosensory pathways and the role they play 

in the outflow pathway. This new knowledge will hopefully lead to enhanced understanding 

of outflow dynamics and glaucoma pathogenesis and provide more therapeutic targets for 

the treatment of POAG.
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Abbreviations:

C outflow facility

CaM calmodulin

CAV1 caveolin-1

CM ciliary muscle

eNOS endothelial nitric oxide synthase

Hsp90 heat shock protein 90

KO knock out

IOP intraocular pressure

JCT juxtacanicular tissue
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NO nitric oxide

POAG primary open angle glaucoma

SC Schlemm’s canal

sGC soluble guanylyl cyclase

TM Trabecular Meshwork

VEGF vascular endothelial growth factor

EDRF endothelium-derived relaxing factor

NOS NO synthase

nNOS neuronal NOS

iNOS inducible NOS

eNOS endothelial NOS

FAD Flavin adenine dinucleotide

FMN flavin mononucleotide

GTP guanosine 5′-triphosphate

PIEZO1 Piezo-type mechanosensitive ion channel component 1

VE cadherin, vascular endothelial cadherin

PECAM-1 platelet endothelial cell adhesion molecule-1

cGMP guanosine 3′,5′-monophosphate

ET1 endothelin-1

MLCK myosin light chain (MLC) kinase

VSM vascular smooth muscle

L-NAME L-NG-nitroarginine methyl ester

ATP adenosine triphosphate

AMP adenosine monophosphate

ADMA asymmetric dimethylarginine

EVP episcleral venous pressure

MMPs matrix metalloproteases

LBN atanoprostene bunod
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Fig. 1. 
Schematic representation of eNOS structure and chemical interactions for NO production. 

For efficacious NO production eNOS homodimers localize at the cell membrane, preferably 

at caveolae. Within each monomer, electrons (e−) released form the conversion of NADPH 

to NADP+ and H+ in the reductase domain are transported to the oxygenase domain. 

Transport is facilitated by the cofactors FAD and FMN and the presence of Ca2+ dependent 

Calmodulin (CaM) at the CaM binding domain. In the oxygenase domain, the presence of a 

Heme moiety and the cofactor BH4 catalyze the oxidation of L-Arginine to L-Citrulline, 

H2O and NO.
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Fig. 2. 
Modulators of endothelial nitric oxide synthase (eNOS) activity. eNOS activation requires 

the interplay of a variety of cell surface receptors and channels, scaffolding proteins, 

cytoskeletal elements, signaling molecules, and protein modifications. Shown are the 

elements, relationships and signaling that are proposed to be involved in eNOS activation/

inactivation in Schlemm’s canal endothelia. Hsp90 promotes the affinity of eNOS for CaM, 

and it is necessary for Akt to interact with eNOS. eNOS is negatively regulated by 

interaction with Cav1. NO further negatively regulates Hsp90 and subsequently eNOS 

activity via S-nitrosylation. Estrogen exhibits rapid, nongenomic activation of the 

PI(3)K/Akt/eNOS pathway, possibly via ERα. VEGF stimulates phosphorylation of PLCɣ1, 

increasing levels of IP3 and subsequently mobilizing intracellular calcium necessary for 

CaM-induced eNOS activation and for the opening of calcium Ca2+ channels. NOSTRIN 

and NOSIP regulate eNOS internalization and trafficking and both inhibit eNOS function. 

Other biochemical signals that can activate eNOS are mostly mediated through GPCRs. 

Downstream of GPCR activation, other proteins potentially involved in the regulation of 

eNOS activity include PKA, PKC, MAPK, and AMP-activated protein kinases. GPCR: G-

protein coupled receptor. NO: nitric oxide, Akt/PKB: v-akt murine thymoma viral oncogene 

homolog; TK: thymidine kinase; MAPK: mitogen-activated protein kinase; AMP-activ PK: 

AMP activated protein kinase; PKA: protein kinase A; PKC: protein kinase C; HSP90: heat-

shock protein 90; CaM: calmodulin; Ca2+: calcium, E2: estrogen, ER: estrogen receptor, 

VEGF: vascular endothelial growth factor, PLC: phospholipase C, GTP: guanosine 

triphosphate; IP3: Inositol trisphosphate; NOSIP: eNOS interacting protein; NOSTRIN: 

eNOS trafficking inducer protein; F-actin: filamentous actin.
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Fig. 3. 
Schematic summarizing proposed signaling pathways involved in shear stress-induced 

regulation of nitric oxide (NO) production by Schlemm’s canal (SC) endothelial cells. Shear 

stress induces a variety of physiological responses in endothelial cells, with some pathways 

inducing eNOS activation and NO production. Caveolae and caveolin 1 (CAV1) act as 

mechanotransducers in SC endothelial cells, initiating and integrating signaling cascades in 

response to shear stress. CAV1 binds to and negatively regulates endothelial nitric oxide 

synthase (eNOS), and Hsp90 is necessary for Ca2+-dependent calmodulin-induced eNOS 

dissociation from CAV1 and for Akt-induced phosphorylation of eNOS. CAT1 and several 

molecules that regulate intracellular Ca2+ concentration localize in caveolae, enabling 

efficient and rapid eNOS activation in response to shear stress. The VEGFR/VE-cadherin/

PECAM-1 mechanosensory complex regulates eNOS activity and NO production, and 

VEGFR-2 associates with CAV1 and is localized in endothelial caveolae. PECAM-1 is 

required for the mechanosensation of shear stress and Src activation, while VE-cadherin 

enables signal transmission to PI(3)K, which goes on to activate integrins and mediate other 

signaling pathways (such as Akt and eNOS). The glycocalyx also mediates 

mechanosensation of shear stress and subsequent downstream eNOS signaling. The Tie2/

PI(3)K/Akt signaling pathway regulates shear stress-induced eNOS activity and NO. Finally, 

PIEZO1 is activated by shear stress, potentially regulating shear stress-induced elevation of 

intracellular Ca2+ and NO production.
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Fig. 4. 
A schematic showing multifactorial pathobiology of primary open angle glaucoma (POAG), 

involving complex genetics, environment and target tissues. POAG is a hereditable disease 

characterized by optic nerve damage, with the primary risk factor and currently viable 

treatment target being intraocular pressure (IOP). Several genes are associated with 

dysfunctions leading to POAG affecting both regulation of IOP and the optic nerve health. 

Genes highlighted in red may influence NO signaling. GxE: gene environment interactions; 

HTG: high tension glaucoma; NTG: normal tension glaucoma.
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Fig. 5. 
The Nitrate – Nitrite – Nitric oxide signaling pathway. Oxidation of L-Arginine results in 

production of nitric oxide (NO) and L-Citrulline. NO, in turn, can react with oxygen to form 

nitrites and nitrates. NO can be liberated from nitrites and nitrates through reduction 

catalyzed by nitrite reductase. Arginine is also a substrate for arginase in the urea cycle, 

producing a urea and L-ornithine, which in turn can also be converted into L-Citrulline. 

These reactions can be altered by drugs such as NOS inhibitors and symmetric 

dimethylarginine (SDMA).
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Fig. 6. 
Schematic illustrating the differential role of caveoli in the physiological response of TM 

and SC cells to mechanical stress. (A) Illustration of the conventional outflow pathway. 

(Left) Low magnification showing lens, cornea, iridocorneal angle and direction of aqueous 

humor flow (blue arrows). (Right) Higher magnification depicting Schlemm’s canal (SC), 

trabecular meshwork (TM) and juxtacanicular tissue (JCT) with a preferential pathway for 

aqueous humor flow (blue arrows). (B) Flow diagram demonstrating the proposed status of 

Rho GTPase (in TM) and eNOS (in SC) before and after mechanical stress in three different 

types of mice: WT, endothelial CAV1 KO (Cav1ΔEC), and global CAV1 KO, and the 

resultant effect on nitric oxide (NO) production or cellular contraction.
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Fig. 7. 
A model of shear stress-mediated mechanosensation of intraocular pressure (IOP). A) 

Diagram of homeostatic feedback loop where outflow resistance (R) determines IOP based 

on the magnitude of aqueous humor flow, which is typically constant for a living eye. IOP in 

turn defines the magnitude of shear stress experienced by Schlemm’s canal (SC). This shear 

stress may elicit a mechanobiological response by trabecular meshwork (TM) or SC cells, 

specifically the release of nitric oxide (NO). NO, in turn, feeds back to reduce R and thereby 

return IOP towards a homeostatic set-point. B) A schematic of shear-induced NO production 

by SC cells at elevated IOP (left panel) relative to normotensive conditions (right panel). NO 

(green) may diffuse upstream to reach the TM or may act elsewhere on SC cells or on 

collector channels. Illustrations provided by Jason Y. H. Chang, PhD.
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Fig. 8. 
Mathematical predictions of the shear stress acting on Schlemm’s canal (SC) cells in a 

human eye. SC lumen is modelled as elliptical in cross-section with semi-major and semi-

minor axes a and b, respectively. Decreasing b, corresponding to a narrowing of SC that 

occurs with elevated IOP, increases the shear stress acting on SC cells. The shear stress is 

larger near collector channel ostia, where it may approach levels experienced by vascular 

endothelia in large arteries. CC: collector channels; WSS: wall shear stress; L: distance 

between CC; x: given position in SC. Reproduced with permission from Ethier et al. (2004).
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Fig. 9. 
Mathematical predictions of the effects of the ocular pulse on the oscillatory intraocular 

pressure (IOP), (A), shear stress in Schlemm’s Canal (SC); (B) and stretch in the trabecular 

meshwork (TM) (C) as a function of outflow resistance generated by the inner wall of SC 

and juxtacanicular tissue (rje). Shaded regions represent the pulsatile amplitude, while the 

central curve represents the time averaged value over one cardiac cycle. Different curves in 

panel B and C represent different values of TM stiffness, including physiological TM 

stiffness (nξ = 1.0) and 50% and 300% increases in TM stiffness (nξ = 1.5 and 4.0, 

respectively). SC shear stress is evaluated at the collector channel ostium. Reproduced from 

Sherwood et al. (2019) under Creative Commons Attribution License of the Royal Society.
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Fig. 10. 
Effect of pressure pulsations that mimic the ocular pulse on outflow facility in cadaveric 

mouse eyes. A) IOP is maintained at a baseline pressure of 7.5–8.0 mmHg with alternating 

periods with or without sinusoidal pressure pulsations (1.0 mmHg pk-pk at 10 Hz). Pressure 

pulsations are indicated by blue shading. The slight decay in baseline pressure is due to a 

change in the outflow resistance of the eye whilst the flow sensor between the eye and 

pressure reservoir has a constant resistance (~10 mmHg/(ul/min)). B) The mean flow rate 

entering the eye, with the time-averaged value shown in black and oscillations shown in 

blue. C) The measured value of outflow facility under steady (orange circles) and pulsatile 

(green circles) conditions and a linear interpolation predicted of steady condition outflow 

facility during pulsatile periods (orange crosses). Outflow facility under oscillatory 
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conditions is elevated with respect to that under steady conditions. The upward trend in 

outflow facility over time is likely due to anterior chamber deepening.
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