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A novel system for intensive 
Diadema antillarum propagation 
as a step towards population 
enhancement
Aaron R. Pilnick1*, Keri L. O’Neil2, Martin Moe3 & Joshua T. Patterson2,3

The long-spined sea urchin Diadema antillarum was once an abundant reef grazing herbivore 
throughout the Caribbean. During the early 1980s, D. antillarum populations were reduced by > 93% 
due to an undescribed disease. This event resulted in a lack of functional reef herbivory and 
contributed to ongoing ecological shifts from hard coral towards macroalgae dominated reefs. Limited 
natural recovery has increased interest in a range of strategies for augmenting herbivory. An area 
of focus has been developing scalable ex situ methods for rearing D. antillarum from gametes. The 
ultimate use of such a tool would be exploring hatchery origin restocking strategies. Intensive ex situ 
aquaculture is a potentially viable, yet difficult, method for producing D. antillarum at scales necessary 
to facilitate restocking. Here we describe a purpose-built, novel recirculating aquaculture system 
and the broodstock management and larval culture process that has produced multiple D. antillarum 
cohorts, and which has the potential for practical application in a dedicated hatchery setting. Adult 
animals held in captivity can be induced to spawn year-round, with some evidence for annual and lunar 
periodicity. Fecundity and fertilization rates are both consistently very high, yet challenges persist in 
both late stage larval development and early post-settlement survival. Initial success was realized with 
production of 100 juvenile D. antillarum from ~ 1200 competent larvae. While the system we describe 
requires a significant level of investment and technical expertise, this work advances D. antillarum 
culture efforts in potential future hatchery settings and improves the viability of scalable ex situ 
production for population enhancement.

Coral reef ecosystems are declining worldwide at alarming rates due to a variety of additive local and global 
environmental threats including coastal pollution, disease, climate change, and the loss of herbivores1–3. This 
decline challenges existing socio-ecological frameworks where human well-being relies on healthy and func-
tional coral reef ecosystems4. Coral reefs provide an estimated $29.8 billion in global annual net benefits from 
economic activities and resources including fisheries, coastal shoreline protection, tourism, biodiversity, and 
biomedical applications5–7. Addressing coral reef decline fundamentally requires climate change and coastal 
pollution mitigation on a global scale. Nonetheless, resource managers are actively seeking novel strategies at 
local scales to address these rapid declines and to augment conservation efforts in hopes of preserving valuable 
biodiversity and ecosystem services8.

Marine conservation paradigms, which have traditionally focused on regulating human behavior to protect 
ecosystems and promote natural recovery (e.g. marine protected areas, catch limits and moratoriums, direct and 
non-point source pollution restrictions), are rapidly expanding to include restoration strategies involving direct 
intervention4,9,10. This expansion is evident in the Caribbean and Western-Atlantic, where unprecedented declines 
and lack of natural recovery of key reef-building corals2,11,12 have driven the rapid growth of propagation and 
restoration programs13–17. These restoration programs employ “coral gardening”18, to produce biomass from wild-
collected fragments within in situ nurseries and outplant nursery-reared corals to degraded reefs15,19–21. In situ 
nurseries have functioned as genetic repositories22 and multi-year outplanting programs have been documented 
to increase coral abundance relative to un-restored reefs23. Simply outplanting propagated corals, however, does 
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not address any of the stressors that led to reef decline and long term outplant survival can be low24. Practically, 
coral gardening should exist within a larger restoration framework that aims to reestablish functional natural 
reef structure and biodiversity via a multi-niche ecological approach.

Key to this ecological approach in the Caribbean and Western-Atlantic is the re-establishment of functional 
reef herbivory via recovery of long-spined sea urchin, Diadema antillarum, populations. As the primary gener-
alist herbivore and bioeroder native to Caribbean reef ecosystems25–27, these large-bodied urchins historically 
maintained hardbottom in a state that favored stony coral recruitment and growth28–30. Historically, high popula-
tion densities averaging 5–10 individuals m−2 were associated with low macroalgae cover, high hard coral cover, 
and high levels of habitat complexity31,32. In 1983–1984, D. antillarum populations were reduced by 93–100% 
throughout their native range following the spread of an undescribed disease33–39. This mass mortality event 
pervasively altered reef ecosystem dynamics via reduced herbivory and subsequent loss of hard coral cover, 
habitat complexity, and biodiversity1,40–43. To date, natural recovery has been extremely limited throughout 
most historical geographic ranges, with reported population densities averaging fewer than 0.3 individuals m−2 
31. It is widely acknowledged that the loss of functional herbivory from D. antillarum has strongly contributed 
to ongoing coral reef decline44,45.

Coral reef managers are therefore highly interested in augmenting D. antillarum populations to restore func-
tional herbivory and concurrently improve habitat for the recovery of key reef-building coral taxa46. These 
objectives would benefit from developing scalable ex situ methods for rearing this species from gametes47 and 
restocking hatchery-reared urchins to the wild (Fig. 1). While D. antillarum has been cultured successfully48–50, 
a lengthy and challenging larval development process, paucity of established culture methods, and lack of 

Figure 1.   Conceptual model illustrating D. antillarum restocking via hatchery produced animals. Stages include 
in situ broodstock collection from wild populations, ex situ broodstock maintenance, larval development within 
scalable hatchery production settings, settlement and juvenile growout, and in situ restocking on targeted coral 
reefs. Arrow colors depict current levels of success in achieving each stage; green = achieved reliably at large 
scale, yellow = achieved somewhat reliably at reduced scale, red = not yet tested. The transition from green 
to yellow depicts a shift from reliable, successful production of hundreds of thousands of late-stage larvae to 
relatively fewer metamorphically competent larvae at 28–35 DPF (days post fertilization). Figure by Joseph A. 
Henry.
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applicable commercial technologies has precluded the development of reliable production at restoration rel-
evant scales. Here we describe a novel D. antillarum culture system designed to facilitate experimental research 
aimed at addressing fundamental knowledge gaps while developing practical and scalable production methods 
for restoration. A successful rearing protocol that has produced multiple hatchery cohorts is outlined. Addi-
tional information including broodstock management protocols, successful spawning records, and a timeline 
of development progression is also provided. Such information will be vital to advance captive propagation of 
this foundational species.

Materials and methods
The objective of this study was to develop successful rearing protocols for D. antillarum from gametes through 
larval settlement in a novel culture system with the potential for scalable production. Hypothesis-driven experi-
mentation examining larval survival and growth in response to microalgae diet combinations, diet concentra-
tions, and initial larval stocking densities took place concurrent to this work. For the purposes of this report, 
only the best performing treatments from each of these parameters are included in the below methods.

Broodstock maintenance.  Adult D. antillarum broodstock were collected from patch reefs at ≤ 8 m depth 
off Marathon, Florida by the Florida Fish and Wildlife Research Institute under Florida Keys National Marine 
Sanctuary permit # FKNMS-2018-023 in March 2018. These animals were transported to shore in seawater-filled 
coolers and held temporarily in tanks with natural seawater. On 26 March 2018, 18 animals were transported in 
aerated, seawater-filled coolers to a land-based restoration aquaculture facility operated by The Florida Aquar-
ium in Apollo Beach, FL. These urchins were quarantined in an enclosed greenhouse for a 45-day period, during 
which visual health assessments were performed prior to introduction to established holding systems. During 
quarantine, animals were fed daily and maintained within the temperature range described below for long-term 
holding. Some individuals arrived in Apollo Beach presenting tissue and spine loss and were treated under the 
direction of a veterinarian with oxytetracycline hydrochloride baths (15 mg  L−1 every other day for 1–2 h, 3 
doses) until their condition improved.

Following quarantine, 14 surviving broodstock were transferred to 450-L fiberglass tanks within a 2380-L 
recirculating aquaculture system (RAS) designed and concurrently used to house Caribbean corals. System life 
support included mechanical, biological, and chemical filtration through the use of a protein skimmer, live rock, 
150-micron filter socks, and activated carbon. Water temperatures were maintained between 23.5 and 28.8 °C. 
Photoperiod varied naturally at the greenhouse latitude of N27° 46′ 43.81″. Nylon mesh was installed over por-
tions of the tanks to provide shading (approximately 70% shading of incident light in greenhouse). Salinity was 
maintained at 34–37 g L−1 using artificial seawater (ASW) prepared from reverse osmosis deionized freshwater 
and a commercial salt mixture (Tropic Marin, Wartenburg, Germany). Broodstock were fed a commercially avail-
able herbivore diet ([34% crude protein, 8% crude fat, 8% crude fiber], Algaemax Wafers, New Life Spectrum, 
Homestead, FL, USA) five days per week in addition to grazing on benthic algae in the system. Broodstock were 
conditioned on the prepared diet for 2 months before successful spawning occurred.

Spawning and fertilization.  Group spawning was thermally induced following the methods described 
in Leber et al. (2009) and Moe (2014). One broodstock urchin died of an undetermined cause in the period 
after quarantine before spawning began. At each spawning attempt all (n = 13) broodstock were transferred to 
a 122-cm diameter polyethylene tank filled with 150-L of 1-μm filtered ASW. Water was heated to ~ 5 °C above 
holding tank temperature and supplemental aeration was provided. As broodstock spawned, gametes were col-
lected using 60-mL catheter syringes and transferred to a separate container with 1-μm filtered ASW. Time to 
first spawn, as well as the number of male and female animals spawning were recorded. If a male spawned prior 
to a female, sperm was not collected and instead allowed to diffuse throughout the tank. The residual sperm 
concentration in the spawning tank allowed for fertilization to occur as eggs were collected and transferred. 
If a female spawn occurred prior to a male, eggs were collected in the same manner, however an unquantified 
amount of sperm was then collected upon release from a male and transferred to the egg container for mixing 
and fertilization. Embryos were then transferred to a climate-controlled room where they remained in the mix-
ing container for 1–2 h while water temperature cooled to match the larviculture system (25–27 °C). Following 
cooling, embryos were moved to a single 40-L acrylic larviculture tank containing 1-μm filtered ASW and sus-
pended in the water column using pulsed aeration. Two hours after fertilization, 1-mL subsamples were counted 
using a Sedgewick Rafter cell to estimate total egg count and fertilization rate.

Recirculating aquaculture system.  At three days post-fertilization, early pluteus larvae were stocked 
into custom engineered 40-L acrylic culture tanks (details provided in supplementary materials) at densities 
between 1 and 2 larvae mL−1. The 40-L culture tanks were based on a design developed over fifteen years of 
experimental D. antillarum larviculture49,50. Aeration was supplied to individual culture tanks via air-wands 
positioned at the base of the vertical surface and pulsed at intervals of 3–5 s ON, and 20–30 s OFF using relay 
timer modules. The aeration timing was adjusted as necessary throughout larval development to prevent larvae 
from dropping out of suspension as they increased in size. Culture tanks were integrated within a novel 1800-L 
RAS designed to culture D. antillarum larvae while facilitating replicated experiments (Fig. 2; system schematic 
provided in supplementary materials). The RAS was located in a room with large north facing windows that 
provided a natural photoperiod. System life support components consisted of foam fractionators, ultraviolet 
sterilizers, ceramic biological filtration media, fluidized media reactors with activated carbon and granular ferric 
oxide, 5- and 25-µm mechanical filtration, and submerged heaters and chillers for precise temperature control. 
Twenty individual 40-L culture tanks were supplied with gravity-fed water from 150-L in-line header tanks at 
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a flow rate of 1–2 L min−1. Culture tank water then passed through 105-µm mesh attached to an overflow weir, 
which allowed waste and unconsumed food to be flushed out while larvae were retained. Organic material and 
waste accumulation in the culture tanks necessitated infrequent maintenance during the culture period. During 
maintenance, larvae were siphoned into a submerged 105-μm sieve and then gently rinsed and transferred to a 
clean culture tank. Periodically, 10-mL subsamples were collected from culture tanks and counted to estimate 
larval density.

Water quality.  Approximately 30% of total system water volume was exchanged weekly using 1-µm filtered 
ASW. Water quality parameters including salinity, pH, total alkalinity, calcium (Ca2+), and phosphate (PO4

3−) 
were monitored biweekly with a Hach DR 3900 spectrophotometer (Hach, Loveland, Colorado, USA). Ammo-
nia (NH3-N) was monitored intermittently using the same spectrophotometer. Temperature was monitored 
daily. Salinity was also monitored multiple times weekly using a handheld meter (YSI Inc., Yellow Springs, OH, 
USA) and values were adjusted to a target of 35 g/L. Additional water samples were periodically sent to a com-
mercial lab (Triton GmbH, Düsseldorf, Germany) for dissolved metal and total organic carbon (TOC) analyses 
via inductively coupled plasma optical emission spectrometry.

Feeding regime and maintenance through larval development.  Live microalgae strains (the cryp-
tophyte Rhodomonas lens and diatom Chaetoceros gracilis) were purchased from a commercial supplier (Alga-
Gen LLC, Vero Beach, FL, USA) and maintained in 18-L sterile carboys. Microalgae was first offered to larvae at 
3 days post-fertilization (DPF). The feeding regime throughout the culture period consisted of a single feeding 
of live microalgae dosed daily to each culture tank at 17:00 followed by a feeding period during which no water 
was supplied from the header tanks. The following day at 09:00, water supply from the header tanks was re-ini-
tiated and the culture tanks were flushed for 8-h at a flow rate resulting in ~ 12–24 total tank turnovers. Various 
combinations of all three algal species were fed. Total algal cell densities were increased throughout the culture 
period as follows: 3 to 14 DPF (5–10 thousand cells mL−1), 14 to 28 DPF (15–20 thousand cells mL−1), and 28 
DPF through metamorphic competency (30–40 thousand cells mL−1). Larvae were considered metamorphically 
competent after the appearance of an adult rudiment appendage and well-defined tube feet (Fig. 3e).

Settlement and metamorphosis.  The process by which planktonic larvae utilize adult tube feet to 
adhere to a benthic substrate and transition to a benthic life history is described as settlement51,52. Prior to settle-
ment, bacterial and diatom biofilms were allowed to accumulate on culture tank surfaces. This method emulates 
existing urchin production practices, in which benthic biofilms are used to provide both a larval settlement cue 
and diet for newly settled juveniles52–54. At larval competency, pre-conditioned ceramic tiles from broodstock 
holding tanks were additionally placed in larval culture tanks in an attempt to provide additional settlement 
cues. The tiles contained an assemblage of potential cues including crustose coralline algae, benthic algae, and 
bacterial associates. After juveniles settled in the culture tank and grew to approximately 1-mm in test diameter, 
they were transferred to separate 55-L glass tanks with pre-conditioned live rock and ceramic tiles, benthic bio-
films, and macroalgae (Gracilaria spp.).

Results
Spawning and fertilization.  From 16 May 2018 to 25 August 2020, a total of 22 spawns were attempted. 
Eleven successful spawns are reported in Table 1 and were defined as those producing a minimum of 500,000 
viable embryos. Eight spawn attempts were unsuccessful and complete data were not collected on three success-
ful spawns. These are omitted from Table 1. All spawning attempts used the same common broodstock pool. 

Figure 2.   Photograph depicting configuration of the 1800-L recirculating larviculture system used to rear D. 
antillarum larvae.
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For successful spawns, water temperatures were increased by 5.4 ± 0.3 °C (mean ± SEM) relative to the holding 
system temperature. Time from thermal induction to first gamete release averaged 3.6 ± 0.9 min. The proportion 
of individuals that spawned during each successful event was variable, ranging from 15.4 to 53.9% and averag-
ing 34.3 ± 4.1%. The number of eggs extracted from each spawn ranged from 1.8 to 15.3 million with an overall 
mean of 5.0 ± 1.2 million. Sperm concentrations were not quantified, but fertilization rates were high and con-
sistent at 94.0 ± 1.2% and no evidence of polyspermy was observed. While successful spawning events occurred 
throughout the calendar year, weak signals for both annual and lunar spawning patterns were observed. Simple 
linear regression revealed that the proportion of animals spawning in a given attempt was positively correlated 
with months relative to June (F (1, 20) = 9.80, p < 0.01), and negatively correlated with days since a new moon 
(R2 = 0.20, F (1, 20) = 5.12, p < 0.05).

Water quality and larval development.  All water quality parameters excluding ammonia are reported 
in Table 2. Ammonia was consistently undetectable. The mean concentrations of several dissolved metals known 

Figure 3.   Representative photographs of D. antillarum development at (a) 2 h post fertilization, first cell 
division, D = 80 µm, (b) 36 h post fertilization, late gastrula/prism, mid body length (MBL) = 85 µm, (c) 
3 d post fertilization, early pluteus larvae, MBL = 90 µm, appendage length (AL) = 190 µm, (d) 21 d post 
fertilization, 4-armed echinopluteus transversus larvae, MBL = 250 µm, AL = 2000 µm, (e) 28 d post fertilization, 
metamorphically competent late pluteus larvae with adult rudiment and extended tube feet, MBL = 600 µm, 
(f) 36 d post fertilization, mid-metamorphic radially symmetrical juvenile resorbing bilaterally symmetrical 
larval structure, D = 850 µm, (g) 36 d post fertilization, settled juvenile, D = 900 µm, (h) 248 d post fertilization, 
hatchery reared D. antillarum, D = 1–3 cm.
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to have adverse biological effects on sea urchin larvae, including copper, nickel, selenium, lead, and zinc55,56 are 
also reported in Table 2.

Periodic larval sampling throughout the culture period was conducted to document morphological devel-
opment over time and is depicted in Fig. 3 (panels a–e). Viable eggs at 2 h post fertilization ranged from 70 to 
80-μm in diameter. Development from the prism stage through early pluteus and the 4-armed stage, described 
as Echinopluteus transversus by Mortensen (1921), proceeded similarly to other members of the Diadematoida 
order57–59. Larvae at 21 DPF were heavily pigmented and had characteristically long fenestrated postoral arm 
appendages reaching ~ 2-mm in length. A period of high larval mortality indicated by body condition deteriora-
tion and declines in larval density was observed in multiple culture attempts at 28–35 DPF. Larvae that survived 
these mortality events, which averaged < 1.5%, developed adult rudiment appendages and well-defined tube feet 
at 28–93 DPF, indicating metamorphic competence.

Metamorphosis and settlement.  Figure  3 (panels f–h) depicts larval settlement and juvenile urchin 
development. Following the addition of pre-conditioned ceramic tiles, competent larvae appeared to initiate 
settlement on biofilm surfaces within the culture tank and also on the tiles themselves. Sampled juveniles under-
going settlement were observed to resorb remnant larval appendage structures as they transitioned from bilater-
ally symmetrical plankton to radially symmetrical benthic urchins. Newly settled juveniles had orange and red 
tests and spines under top illumination and did not appear to have yet developed an Aristotle’s lantern feeding 
apparatus. Juvenile growth rates were highly variable despite low animal densities and high resource availability 
in the 55-L glass tanks. The most successful culture attempt resulted in a total of 100 juveniles surviving past 90 
DPF from a single 40-L culture tank. This represents an 8.3% post-settlement survival rate from 1200 competent 
larvae, and a ~ 0.125% overall survival rate from the initial stocking of 80,000 larvae at 3 DPF. By 60 days post set-
tlement, most juveniles appeared entirely black in coloration. Individual test diameters at 248 DPF ranged from 

Table 1.   Date and associated data from 11 successful spawning events between 20 August 2018 and 25 August 
2020 using a common pool of 13 D. antillarum broodstock. Number of eggs extracted and fertilization rates 
reflect a 95% confidence interval (n = 3 counts per range). *CI confidence interval.

Spawn date
Holding temperature 
(°C)

Spawn temperature 
(°C) # Females spawning # Males spawning

% of population 
spawning

Millions of eggs 
extracted (mean ± 95 
CI*)

% Fertilization rate 
(mean ± 95 CI*)

20/8/18 26.0 31.0 2 5 53.8 2.2 ± 0.6 89.5 ± 2.1

17/9/18 26.2 31.0 2 3 38.5 15.3 ± 2.3 94.2 ± 3.7

5/10/18 26.3 31.0 2 1 15.4 1.8 ± 0.4 98.5 ± 0.4

7/11/18 25.0 30.0 3 4 53.8 4.7 ± 0.2 94.9 ± 5.4

18/2/19 23.9 30.0 2 2 30.8 3.8 ± 0.9 90.2 ± 2.7

21/5/19 26.8 31.0 1 1 15.4 9.3 ± 1.5 99.9 ± 0.3

18/9/19 27.8 34.5 3 1 30.8 3.7 ± 0.2 96.4 ± 0.5

29/10/19 26.7 31.0 1 4 38.5 2.7 ± 0.3 95.3 ± 1.7

29/1/20 23.9 31.0 3 3 46.2 5.8 ± 0.7 93.3 ± 4.6

12/6/20 26.3 31.7 2 1 23.1 3.9 ± 1.2 86.3 ± 14.2

25/8/20 25.9 32.3 3 1 30.8 1.9 ± 0.4 95.8 ± 1.8

Table 2.   Mean ± SE water quality parameters monitored throughout the larval culture period. SEM Standard 
error of the mean. a Reported as CaCO3. b Total organic carbon.

Parameter (units) Value (mean ± SEM) n

Water quality parameters

Salinity (g L−1) 36.09 ± 0.22 22

pH 8.15 ± 0.01 22

Alkalinitya (mg L−1) 129.27 ± 2.46 22

Ca2+ (mg L−1) 425.28 ± 9.53 18

PO4
3− (mg L−1) 0.032 ± 0.01 21

TOCb (mg L−1) 4.14 ± 1.17 3

Dissolved metals

Cu (µg L−1) 1.50 ± 1.20 8

Ni (µg L−1) 0.78 ± 0.30 8

Se (µg L−1) Undetectable 8

Pb (µg L−1) Undetectable 8

Zn (µg L−1) 2.66 ± 1.45 8
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1 to 3 cm. Delayed settlement in subsequent successful culture attempts occurred at 60–93 DPF with a maximum 
of 49 juveniles produced per attempt.

Discussion
The successful culture process outlined in this study improves the viability of D. antillarum ex situ production for 
potential population enhancement as a means to restore yet-to-recover Caribbean herbivory. While this species 
has been cultured before48–50, knowledge gaps and impediments in the culture process have resulted in limited 
success. Chief among these impediments was the inability to repeatedly rear larvae to the point of metamorphic 
competency and settlement in a culture tank capable of scaled production49. While other urchin species are 
cultured at scale for commercial food markets60 and even coral reef restoration61,62, unique D. antillarum larval 
biology has prevented existing production methods from being applied and has necessitated a novel approach. 
The culture success described in this study was contingent on (1) a reliable non-invasive spawning procedure, 
(2) a unique larviculture system design, and (3) reproducible larval rearing protocols. These methods have 
advantages and limitations, especially in the context of potential future D. antillarum population enhancement.

Commercial and research-oriented echinoderm aquaculture typically employs dissection or coelomic KCl 
injection to extract gametes or induce broodstock spawning53,63,64. Given the scarcity of D. antillarum32 and 
general broodstock mortality and poor egg quality associated with dissection and coelomic injection50,65,66, a 
less destructive spawning method is preferred for this species. Capo et al. (2003) investigated the potential for 
constant photo-thermal parameters to support spontaneous spawning for year-round scaled D. antillarum hatch-
ery production. Within the current system, a desire for on-demand gamete collection prompted application of 
thermal induction group spawning50. The method used by Capo et al. (2003) produced on average 89,000 eggs 
per spawn across 173 spontaneous spawning events over 19 months. The present method resulted in at least 11 
successful induced spawning events over 24 months that produced on average five million eggs per spawn. It is 
important to note that, because gametes were collected using a syringe from actively spawning and submerged 
females, egg numbers reported here likely underestimate total fecundity. Further, the overall spawning success 
rate using the thermal induction was ~ 64% (14 successes in 22 attempts). This presents room for improvement 
and based on subsequent observations, we speculate that a constant broodstock holding temperature of ~ 26 °C 
may contribute to more reliable spawning. During this study, broodstock holding system temperatures were 
programmed to fluctuate seasonally, with a maximum observed water temperature of 28.8 °C. While this tem-
perature is well within those expected in the natural range of D. antillarum, it should be noted from Table 1 that 
only one successful spawning event occurred when broodstock holding system temperature exceeded 27.0 °C. 
After this study, broodstock management practices have shifted to a constant holding temperature of ~ 26 °C 
and spawning has anecdotally become more reliable. Spawning success could additionally be impacted through 
diet67 and photoperiod68,69 manipulation. While thermal induction also results in more partial or incomplete 
spawns compared to coelomic injection66, this method did work effectively to produce large numbers of fertilized 
embryos without causing undue broodstock mortality. Importantly, this method also allows determination of the 
number of contributing broodstock and their sex. Group thermal induction, however, resulted in relatively low 
proportions of the total broodstock pool contributing gametes. Similar observations have been reported in other 
urchin species66. Thus, strategies to mitigate undesirable genetic impacts will be critical for the full realization of 
scaled D. antillarum production for responsible stock enhancement70.

Precautionary stock enhancement paradigms suggest that broodstock should be of local origin and that 
effective population sizes should be maximized in the hatchery so as to prevent deleterious genetic intrusions 
into wild populations70. Chandler et al. (2017) examined the genetic diversity of wild D. antillarum populations 
from Biscayne Bay to the Dry Tortugas alongside two locally sourced captive broodstock populations. This study 
concluded that little genetic differentiation existed among wild and broodstock populations and that captive bred 
Florida urchins would sufficiently reflect the diversity of wild populations71. While this suggests that hatchery 
production and restocking could viably be used to restore D. antillarum populations throughout the studied 
range with little risk of outbreeding depression, large numbers of restocked offspring progenerated from few 
broodstock could still pose risks to the genetic structure (i.e. effective population size) of endemic populations 
as they interbreed with wild individuals70,72, 73. In the present study, the proportion of spawning D. antillarum 
was sometimes as low as 15.4%, with genetic contributions from only one male and one female. Thermal induc-
tion resulted in a low proportion of spawning individuals and, if used for scaled production and restocking, 
would necessitate housing and spawning an extensive number of broodstock in order to attain a minimal effec-
tive hatchery population size. Conducting future hatchery cohort parentage analyses could help to refine this 
approach. Avoiding potentially deleterious genetic intrusions will alternatively require targeted research aimed 
at increasing broodstock contributions to hatchery cohorts. If reliably high yields of juvenile urchins are attained 
from future larviculture attempts, revisiting the use of established yet destructive methods to enhance gamete 
extraction from broodstock could be justified. These methods may mitigate genetic risks inherent to a restocking 
program by improving hatchery genetic diversity.

Further investigations into adult urchin nutrition and other factors affecting spawning success could further 
refine broodstock management practices for scalable production. While specialized diets have been shown to 
improve gonad production and quality53,74–76, few commercial products exist and none have been tailored spe-
cifically for tropical urchin aquaculture64. The generic herbivore diet used in this study produced consistently 
high numbers of viable embryos from spawning broodstock. However, more research could help to optimize a 
diet to further improve the proportion of spawning individuals, gonad production and quality, and even larval 
success77,78. Several environmental factors including but not limited to lunar periodicity, water temperature, and 
photoperiod, may also influence D. antillarum spawning patterns and success79–81. Studies examining spawning 
patterns in wild populations have produced conflicting results, with some suggesting strong synchrony with 
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annual and lunar cycles82–84 and others describing less predictable patterns85–87. Such discrepancies may be due 
to latitudinal gradients among populations81. In this study, instances of successful spawning events occurred 
throughout most of the calendar year, suggesting that the described broodstock management practices can be 
utilized for year-round hatchery production. However, the proportion of spawning broodstock was generally 
higher during the Spring and Fall months, which supports observations of peak spawning periods in several wild 
populations83,84. The apparent positive correlation between broodstock spawning proportion and the presence 
of a new moon suggests that additional factors including lunar periodicity affected spawning performance in 
captivity. This is supported by several observations of wild spawning patterns at or around the time of the new 
moon83–85. Broadly, both seasonal and lunar cycles appeared to influence spawning performance in this study; 
however, these conclusions are uncertain given the small sample size. In situations where constant gamete pro-
duction would be preferred, it could be conceivable to reduce cyclical spawning patterns by subjecting broodstock 
to constant photo-thermal parameters as described by Capo et al. (2003).

Compared to commonly cultured echinoderm larvae, which possess up to four paired arm structures, D. 
antillarum larvae have only two paired arms with one greatly elongated postoral pair (see Fig. 3d). Because of 
their distinct Echinopluteus transversus morphology, D. antillarum larvae are considerably less robust than other 
echinoderm larvae and more susceptible to mechanical breakage49,88. Further, while echinoderm larvae are nega-
tively buoyant and generally poor swimmers60,89, diadematid larvae are particularly ineffective at self-propulsion57 
and likely exhibit low stability in turbulent systems49,90. D. antillarum larvae cultured in this study were observed 
to sink and die without adequate flow. These factors necessitated applying novel flow dynamics to the culture tank 
such that larvae remained physically suspended while minimizing breakage49,50. The unique geometry of the 40-L 
culture tank was critical to providing this environment. High initial stocking densities might also adversely affect 
the survival of long-armed larvae88. Therefore, D. antillarum larvae were stocked at 1–2 larvae mL−1 compared 
to densities upwards of 10 larvae mL−1 used successfully in species such as Tripneustes gratilla91. A diadematid 
urchin (Centrostephanus rodgersii) with similar larval morphology to D. antillarum was successfully cultured 
in 125-L and 300-L tanks at final larval densities of 0.2–1.0 mL−1 92,93. The 300-L tanks were cylindro-conical 
and “gently aerated”93. Such a configuration has been anecdotally tested with D. antillarum in smaller tanks 
and resulted in larval mortality. While it is possible that increasing tank size could generate different results, it 
appears that D. antillarum larvae may be more negatively buoyant and less motile than C. rodgersii. Similarly, 
the successful culture of this species in larger versions of the tank described here is unknown, yet feasible. Larger 
culture tanks with comparable geometry, flow rates and turbulence have the potential to further enhance larval 
production. However, it may not be necessary to do so as overcoming larval mortality bottlenecks within the 
system described could result in production of adequately high numbers of competent larvae from each tank.

While aspects of prior successful culture methods were incorporated into this study48,49, considerations were 
made to account for known issues of scalability and culture bottlenecks. The system design was intended to bal-
ance the desire for large-scale production with a concurrent need for replicated aquaculture research. Conven-
tional small-scale urchin culture methods rear larvae in 2- to 4-L beakers for ecotoxicology and developmental 
biology research60,88. The novel RAS described here incorporated 40-L culture tanks capable of rearing up to 
5000 competent larvae in each tank. Larger vessels with a similar geometry could conceivably be designed to rear 
larger quantities of D. antillarum. Smaller tanks, however, provide the opportunity to reduce labor and increase 
experimental replication to resolve culture bottlenecks. Prior D. antillarum culture success49,50 was accomplished 
in standalone 50-L prototype culture tanks that required frequent cleaning and intensive labor for maintenance, 
thereby limiting replication. The methods described here resolved this problem by incorporating up to twenty 
culture tanks into an RAS with robust life support components that reduced the need for cleaning and water 
exchange. This allowed for greatly reduced labor and increased replication needed for rigorous hypothesis testing. 
Preventing larval waste products from accumulating and negatively affecting water quality in the culture tank is 
also essential for rearing echinoderm larvae88. Because D. antillarum larvae are mechanically fragile, standard 
methods used to directly remove waste from culture vessels can cause mortality from breakage. The ability to 
flow treated recirculating water through the culture tanks mitigated the accumulation of waste products. Another 
consideration for system design was the necessity to minimize larval exposure to dissolved metals.

Sea urchin larvae are often used as bioindicators for dissolved metal pollution due to extreme susceptibility94,95. 
D. antillarum larvae are among the most sensitive marine organisms to dissolved metals, with abnormal develop-
ment occurring at nickel, selenium, silver, and copper concentrations as low as 15 µg L−1, 26 µg L−1, 6 µg L−1, and 
11 µg L−1, respectively55. By comparison, purple sea urchin, Stronglyocentrotus purpuratus, larvae are sensitive 
to dissolved nickel concentrations of 250 µg L−1 95. Bivalve species in the genus Mytilus are the only aquatic taxa 
found to be more sensitive to dissolved silver and copper than D. antillarum96,97. Nickel may be a particularly 
prevalent trace metal found in aquaculture systems98, potentially due to the use of submerged stainless-steel com-
ponents in pumps and other hardware. Metal toxicity was a suspected factor in failed metamorphic development 
for previous D. antillarum culture attempts49. The use of filtered natural seawater may also introduce unknown 
contaminants. Difficult to remove contaminants including dissolved metals or toxic organic compounds found 
in source waters may negatively impact larval development and successful metamorphosis99. The potential for 
contaminated source water was minimized by using artificial saltwater comprised of purified freshwater and a 
high-quality salt mixture. Dissolved metal concentrations were kept below known thresholds through weekly 
water changes, addition of metal adsorbing materials including granular ferric oxide and Poly Filter (Poly-
Bio-Marine Inc., Pennsylvania, United States), and a specially formulated, low dissolved metal F/2 microalgae 
growth media. Future culture attempts could benefit from additional filtration methods to reduce dissolved metal 
concentrations. Standard water quality parameters were otherwise optimal.

The algal feeding regime used was similar to that of Eckert (1998) and Leber et al. (2009). The microalgae 
species common to all successful culture attempts was the cryptophyte, Rhodomonas lens48–50, which has a high 
fatty acid, protein, and amino acid concentration100. This microalgae species also has a large cell size relative to 
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other commercially available microalgae. Pigment content in R. lens might partially explain larval culture suc-
cess due to various biological functions including photoprotection, immunological response, and antioxidant 
activity101,102. Carotenoid content can also influence egg production and development, and disease response when 
included in the diet of adult sea urchins76,100,103. Mixed-algae diets were used because they have been shown to 
improve larval development in other urchin species78,104. Developing a feeding regime required balancing recir-
culating flow-through rates to sustain water quality with sufficient duration of larval exposure to algal cells for 
adequate feeding. A 16-h static feeding period followed by 8 h of flow comprising 12–24 culture vessel turnovers 
was determined to meet this requirement. Constant flow-through would provide better water quality and could 
possibly mitigate the risk of toxin accumulation, bacterial infection, and larval mortality105. However, constant 
flow-through would also flush uneaten microalgae out of the larviculture tank and might result in diminished 
larval growth.

Larvae settled as early as 36 DPF after the addition of pre-conditioned ceramic tiles, which is within the range 
of prior successful culture attempts48,49. Sea urchin larval settlement is a dynamic process and can be impacted 
by a multitude of factors including available biochemical cues54,106, mechanical cues107, and nutritional status78. 
Further, post-settlement survival is a major bottleneck for many marine invertebrates108 and represents a major 
challenge to commercial urchin aquaculture efforts54. Sea urchin larvae must be nutritionally competent in order 
to survive the period between settlement and development of the juvenile gut and Aristotle’s lantern feeding 
apparatus, which are needed for exogenous feeding60,109, 110. The underlying dynamics affecting D. antillarum 
larval settlement and post-settlement survival should be the subject of future research. Even moderate improve-
ments in these areas will drastically improve the feasibility for mass production to meet restoration objectives. 
Further elucidation of settlement dynamics in the laboratory would also provide insight into the factors affect-
ing settlement and recruitment in the wild and could improve our understanding of the limited D. antillarum 
natural recovery.

While the focus of this study involved generating reliable ex situ aquaculture methods for D. antillarum, it 
should be noted that the restocking strategy illustrated in Fig. 1 is only necessary absent natural population recov-
ery to historical abundances. The goal of this strategy is reestablishment of self-sustaining urchin populations 
and associated herbivory. However, the same ecological factors limiting natural recovery will also likely challenge 
future restocking attempts. It is therefore necessary to consider in situ barriers to recovery and how these barri-
ers might impact restocking success. Drastic reductions in fertilization success and low larval supply following 
mass mortality events in 1983 and 1991 are theorized to be one of the major factors limiting recovery in the 
Florida Keys111,112. Enhanced D. antillarum populations could potentially alleviate some of this limitation through 
increased gamete production (genetic concerns discussed above should be considered). Evidence exists, however, 
to suggest that post-settlement limitations are equally important in recovery dynamics. Despite largely recovered 
recruitment rates in Curaçao between 1984 and 2005, only modest increases in adult abundances implied high 
levels of post-settlement mortality113. Likewise, moderate adult densities in Puerto Rico were observed in areas 
with low larval settlement rates112. One possible explanation includes positive density-dependent mechanisms 
whereby juvenile recruitment and survival increases in the presence of adult urchins114,115. Other studies reason 
that habitat complexity is crucially important for mediating D. antillarum distributions due to the availability 
of predation refuge47,116, 117. Ironically, the loss of habitat complexity due to increased macroalgae and decreased 
hard coral cover likely constrains D. antillarum recovery. Negative feedback mechanisms such as this, along with 
reduced settlement habitat due to increased macroalgae cover39, work to stabilize macroalgae states over the 
long-term118. All factors considered, the efficacy of future hatchery restocking is unknown and extensive experi-
mentation is advised. Initial attempts to augment D. antillarum populations in the Florida Keys and Curaçao 
through translocation have highlighted the need to concurrently provide artificial shelter119,120. One population 
recovery model postulated that restocking urchins large enough to escape predation pressure will be a necessary 
initial step towards phase shift reversal121. Tandem restoration with reef-building hard corals should be explored 
as a potential solution to both provide predation refuge for urchins and improve multi-niche survival outcomes.

Reducing macroalgae cover and improving ecological conditions that favor Western-Atlantic and Caribbean 
hard coral recruitment via D. antillarum population enhancement could be a powerful tool to augment exist-
ing reef restoration goals. To date, knowledge gaps and limited research, in part due to a lack of commercial 
interest122, have impeded the ability to reliably culture D. antillarum at scales sufficient to attempt this strategy121. 
The system described here incorporates tractable broodstock management and spawning, a RAS that balances 
requirements of a unique larval biology with the potential for experimental replication and scalable production, 
and a successful larviculture protocol. Further improvements to D. antillarum production within this system will 
necessitate an understanding of unknown bottlenecks causing larval mortality. The absence of observable water 
quality problems suggests that the most important issues facing the described system related to larval nutrition 
and/or disease. Continued culture attempts alongside strategic investigations into improved microalgal diets and 
disease dynamics will be necessary for further improving the viability of production for restoration. Although 
much more work is required before D. antillarum culture for population enhancement becomes a reality, the 
establishment of a balanced system design with reproducible results is an encouraging step forward.
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