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ABSTRACT
Objective  To develop machine learning models employing 
administrative health data that can estimate risk of 
adverse outcomes within 30 days of an opioid dispensation 
for use by health departments or prescription monitoring 
programmes.
Design, setting and participants  This prognostic study 
was conducted in Alberta, Canada between 2017 and 
2018. Participants included all patients 18 years of age 
and older who received at least one opioid dispensation. 
Pregnant and cancer patients were excluded.
Exposure  Each opioid dispensation served as an 
exposure.
Main outcomes/measures  Opioid-related adverse 
outcomes were identified from linked administrative health 
data. Machine learning algorithms were trained using 
2017 data to predict risk of hospitalisation, emergency 
department visit and mortality within 30 days of an 
opioid dispensation. Two validation sets, using 2017 and 
2018 data, were used to evaluate model performance. 
Model discrimination and calibration performance were 
assessed for all patients and those at higher risk. Machine 
learning discrimination was compared with current opioid 
guidelines.
Results  Participants in the 2017 training set (n=275 150) 
and validation set (n=117 829) had similar baseline 
characteristics. In the 2017 validation set, c-statistics 
for the XGBoost, logistic regression and neural network 
classifiers were 0.87, 0.87 and 0.80, respectively. In the 
2018 validation set (n=393 023), the corresponding c-
statistics were 0.88, 0.88 and 0.82. C-statistics from the 
Canadian guidelines ranged from 0.54 to 0.69 while the US 
guidelines ranged from 0.50 to 0.62. The top five percentile 
of predicted risk for the XGBoost and logistic regression 
classifiers captured 42% of all events and translated into 
post-test probabilities of 13.38% and 13.45%, respectively, 
up from the pretest probability of 1.6%.
Conclusion  Machine learning classifiers, especially 
incorporating hospitalisation/physician claims data, have 
better predictive performance compared with guideline 
or prescription history only approaches when predicting 
30-day risk of adverse outcomes. Prescription monitoring 
programmes and health departments with access to 
administrative data can use machine learning classifiers 
to effectively identify those at higher risk compared with 
current guideline-based approaches.

INTRODUCTION
Canada is among the countries with the 
highest rates of opioid prescribing in the 
world, making prescription opioid use a key 
driver of the current opioid crisis1; a major 
part of the policy response to the opioid crisis 
focuses on endorsing safe, appropriate opioid 
prescribing.2–4 In order to minimise high-risk 
opioid prescribing and to identify patients at 
high risk of opioid-related adverse outcomes, 
numerous health regulatory bodies have 
released clinical practice recommendations 
for health providers regarding appropriate 
opioid prescribing.3 5 6

Prescription monitoring programmes 
(PMPs) have been implemented around 
the world, like Alberta’s provincial Tripli-
cate Prescription Programme7 in Canada, 
and are mandated to monitor the utilisation 
and appropriate use of opioids to reduce 
adverse outcomes. In most jurisdictions, both 
population-level monitoring metrics and clin-
ical decision aids are used to identify patients 

Strengths and limitations of this study

►► This study incorporated near complete capture of 
opioid dispensations from community pharmacies 
and used validated administrative health data.

►► This study used commonly available algorithms to 
train machine learning models using data which is 
available to government health departments in all 
provinces in Canada and other single payer jurisdic-
tions; machine learning classifiers were evaluated 
with informative prognostic metrics not usually seen 
in other studies.

►► Our predictive models used dispense events and not 
medication utilisation, which is difficult to capture in 
administrative data.

►► Our training dataset does not account for non-
prescription opioids, opioids administered in 
hospitals, and other risks associated with non-
prescription use.
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at risk of hospitalisation or death and are most often 
based on prescribing guidelines. However, a compre-
hensive infrastructure of administrative data containing 
patient level International Statistical Classification of 
Diseases and Related Health Problems (ICD)8 codes and 
prescription drug histories exists in Alberta and other 
provinces in Canada which could be further integrated to 
predict opioid-related risk. Furthermore, current guide-
lines addressing high risk prescribing and utilisation of 
opioids were derived from studies that used traditional 
statistical methods to identify population level risk factors 
for overdose rather than an individual’s absolute risk3 9 10; 
these population estimates may not be generalisable to 
different populations.11 Thus, a functional gap exists in 
many health jurisdictions where much of the available 
administrative health data is not being leveraged for 
opioid prescription monitoring.

Supervised machine learning (ML)12 13 is an approach 
that uses computer algorithms to build predictive 
models in the clinical setting that can make use of the 
large amounts of available administrative data,14 15 all 
within a well-defined process.16 Supervised ML trains 
on labelled data to develop prediction models that are 
specific to different populations and, in many cases, can 
provide better predictive performance than traditional, 
population-based statistical models.10 15 17 We identified 
one study10 that applied ML techniques to predict over-
dose risk in opioid patients pursuant to a prescription. 
In their validation sample, they found that the deep 
neural network (DNN) and gradient boosting machines 
algorithms carried the best discrimination performance 
based on estimated c-statistics and that the ML approach 
out-performed the guideline approach in terms of risk 
prediction; neural networks have little interpretability and 
are not necessarily better at predicting outcomes when 
trained on structured data.18 This study relied on c-sta-
tistics to evaluate their ML models and did not empha-
sise other performance metrics (eg, positive likelihood 
ratios (PLR), pre and post-test probabilities) required to 
assess clinical utility that are recommended by medical 
reporting guidelines.11 13 19 20 It also did not address the 
important issue of ML model interpretability.21 Reporting 
informative prognostic metrics is needed to better under-
stand the capabilities of ML classifiers if health depart-
ments and PMPs are to incorporate them into their 
decision-making processes.

The objective of our study was to further develop and 
validate ML algorithms (beyond just DNN) to predict the 
30-day risk of hospitalisation, emergency visit and mortality 
for a patient in Alberta, Canada at the time of an opioid 
dispensation using administrative data routinely avail-
able to health departments and PMPs and evaluate them 
using the above referenced reporting guidelines. We also 
analysed feature importance to provide meaningful inter-
pretations of the ML models. Comparing discrimination 
performance (area under the receiver operating charac-
teristics curves (AUROC)), we hypothesised that the ML 
process would perform better than the current guideline 

approach for predicting risk of adverse outcomes related 
to opioid prescribing.

METHODS
Study design and participants
This prognostic study used a supervised ML scheme. All 
patients in Alberta, Canada who received a dispensation 
for an opioid, were 18 years of age and older between 
1 January 2017 and 31 December 2018 were eligible. 
Patients were excluded from all analyses if they had any 
previous diagnosis of cancer, received palliative interven-
tions or were pregnant during the study period (online 
supplemental eTable 1) as use of opioids in these contexts 
is clinically different.

Government health departments and payers in many 
jurisdictions have systems to capture prescription histo-
ries and ICD diagnostic codes. As such, we linked various 
administrative health data sets available in Alberta, 
Canada using unique patient identifiers in order to estab-
lish a complete description of patient demographics, 
drug exposures and health outcomes. These databases 
include (1) Pharmaceutical Information Network (PIN): 
PIN data include all dispensing records from community 
pharmacies from all prescriber types occurring in the 
province outside of the hospital setting. PIN collects all 
drug dispensations irrespective of age or insurance status 
in Alberta; Anatomical Therapeutic Chemical classifica-
tion (ATC) codes22 were used to identify opioid dispen-
sations and their respective opioid molecules (online 
supplemental eTable 5), (2) Population and Vital Statis-
tics Data (vs, Alberta Services): sex, age, date of birth, 
death date, immigration and emigration data, and under-
lying cause of death according to the WHO algorithm 
using ICD codes,8 (3) Hospitalisations and Emergency 
Department (ED) Visits (National Ambulatory Care 
Reporting System (NACRS), Discharge Abstract Data-
base (DAD)): all services, length of stay, diagnosis (up to 
25 ICD-108 based diagnoses). Data and coding accuracy 
are routinely validated both provincially and centrally via 
the Canadian Institute for Health Information, and (4) 
Physician Visits/Claims (Alberta Health): all claims from 
all settings (eg, outpatient, office visits, EDs, inpatient) 
with associated date of service, ICD code, procedure and 
billing information.

This study followed the Transparent reporting of a 
multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) and Standards for Reporting 
of Diagnostic Accuracy Studies (STARD) reporting 
guidelines.23–25

Measures and outcome
ML models were trained on a labelled dataset in which 
the observation/analysis unit was an opioid dispensation. 
Every opioid dispensation, not just the incident one, was 
used as a potential instance to predict the risk of our 
outcome. The primary outcome was a composite of a 
drug-related hospitalisation, ED visit or mortality within 

https://dx.doi.org/10.1136/bmjopen-2020-043964
https://dx.doi.org/10.1136/bmjopen-2020-043964
https://dx.doi.org/10.1136/bmjopen-2020-043964
https://dx.doi.org/10.1136/bmjopen-2020-043964


3Sharma V, et al. BMJ Open 2021;11:e043964. doi:10.1136/bmjopen-2020-043964

Open access

30 days of an opioid dispensation based on ICD-10 codes 
used by others and identified from DAD, NACRS and 
Vital Statistics (T40, F55, F10–19; online supplemental 
eTable 2).2 10 26

We anticipated that our defined outcome would be a rare 
event, leading to a class imbalanced dataset.27 To address 
this, we relied on specifying balanced class weightage for 
supporting algorithms; other approaches were deemed 
not suitable (eg, oversampling using randomly repeating 
minority class); undersampling (subsampling within the 
majority class) resulted in changes in outcome preva-
lence. Class weightage is a commonly used method28 to 
address class imbalance along with over and undersam-
pling approaches. However, oversampling, which involves 
generating new opioid dispensations from the original 
data distribution and is prone to introducing bias, is diffi-
cult due to the categorical nature of the data and beyond 
the scope of this study. With undersampling, which takes 
samples from the majority class (in this case, no 30-day 
event after dispensation), we would not be able to use 
all of the information provided by the data in instances 
with no outcome. Hence, we decided to use the class 
weightage method which does not alter the data distribu-
tion. Instead, the learning process is adjusted in a way that 
increases the importance of the positive class (instances 
that led to a 30-day event).29

Predictor candidates for ML models
Predictor variables in our ML models included those that 
were informed by the literature3 4 10 and those directly 
obtained from the data sets. These included features 
based on demographics (age, sex, income using Forward 
Sortation index from postal codes,30 comorbidity history 
using ICD-based Elixhauser score categories,31 health-
care utilisation (number of unique providers, number 
of hospital and ED visits) and drug utilisation (level 3 
ATC codes,22 oral morphine equivalents,32 concurrent 
use with benzodiazepines, number of opioid and benzo-
diazepine dispensations, number of unique opioid and 
benzodiazepine molecules). Depending on the poten-
tial predictor and data availability, we used data from 30 
days to 5 years before the opioid dispensation to generate 
model features (online supplemental eFigure 1); 30 days 
was used to reflect the immediate nature of the risk and 5 
years to fully capture comorbidities. This approach aligns 
with how health providers would assess patients using the 
entire history of comorbidities and then the more imme-
diate factors in deciding on the need for a therapeutic 
as well as risk in patients. We performed experiments to 
identify the features and data sets that contributed most 
to predicting the outcomes with a view to minimising the 
potential future data requirements for health depart-
ments and PMPs.

Statistical analyses and ML prediction evaluation
We randomly divided the patients in the 2017 portion 
of our study cohort into training (70%) and validation 
(30%) sets13 by patients and opioid dispensations such that 

no patients in the training set were in the validation set. 
Baseline characteristics and event rates were compared in 
the training vs validation group, and between those who 
experienced the outcome and those who did not using χ2 
tests of independence. As well, we used all the 2018 data 
as another independent validation set.

We trained commonly used13 33 ML algorithms (online 
supplemental eAppendix) and further tuned out-of-box 
models using fivefold cross-validation on the training data 
to address model overfitting.13 34 As is common in ML 
validation studies,10 13 we reported model discrimination 
performance (ie, how well a model differentiates those 
at higher risk from those at lower risk)11 using AUROC 
(c-statistic). We then stratified the two ML models with 
the highest c-statistics into percentile categories (deciles) 
according to absolute risk of our outcome, as was done 
in previous studies.10 35 We also plotted AUROC11 and 
precision-recall curves (PRCs).36

Because discrimination alone is insufficient to assess 
ML model prediction capability, we assessed a second 
necessary property, namely, calibration (ie, how similar 
the predicted absolute risk is to the observed risk across 
different risk strata).11 37 Using the two ML models with 
the highest discrimination performance, we assessed 
calibration performance on the 2018 data by plotting 
observed (fraction of positives) vs predicted risk (mean 
predicted value). Using these same two ML classifiers, we 
analysed the top 0.1, 1, 5 and 10 percentiles of predicted 
risk by the number of true and false positives, PLR,20 posi-
tive predictive values (PPV), post-test probabilities and 
number needed to screen. We also performed a simula-
tion of daily data uploads for 2018 quarter 1 to view the 
predictive capabilities if an ML risk predictor were to be 
deployed into a monitoring workflow.

For the XGBoost and logistic regression classifiers, we 
reported feature importance33 and plotted PRCs that 
compared all dispenses to those within the top 10 percen-
tiles of estimated risk. As well, for the XGBoost classifier, 
we described feature importance on model outcome 
using Shapley Additive Explanations (SHAP) values38 39 
to add an additional layer of interpretability.

Finally, we compared ML risk prediction (the two 
ML models with highest discrimination performance) 
to current guideline approaches as others have,10 using 
the 2019 Centers for Medicare & Medicaid Services 
opioid safety measures40 and the 2017 Canadian Opioid 
Prescribing Guideline.3 This was done by using the guide-
lines as ‘rules’ when coding for the 30-day risk of event 
at the time of each opioid dispensation on the entire 
2018 validation set. We also compared the discrimina-
tion performance of different logistic regression classifier 
models using various combinations of features derived 
from their respective databases: (1) demographic and 
drug/health utilisation features from PIN and (2) comor-
bidity features derived from DAD, NACRS and Claims.

All analyses were done using Python (V.3.6.8,), SciKit 
Learn41 (V.0.23.2) SHAP39 (V.0.35), XGBoost (V.0.90),42 
Pandas (V.1.0.5)43 and H20 Driverless AI (V.1.9).
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Patient and public involvement
This research was done without patient involvement. 
Patients were not invited to comment on the study design 
and were not consulted to develop patient-relevant 
outcomes or interpret the results. Patients were not invited 
to contribute to the writing or editing of this document 
for readability or accuracy. There are no plans to dissemi-
nate the results of the research to study participants.

RESULTS
Patient characteristics and predictors
We identified 392 979 patients with at least one opioid 
dispensation in 2017 (figure 1). This cohort was used to 
train (n=275 150, 70%) and validate (n=117 829, 30%) ML 
models. In 2017 and 2018, 6608 and 5423 patients expe-
rienced the defined outcome, respectively. Baseline char-
acteristics were different between those who experienced 
the outcome and those who did not (online supplemental 
eTable 3) while characteristics were similar between the 
training and validation sets (online supplemental eTable 
4). There were 2 283 075 opioid dispensations in 2017 and 
1 977 389 in 2018. Overall, in 2017, 2.03% (n=45 757) of 
opioid dispensations were associated with the outcome; 
in 2018, the estimate was 1.6% (n=31 392).

As described above, we categorised our candidate 
features into four groups (online supplemental eTable 
5). When using all of the databases, the total number 
of features was 283 and 34 when considering only 
co-morbidities.

ML prediction performance
Using the 2017 validation set, AUROCs for the XGBoost 
and logistic regression classifiers had the highest discrim-
ination performance at 0.87, while the neural network 
classifier had lower performance at 0.80 (online supple-
mental eTable 6).

Discrimination performance was similar for the 2018 
validation set (n=393 023; online supplemental eTable 6). 
XGBoost and logistic regression had the highest estimated 
AUROCs and area under PRCs while the neural network 
classifier was lower (figure 2A,B). As expected, PRCs indi-
cate stronger predictive performance in opioid dispensa-
tions at higher predicted risk percentiles (figure 2C,D).

In the 2018 validation set, although discrimination 
performance was similar (0.88), individual feature 
importance was different between the logistic regression 
and XGBoost classifiers, with logistic regression feature 
importance more reliant on co-morbidity data from DAD, 
NACRS and Claims while XGBoost relied more on drug 
utilisation data from PIN (online supplemental eFigure 
2). With the XGBoost classifier, history of drug abuse, 
alcoholism and prior hospitalisation/emergency visit 
carried the highest importance for predicting the study 

Figure 1  Patientflow diagram of study participants used for 
training and validating ML models. DAD, Discharge Abstract 
Database; ML, machine learning; PIN, Pharmaceutical 
Information Network; NACR, National Ambulatory Care 
Reporting System; VS, vital statistics.

Figure 2  Area under the receiver operating characteristic 
curve (AUROC) (A) and precision-recall curves (B) for all 
dispensations using logistic regression (L1), neural network, 
support vector machine (SVM), XGBoost and Naïve-
Bayes; precision-recall curves for higher risk dispensations 
according to predicted risk percentile categories for logistic 
regression (C) and XGBoost (D) using the 2018 validation set.
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outcome (online supplemental eFigure 3A) where the 
presence of these features in a patient suggested a strong 
prediction towards having the defined outcome (online 
supplemental eFigure 3B,C).

Calibration
When considering dispensations predicted to be in 
the highest percentiles of risk, the top five percen-
tile captured 42% of all outcomes using the XGBoost 
and logistic regression classifiers (table  1). Also, as the 
predicted risk percentiles get higher (top 10 percen-
tile to top 0.1 percentile), so too do the corresponding 
PPVs with the top 0.1 percentile associated with a PPV of 
33% for the XGBoost classifier. As well, lower categories 
of risk percentiles were associated with lower outcomes 
(figure  3, online supplemental eFigure 4). When we 
simulated a monitoring workflow scenario with daily 

data uploads, a similar pattern was illustrated where the 
dispensations predicted to be higher risk had higher 
event rates (figure 4).

After using the XGBoost and logistic regression classi-
fiers to identify the dispensations in the highest predicted 
risk percentiles, the pretest probability of the outcome 
(1.6%) was transformed into higher post-test probabil-
ities, with higher probabilities in the riskier percentiles 
(table 1). The number needed to screen also decreased 
as predicted risk increased (table 1).

Comparing discrimination performance, ML risk 
prediction outperformed the current guideline 
approaches when using various combinations of guide-
line recommendations (table 2). In many of the guide-
line scenarios, the estimated AUROCs were close to the 
0.5 mark. When we estimated the discrimination perfor-
mance of the logistic regression classifier based on data-
base source, using all databases produced an AUROC of 
0.88. Reducing the database source to only DAD, NACRS, 
Claims (comorbidities only) resulted in an AUROC 
of 0.85, while PIN (prescription history) only was 0.78 
(table 3).

DISCUSSION
This study showed that ML techniques using available 
administrative data (prescription histories and ICD 
codes) may provide enough discriminatory performance 
to predict adverse outcomes associated with opioid 
prescribing. Indeed, our ML analyses showed very high 
discrimination performance at 0.88. The linear model 
(logistic regression) and XGBoost carried higher discrim-
ination and calibration performance, while the neural 
network classifier did not perform as well. By identi-
fying the predicted top 5–10 percentile of absolute risk 

Table 1  Highest percentiles of estimated risk and predictive performance using the XGBoost and logistic regression 
classifiers for the 2018 validation dataset (n=393 023)

Metric

Top 0.1%ile Top 1%ile Top 5%ile Top 10%ile

XGBoost
Logistic 
regression XGBoost

Logistic 
regression XGBoost

Logistic 
regression XGBoost

Logistic 
regression

No of 
dispenses

1977 1977 19 774 19 774 98 869 98 869 197 739 197 739

TP captured 655 472 4204 4100 13 224 13 293 18 404 18 409

Per cent of TP 2.09 1.50 13.39 13.06 42.13 42.35 58.63 58.64

FP captured 1322 1505 15 570 15 674 85 645 85 576 179 335 179 330

PPV 33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31

PLR 30.71 19.44 16.74 16.22 9.57 9.63 6.36 6.36

Post-test 
Probability*

33.13 23.87 21.26 20.73 13.38 13.45 9.31 9.31

NNS 3.17 4.49 5.08 5.22 8.48 8.43 12.95 12.95

Logistic regression used L1 (lasso) parameter regularisation.
Total number of dispenses=1 977 389; total number of outcomes=31 392.
*Pretest probability estimated at 1.6% using prevalence.
FP, false positives; NNS, number needed to screen; PLR, positive likelihood ratio; PPV, positive predictive value; TP, true positives.

Figure 3  Calibration curve plotting observed vs quantiles 
(deciles) of estimated risk for the XGBoost classifier 
using the 2018 validation dataset. The majority of counts 
(dispensations) were predicted to be lower risk.
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pursuant to an opioid dispensation, we were able to 
capture approximately half of all outcomes using ML 
methods. All ML models we trained had higher discrim-
ination performance using the validation sets compared 
with the clinical guideline approach.

Since the prevalence of our defined outcome is rela-
tively low in the general population, PPVs would also 
be expectedly low. However, estimated PPVs increased 
when we considered higher risk dispensations, as is 
expected since PPV is related to event prevalence. This 
is important because different users of a risk predictor 

will require different predictive capabilities. Similarly, 
our estimates of PLRs and associated post-test probabili-
ties also increased in dispensations with higher predicted 
risk indicating the strong predictive capabilities of the 
XGBoost and logistic regression classifiers; likelihood 
ratios >10 generate conclusive changes from pretest to 
post-test probabilities.20

The current guideline approach to assess absolute 
opioid prescribing risk produced c-statistic estimates 
closer to 0.5 indicating that discrimination was not 
much better than chance alone. ML models with higher 
predictive performance can better support health depart-
ments and PMPs with monitoring mandates to identify 
and intervene on those at high risk and their associated 
prescribers. We also found that adding co-morbidity 
features from administrative databases increased predic-
tion performance compared with prescription history 
alone, thus making the case for the use of this data by 
PMPs and health departments. However, if only prescrip-
tion history is available, our trained XGBoost classifier 
still had strong discrimination performance.

We found only one study that used ML approaches 
to quantify the absolute risk of an event pursuant to an 
opioid dispensation.10 Their methodology used rolling 
3-month windows for estimating risk and ML model 
training while we used historic records to estimate 
30-day risk. Differences in study population and feature 
selection may explain why their highest performing ML 
model was deep learning (neural network classifier) and 
ours was not. Nevertheless, we were able to replicate their 
predictive performance using our ML approach as we 
both showed that ML approaches have higher predic-
tive capabilities than guideline approaches. Both of our 
studies used predicted percentile risk estimates to identify 
high-risk dispensations and were able to do so with strong 
discrimination and calibration performance. Further-
more, we emphasised prognostic metrics which are more 
informative to assess the clinical utility of ML classifiers 
using pretest and post-test probabilities, something not 
done in other studies and recommended in medical 
guidelines.20 This major aspect of our study, not done 
previously, is important because any ML classifier that 
does not increase prognostic information compared with 
baseline cannot be incorporated into decision making for 
the purpose of intervening on higher-risk instead of lower-
risk patients. Indeed, another study we found describes 
how identifying cases in higher predicted risk percentiles 
using ML methods can be deployed in hospital settings 
for the purpose of targeted interventions35 on discharge, 
however, the effect on outcomes is still to be determined.

The limitations of our study are similar to other 
ML studies10 and need to be addressed when consid-
ering deployment of ML risk predictors. Our training 
dataset was not able to account for non-prescription 
opioid consumption and the risk associated with non-
prescription use, both of which are substantial contribu-
tors to overall risk.2 Regarding our analysis, we assumed 
that all dispensations were independent events; future 

Figure 4  Simulation of a clinical workflow with daily uploads 
and events per 100 daily dispenses by risk percentiles using 
2018 quarter 1 (Q1) data for logistic regression (A) and 
XGBoost (B) classifiers.
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research in this area should focus on employing ML 
methods using correlated data. As with all ML projects, 
our models were trained using Alberta data and might 
not be generalisable to other populations, or to specific 
populations within Alberta. However, one of the bene-
fits of the ML process is that models can be retrained or 
similar methods could be used to develop new models to 
accommodate different populations.

This study suggests that ML risk prediction can support 
PMPs, especially if readily available administrative health 
data is used. PMPs currently use population-based guide-
lines which we, and others, have shown cannot predict 
absolute individual risk. The ML process allows for 

flexibility in model training, validation and deployment to 
specific settings in which, for the case of PMPs, high-risk 
patients can be identified and targeted for intervention 
either at the patient or provider level. For example, an 
ML classifier can be trained on accessible data to create 
an aggregated list of ‘high-risk’ patients at regular time 
intervals to identify points of intervention. Moreover, ML 
classifiers can be retrained over time as changes in popu-
lations and trends in prescribing occur and are therefore 
specific to the population unlike broadly based guide-
lines. Further research can assess whether implementa-
tion of an ML-based monitoring system by PMPs leads to 
improved clinical outcomes within their own jurisdictions 

Table 2  Discrimination performance of guideline approach using the 2018 validation set

Canadian guidelines* AUROC Sensitivity Specificity

History of mental disorder only 0.620 0.90 0.34

Substance abuse only 0.686 0.99 0.37

OME/day >90 only 0.539 0.22 0.85

(Mental disorder and substance abuse) or OME/day>90 0.690 0.91 0.47

Mental disorder and substance abuse and OME/day>90 0.560 0.20 0.91

Mental disorder or substance abuse or OME/day>90 0.589 0.99 0.18

CMS guidelines†

High opioid dose (>120 OME/day for 90+days) 0.507 0.081 0.933

Concurrency (Opioid and BZRA for 30+days) 0.575 0.423 0.727

Multiple doctors (>4) 0.591 0.294 0.888

Multiple pharmacies (>4) 0.537 0.120 0.959

All conditions 0.50 0.001 0.999

Any condition 0.622 0.62 0.625

Guideline approaches were adapted from the 2017 Canadian opioid prescribing guideline and 2019 CMS opioid safety measures and 
compared with logistic regression and XGBoost classifiers (each with an estimated area under the receiver operating characteristic curve of 
0.88). These guidelines were used as rules to predict the 30-day risk of event at the time of opioid dispensation.
*The Canadian guidelines do not specify timelines. >90 OME was determined by taking the average daily OME over the 30 days prior to 
dispensation.
†The CMS guidelines specify 90 or more days at >120 OME and concurrent use of opioids and benzodiazepines for 30 days or more within an 
assessment period of 180 days.
AUROC, area under the receiver operating characteristic curve; BZRA, benzodiazepine receptor agonist; CMS, Centers for Medicare & 
Medicaid services; OME, daily oral morphine equivalents.

Table 3  Discrimination performance based on database source using AUROC for the logistic regression classifier on the 2018 
validation set

Database source Predictor variables formed from database AUROC No of features

PIN only Drug utilisation+prescription history 0.78 248*

DAD, NACRS, Claims Co-morbidities 0.85 34

PIN, DAD NACRS, Claims (all 
databases used in study)

Demographic+drug utilisation+healthcare 
utilisation+comorbidities

0.88 283

Drug utilisation includes features describing oral morphine equivalents,32 concurrent use with benzodiazepines, number of opioid and 
benzodiazepine dispensations, number of unique opioid and benzodiazepine molecules; healthcare utilisation includes features describing 
number of unique health providers visited, number of hospital/emergency department visits; logistic regression used L1 (lasso) parameter 
regularisation.
*excludes mean income
AUROC, area under the receiver operating characteristic curve; DAD, Discharge Abstract Database; NACRS, National Ambulatory Care 
Reporting System; PIN, Pharmaceutical Information Network.
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and whether other available features or feature reduction 
can yield sufficiently valid results for their own intended 
purposes.
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