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Spatially visualized single-cell pathology of highly
multiplexed protein profiles in health and disease
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Deep molecular profiling of biological tissues is an indicator of health and disease. We used
imaging mass cytometry (IMC) to acquire spatially resolved 20-plex protein data in tissue
sections from normal and chronic tonsillitis cases. We present SpatialViz, a suite of algo-
rithms to explore spatial relationships in multiplexed tissue images by visualizing and
quantifying single-cell granularity and anatomical complexity in diverse multiplexed tissue
imaging data. Single-cell and spatial maps confirmed that CD68+ cells were correlated with
the enhanced Granzyme B expression and CD3+ cells exhibited enrichment of CD4+ phe-
notype in chronic tonsillitis. SpatialViz revealed morphological distributions of cellular
organizations in distinct anatomical areas, spatially resolved single-cell associations across
anatomical categories, and distance maps between the markers. Spatial topographic maps
showed the unique organization of different tissue layers. The spatial reference framework
generated network-based comparisons of multiplex data from healthy and diseased tonsils.
SpatialViz is broadly applicable to multiplexed tissue biology.
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ingle-cell, spatially resolved, multiplexed data provides the

interrelations of individual marker expressions and their

positional interactions for deciphering disease physiology.
However, the data analytics and visualization in multiplexed data
face challenges due to the big data size and biological complexity
in a high-dimensional regulation using the four-dimensional (4D)
information across x-y-z coordinates temporal-axis. Several
computational platforms are emerging, such as InsituNet!:2,
HMRF?, Giotto*, Trendsceek®, and SPARK®, to provide multi-
plexed imaging data analysis tools. These methods compute the
statistics, abundance, relationships among multiple markers,
visualize marker correlations and associations as networks, gra-
phical plots, and statistical representations. InsituNet visualizes
the coexpression between individual transcripts by converting
them into interactive spatial networks. HMRF identifies cellular
subpopulations and overlays cluster information with spatially
preserved maps for single-cell visualization. Giotto is a broadly
applicable tool that enables spatial data visualization from several
multiplexing modalities, including fluorescence in situ hybridi-
zation (FISH), proteomic multiplex imaging, and sequencing?.
SPARK identifies spatially resolved transcriptomics profiles and
provides statistical analyses for the spatial correlations®. Data
reduction analyses using principal component analysis (PCA), t-
distributed stochastic neighbor embedding (t-SNE), and Uniform
Manifold Approximation and Projection (UMAP) methods yield
cellular phenotypes in the multiplexed datasets”-8. While toolsets
are being developed, spatial visualization of protein datasets
necessitates a cross-scale spatial hierarchical analysis to link the
single-cells to tissues’ anatomy.

Deciphering tonsil biology using multiplexed proteomic ima-
ging and emerging data analysis is crucial. Tonsils are part of
mucosa-associated lymphoid tissue, playing a vital role in the
immune system, and generally act as the first-line defense barrier
to inhaled or ingested pathogens. T- and B-cells are the most
predominant cell type in tonsil tissues in coordination with other
immune and epithelial cells. They are primarily located around
the germinal area of the tonsils. B cells help recognize the foreign
antigens through the secreted antibodies and continue to increase
in their density. Among other tonsil origins, palatine tonsils are
located at the rear of the throat (pharynx) as a pair of soft tissue
masses on both ends of the mouth studied in this study®. Given
the immune-rich environment of tonsils, tonsil tissue analysis can
be used to study ample diseases such as digestive tract
infections!?, autoimmune diseases!!, leukemias!2, and respiratory
diseases!3. Thus, tonsil tissues hold a wealth of information about
individuals’ immune profiles and can guide the diagnosis of
distinct disorders to design an appropriate treatment regimen.

Multiple immune markers need to be detected from the same
tissue samples to unleash the inflammatory information pre-
sented in the tonsil. Traditionally, clinicians relied on histological
images that could only visualize a few markers at a time. Multi-
plex imaging modalities overcome this marker limitation. For
instance, imaging mass cytometry (IMC) is an emerging tech-
nology that relies on mass spectrometry and time of flight (TOF)
measurements, wherein antibodies against antigens of interest are
conjugated with isotopes of pure metals. The stained samples are
then ablated by an ultra-violet (UV) laser beam, which results in
aerosol plumes. These plumes later get ionized through plasma
and get directed through argon and helium gas flow to the mass
spectrometer, where the metal tags get analyzed based on their
mass-to-charge ratio and abundance!4. Although this multiplexed
power may be partially obtained by fluorescence cytometry, the
fluorophores used to detect biomarkers of interest have over-
lapping spectra leading to signal spillover between target and
non-target detectors. That necessitates the use of additional signal
processing techniques to correct for fluorophores signals in non-

target detectors, often referred to as spillover compensation.
Signal compensation can be more complicated and often lead to
erroneous results!>16, Besides, multiplexed cell suspension cyto-
metry techniques suffer from their inability to analyze biomarkers
in situ from patients’ samples, resulting in the loss of crucial
spatial single-cell data. Several fluorescence-based multiplexed
techniques were later developed and tested for patients’ archived
FFPE samples, including cyclic immunofluorescence!”. These
methods rely on antibody staining, bleaching, and imaging cycles
that suffer from sample autofluorescence, epitope loss, and
laborious procedures. On the other hand, IMC detects the
abundance of metal isotopes conjugated to antibodies against
multiple biomarkers. These lanthanide isotopes are rare elements
that would not be found in biological samples, resulting in high
signal specificity!8. The signal is further amplified by polymeric
metal-chelating reagents, allowing a range of proteins to be
detected. Preserving in situ cell-cell interaction and tumor
microenvironments, IMC relates the metal isotope abundance to
their pixel location, providing images of multiple proteins
simultaneously in archived patients samples at subcellular reso-
lution (1-pm)!8-20,

IMC is widely used in many applications, including drug
testing and tumor studies. IMC was previously used to investigate
the potential benefit of the chemotherapeutic agents on three
different cancer types. A multiplex antibody panel was designed
to target several proteins associated with common cancer onco-
proteins and additional markers to detect T-cell infiltration
(CD8) and the epithelial organization (Beta-catenin and Pan-
cytokeratin)?!. Further, IMC was used to analyze more than 15
proteins associated with different stages of multiple sclerosis
(MS), identifying a unique subset of T-cell phenotypes associated
with different MS stages?2. Besides, IMC was used to decipher the
breast cancer tumors using a panel of 35 biomarkers associated
with breast cancer subtypes, grades, signaling, oncogenes, and
epigenetics. Remarkably, different breast cancer subtypes with
unique cellular phenotypes were strongly correlated with
survival!®. IMC revealed mRNA-to-protein associations at the
subcellular level in breast cancer patient samples23, RNA probes
and their encoding protein antibodies were conjugated to dif-
ferent metal isotopes to study their correlation at the population
level. This growing body of discoveries highlights the importance
of IMC technology to reveal interdependencies among cell types
and provide spatial maps for multiple subcellular resolution
parameters.

Motivated by these studies, we used IMC to profile the tonsil
tissues using a 20-plex antibody panel designed to detect immune
cells, epithelial cells, extracellular matrix, and functional sig-
natures. This antibody panel was used to stain two types of tonsil
samples that include three tissue sections from a disease-free
subject and three tissue sections from a patient diagnosed
with chronic tonsillitis. The resulting data yielded the coexpres-
sion profiles of immune markers in health and disease. These
datasets provided testbeds for the development of spatial
visualization tools.

Here we present SpatialViz, a series of computational analysis
methods that combine two data analytics methods to bridge the
gap between the top-down anatomical architecture and the
bottom-up cellular assembly. The bottom-up approach relied on
the segmentation of single-cells, followed by phenotypic cluster-
ing and correlation analysis. This pipeline highlighted the biolo-
gical significance of correlations among the markers in the
multiplexed protein panel. The bottom-up approach was further
supplemented by the top-down approach used to cluster the
multiplex images at the pixel level and define their corresponding
anatomical structure. This approach provided single-cell enrich-
ment maps for each marker at distinct anatomical regions along

2 COMMUNICATIONS BIOLOGY | (2021)4:632 | https://doi.org/10.1038/s42003-021-02166-2 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02166-2

ARTICLE

with their morphological distributions. Unique sets of markers
expressed in a subpopulation of cells were spatially associated
with the network analysis of anatomical clusters. Spatial proxi-
mity maps were used to identify the distance as a metric between
the cells expressing specific pairs of markers. Spatial topography
maps were used to visualize the layering of marker enrichments
across tonsil tissues. The spatial reference approach was then used
to compare the multiplexed protein datasets from healthy and
diseased samples on a single network map using landmark and
moving nodes with expression levels and inter-marker distance
statistics. Spatial visualization of multiplexed protein images
provides a general framework that can be applied to quantify and
monitor cellular changes for a wide range of tissues in health and
disease.

Results

Single-cell quantification of immune-epithelial landscape
alterations. The acquired IMC data was first analyzed by the
bottom-up approach, where a standard data analysis pipeline was
used in Cell Profiler?* and HistoCAT?? (Fig. 1a, b). First, the raw
data in the MathCad document (MCD) format was processed
using the MCD Viewer to extract the data from all regions of
interest (ROIs) as a separate MCD file, followed by exporting the
data to individual TIFF images for each marker. These marker
images were then segmented by the CellProfiler software to
identify single-cell positions and expression levels. After gen-
erating the cell segmentation mask, the original images and their
segmentation masks were imported into the HistoCAT to create
cell phenotype clusters, cell-to-cell correlations, and t-SNE
maps.2® For example, a tissue image from chronic tonsillitis
was shown in multiple synthetic colors. The E-cadherin, high-
Granzyme B (GrB) crypt region, and intercalator-high nuclear
boundaries were highlighted in red, green, and blue colors,
respectively (Fig. 1¢c). These three markers were also segmented to
highlight cell boundaries for cytoplasm and nucleus (Fig. 1d).
Eight out of twenty markers in the multiplexed panel were
uniquely grouped on t-SNE clusters with distinct colors in healthy
and diseased samples, yielding significant changes for GrB,
Vimentin, and CD68 (Fig. le).

The resultant markers’ clusters showed cell distributions’
heterogeneity in normal and diseased tonsil tissues (Fig. 2a, b,
and Supplementary Fig. 1a, b). DT1 showed 21, DT2 exhibited 22,
and DT3 revealed 26 clusters based on the unsupervised
clustering performed on HistoCAT. Each of these clusters
corresponds to a different phenotype in the tissue section based
on several markers’ coexpression. The heatmap distribution
summarized the clusters and the level of expression of its
constituting markers. Cluster 7, 20, and 11 of DT1, DT2, and DT3
demonstrated the coexpression of GrB and CD68, respectively.
Therefore, we analyzed their coexpression at the single-cell level
and found out that they were highly co-expressed at several
regions of the ROIs (Fig. 2d and Supplementary Fig. 2c-d). The
correlation analysis showed that the majority of diseased ROIs
showed a strong correlation between GrB and CD68 with R
values 0.34, 0.57, and 0.64 for DT1, DT2, and DT3, respectively
(Fig. 2d and Supplementary Fig. 2c-d). Furthermore, coexpres-
sion of CD3, CD4, and CD8a markers was observed in all
diseased ROIs (Fig. 2f and Supplementary Fig. 3c-d).

On the other hand, the clustering in normal ROIs showed
significant differences (Fig. 2a and Supplementary Fig. 1a). NT1,
NT2, and NT3 showed 23, 25, and 22 different clusters from the
three normal ROIs, respectively. This clustering was demon-
strated on the heatmap for the distribution of all markers. GrB
was co-expressed with CD68 in clusters 21, 18, and 18 for NT1,
NT2, and NT3, similar to the diseased ROIs. However, the level of

CD68 expression was significantly lower than that of the diseased
ROIs. Thus, we performed a similar analysis to investigate the
differential correlation between CD68 and GrB in the healthy and
diseased tonsil. The coexpression and correlation level were
significantly lower in all NTs, as indicated by all the R values of
0.20, 0.24, and 0.19 for NT1, NT2, NT3, respectively (Fig. 2c and
Supplementary Fig. 2a-b). The visual representation of the
coexpression of CD3, CD4, CD8a markers in the original images
of the normal ROIs (Fig. 2e and Supplementary Fig. 3a) and their
correlation (Fig. 2e and Supplementary Fig. 3b) showed that most
of the CD3+- cells are CD8a+- cells in contrast to the finding from
the diseased tonsil tissues.

By quantifying the single-cell data, intensity levels exhibited
fewer variations in normal compared to diseased tissues. Overall,
the intensity analysis in the box plots showed large variations in
the dataset (Supplementary Data 1). The intensity distribution
demonstrated wide expression levels for all markers, which could
be attributed to the heterogeneity in the tissue samples’
phenotype composition. CD20, CD68, and GrB showed higher
staining intensity in the diseased tonsil than the normal tonsil
(Fig. 2g). Furthermore, the percentage count was defined as the
total number of cells expressing a certain marker divided by the
total number of cells expressing at least one marker. Pankeratin,
CD68, and GrB showed a higher percentage count in the diseased
condition than the normal baseline condition (Fig. 2h). The trend
of the CD68 and GrB markers distribution matched our
expectations because inflammation and induced apoptosis
showed elevated expression levels in the case of diseased tonsils.
Pankeratin was increased with the disease condition due to the
accumulation of crypt regions. These biological observations
could also be dependent on the tissue condition (preservation
conditions and storage period), the donors’ conditions (age,
gender, and physical status), and the selection of ROIs.

GrB is part of the granzymes family secreted and stored in the
cytotoxic granules of the cytotoxic lymphocytes. GrB is
predominantly expressed by cytotoxic lymphocytes and natural
killer (NK) cells. At the same time, it can also be detected in the
non-immune cell types, including smooth muscle cells, keratino-
cytes, and chondrocytes. Other immune cells express GrB in pro-
inflammatory conditions, including CD4+ cells, activated
macrophages, mast cells, neutrophils, and basophils?”-28. Mono-
cytes target antibody-coated pathogens through antibody-
dependent cell-mediated cytotoxicity (ADCC) mechanism pri-
marily regulated by GrB expression to induce cell death?®. Thus,
the observed link between monocytes and GrB in our dataset can
be used as a differentiator of health and disease. We used CD68 as
a macrophage marker because it has classically been used to
identify macrophages as a prognostic marker for cancer
progression?’. As previously noted, we observed a higher
correlation between CD68 and GrB in the diseased ROIs than
in the healthy tissue’s ROIs. On a separate note, CD4+ cells are
the central regulators of immune responses such that they can
differentiate into specialized effector cells once they get activated
by pathogen exposure. For example, CD4+ cells have a central
control in autoimmune disorders such as rheumatoid arthritis
and are present more predominantly than CD8a+ cells?®. Our
data support these findings as most of the CD3+ cells are also
CD4+- cells in the diseased condition.

Furthermore, the Forkhead Box Transcription Factor P3
(FOXP3) and CD4 markers showed a strong correlation in the
case of the normal and the diseased ROIs, indicative of regulatory
T (Treg) cells (Supplementary Fig. 4). FoxP3+ cells are a subset of
CD4+ cells because the generation of T cells with a suppressor
function (FOXP3+ cells) occurs when dendritic cells fail to
activate the CD4+ cells’?. FOXP3 is an established marker to
identify Treg cells; however, other markers are also commonly
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Fig. 1 The immune-epithelial landscape of healthy tonsil and chronic tonsillitis. a Tissue samples were obtained from healthy and diseased tonsils
(chronic tonsillitis) in 5-um-thick formalin-fixed, paraffin-embedded samples. b The thin tissue sections were then stained with metal-conjugated
antibodies and get ablated from the tissue's surface through the argon plasma and analyzed by the time of flight mass spectrometer. ¢ Individual marker
images can be assembled and visualized using different colors to observe the marker's coexpression and spatial organization. d Cells were segmented
using CellProfiler software for single-cell quantification. e Single-cell analyses provide the marker expression distributions, including phenotype clustering
based on the coexpression of markers. Phenographs of all normal and diseased ROls show the different phenotypes that make up the sample to n = 25-27
groups. Immune and stromal markers were selected to cluster the entire dataset of the normal and diseased tonsil. The markers list includes CD20, CD68,
CD3, CD4, CD8a, granzyme B, pankeratin, and E-cadherin. Created in Biorender.com.

used to identify them, including CD25, CTLA-4/CD152, CD27,
0X40, CD62L, CD39, and CD4431-34 Thus, we analyzed both
FOXP3 and CD44 expressions in our dataset concerning the CD4
marker (Supplementary Fig. 5). FOXP3 was co-expressed with
CD#4 in several clusters both in the normal and the diseased tonsil
samples (Supplementary Figs. 1a-b). We conducted a correlation
analysis between both FOXP3 and CD4 and CD44 and CD4.
Although both pairs (CD4 and FOXP3; CD4 and CD44) showed

a significant correlation, our dataset yielded no substantial change
in the normal and diseased tonsil datasets (Supplementary Fig. 6).
Using CD44 and FOXP3, Treg cells exhibited higher expression
in normal conditions than the diseased conditions, agreeing well
with the observation that Treg cells can suppress the immune
response (Supplementary Fig. 6).

Besides, Treg cells may exhibit a memory phenotype and
express CD45R03°. Correlations between CD44 and CD45RO
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and FOXP3 and CD45RO were computed to assess Treg cells
phenotype (Supplementary Fig. 7). Supporting prior findings,
CD44 and CD45RO exhibited a strong correlation in the
heatmaps by cluster 17 and cluster 26 (Supplementary Fig. 1b
DT2 and DT3) and cluster 1 and cluster 3 (Supplementary Fig. 1a
NT1 and NT2)3!. Correlation analysis on the single-cell
expression levels of CD44 and CD45RO demonstrated a strong

arker

correlation between the two markers in the diseased and the
normal tonsil (Supplementary Fig. 7). Finally, the correlation
analysis between CD44 and FOXP3 was weaker than the CD44
and CD45RO (Supplementary Figs. 6, 7).

PD-1 and PD-L1 expressions were weak in our data, but PD-1
showed a detectable expression at the germinal center (Supplemen-
tary Fig. 8). Prior reports observed PD-1 and PD-L1 expression in
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Fig. 2 Immune cells are altered in chronic tonsillitis when compared to healthy tonsils. a, b Phenograph and heatmap show the different clusters’
distributions in the normal and diseased tonsil datasets. ¢ Visual representation and the correlation analysis between Granzyme B and CD68 in one normal
tonsil ROI. The correlation between granzyme B and CD68 was found to have Pearson’s correlation coefficient of R = 0.24448 for normal tonsil (n=
56,421 cells) and R =0.57199 for diseased tonsil (n =56,421 cells). R values calculate the z-score through the Fisher Z-Transformation, resulting in a
p-value < 0.001 (***) indicating a significant statistical difference between them. d Visuals and the correlation plot between Granzyme B and CD68 in one
diseased tonsil ROl are shown. e Pictures and the correlation graph between CD4, CD8a, and CD3 in one normal tonsil ROl are presented. f Images and the
correlation analysis between CD4, CD8a, and CD3 in one diseased tonsil ROl are demonstrated. g Box plot indicates the intensity distribution for all
markers in the dataset for normal (blue) and diseased (red) tonsil at the single-cell level (n = 446,123 cells). The difference in the box plot had a significant
p-value < 0.001 (***) by the Kolmogorov-Smirnov statistic (two-sided). The first box covers the central 50%, and the second box extends from the first to
cover half of the remaining area (75% overall, 12.5% leftover on each end). The third box covers the remaining area (87.5% overall, 6.25% left on each
end). This procedure is repeated until the leftover points are marked as outliers. h Box plot demonstrates the percentage count for all markers in the
dataset for normal (blue) and diseased (red) tonsil. Box plots show median first and third quartile, minimum and maximum (excluding outliers).

the tonsil and other lymphoid tissues, including the thymus and the
spleen3%37. For example, PD-1 was preferentially present at the
tonsils’ germinal center and exhibited coexpression with the CD3
marker mostly by the germinal center-associated T cells>®. The
observed weak PD-1 staining could be attributed to the PD-1 and
PD-L1 antibodies’ clonal specificity and the tissue type3’.

Finally, the CD20 marker for B cells was expressed around the
germinal center3®. CD20 is an established marker that reveals
several B cells in the tonsil tissue that can also secrete antibodies.
CD3 coexisted with CD20 in the same cluster 16 in DT2 and
cluster 26 in DT3 (Supplementary Fig. 1a-b). This coexpression of
CD20 and CD3 was only present in the case of diseased tonsils
that may be attributed to CD3+ cells activating antigen-specific
naive B-cells in the germinal centers in response to infectionss.
Finally, pankeratin was observed to be co-expressed with E-
cadherin (Supplementary Fig. la-b). Pankeratin serves as a
marker for the surface epithelial layer of the tonsil tissue3. In our
dataset, the surface epithelial layer also shared a strong
coexpression pattern of E-cadherin. These findings show the
alterations of immune and epithelial landscape in the multiplex
tissue images from healthy and diseased subjects. Such quanti-
tative cellular profiling sheds light on single-cell differences using
the bottom-up approach of cellular distributions.

SpatialViz anatomy of highly multiplex tissue data. Specific
marker expression levels from different tonsil conditions exhib-
ited heterogeneity at the single-cell level based on where they are
located on tissue specimens as the anatomical features (Supple-
mentary Fig. 9). A 20-plex multiplexed data was clustered at the
pixel level by an unsupervised k-means method to generate six
unique spatial patterns across the tissue that may be used as an
indicator of anatomical similarity in tissues (Fig. 3a). The top-
down strategy provided the spatial regions demonstrating unique
morphological shapes and cellular compositions. The enrichment
of a specific cell type in one of these six spatial anatomical regions
is a key metric for determining structural tissue compositions.
Thus, we defined an “area ratio” calculated by the area of a single
marker’s expression divided by the entire image area using the
summation of pixel number distributions. The area ratio was
between 0 and 1 displayed on a grayscale marker mask. Using this
spatially resolved anatomical definition, the evidence of enrich-
ment of both CD68 and GrB marker expressions in the diseased
tissues was recapitulated, as the area ratios for CD68 and GrB
were higher in datasets from diseased tonsil compared to normal
tonsil (Fig. 3b, ¢ and Supplementary Figs. 10-11). The high
morphological overlapping regions also agreed well with the
spatial correlation of GrB and CD68 in normal and diseased
tonsils (Supplementary Fig. 12). Another cell density measure of
Histone3 exhibited an area ratio comparable between healthy and
disease tonsil images (Fig. 3d and e). Apart from areas, the spatial
classification method included DNA1, DNA2, and Histone3

markers in one of the clusters, while CD3, CD4, and CD8a were
grouped in another cluster (Supplementary Fig. 13a-b). In brief,
SpatialViz groups marker images into distinct clusters based on
the similarity in marked region spread, region shape, and pixel
intensity. Each cluster represents a unique colored mean image
calculated from all markers in that cluster and then combined in
one averaged image that showed the unique anatomical traits
from each cluster (Supplementary Figs. 13-14).

SpatialViz visualizes tissue anatomical representations by a
network graph (Fig. 4a). To dissect single-cell distributions in
each of these anatomical classes, we calculated individual cells’
spatial data from the top-down analysis using segmentation data
from the previous section to integrate the cellular coordinates
with anatomical clusters. The relative distances among the single-
cell positions in each anatomical cluster were mapped as a
spatially visualized intra-clustering method. The intra-cluster
distance visualizes only inside each cluster and measures the k-
nearest neighbors (k-NN) distance across a ten-cell radius
between each pair of markers (Fig. 4a). Besides, relative cell-to-
cell separations from one anatomical group to another were
referred to as inter-cluster spatial maps. Inter-cluster distance
refers to the average k-NN distance of cells between two distinct
clusters by taking all possible pairs of markers from the two
clusters. The edge color represented the normalized distance, with
red being relatively close and blue distant. The size of the node
indicated the average area ratio in the cluster or for a marker.
While markers exhibited significant similarity within-cluster
grouping in a specific dataset, inter, and intra-cluster spatial
organization differed between tonsil datasets (Figs. 4b and 5).
Obvious marker grouping was consistent across datasets (DNAI,
DNA2, and Histone3) with close spatial connectivity. The spatial
distance network map showed high variance due to the
differences in different tissue images’ organization.

Of note, our anatomical spatial networks are different than those
in InsituNet!, as the current datasets are protein images compared
to the in situ transcript images used in that platform. In the
InsituNet pipeline, the network representation models the number
of transcript detections (for node size) and the transcript’s
coexpression (for edge size). However, it lacks the single-cell
locations and spatial data not included in the coexpression for edge
representation. Thus, SpatialViz is a different approach that
performs spatial anatomy network visualization of marker
expression by analyzing both the single-cell level data and tissues’
anatomy. The SpatialViz network model also leverages the k-NN
distance between marker-specific cells and also the marker
expression area.

SpatialViz proximity map of nearest neighborhoods in tissue
marker pairs. While prior single-cell studies have focused on
colocalization as a measure at the same pixel location of cell
comparisons, SpatialViz computes the relative distances between
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Fig. 3 CD68 cells and Granzyme B marker coexpression and large morphological shared presence in chronic tonsillitis. a Schematics of the definition of
anatomical regions based on multiplexed marker data are presented. Created in Biorender.com. b Morphological analysis of area ratios of DNA1, CD4, H3,
CD68, Granzyme B, and E-cadherin markers in normal tonsil tissues is demonstrated. The scale bar is 200 um. ¢ Morphological coverage of the same

subset of markers in diseased tonsil tissues is shown. d Bar plots for area ratios of Histone3, CD68, and Granzyme B markers in three normal tonsils (NT)
and three diseased tonsils (DT) datasets are plotted. e Box plots of the mean area ratio of Histone3, CD68, and Granzyme B markers that were averaged
from three sets of NT and DT data. Box plots show median first and third quartile, minimum, and maximum (excluding outliers).
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Fig. 4 Inter-cluster distances across anatomical classes were represented as spatial network maps of single-cell positions and expression levels.

a Schematic representation of intra-cluster and inter-cluster models among the single-cell locations is presented. Unsupervised clustering was performed
on multiplexed IMC data to define anatomical regions. Spatial network visualization plots of marker pairs from intra-cluster (denoted with orange arrow)
and inter-cluster (indicated with blue arrow) using relative distances between single-cell positions for each marker (scale bar 500 pm) are shown. Created
in Biorender.com. b Inter-cluster distances provide spatial network maps of single-cell pairs across anatomical clusters computed for normal and disease
tonsil datasets. Red edges between network nodes show short average distances, whereas blue ones demonstrate relatively distant average measurements

(scale bar 500 pm).

the cells that express unique marker pairs. To visualize the pixel
distances between a pair of markers, we plotted a “spatial
proximity map” of the nearest neighbor cells for pairs of tissue
markers and their original spatial positions (Fig. 6a, b). In this
visualization, each cell from the first marker was connected to the
nearest neighbor’s cell from the pair’s second marker. Therefore,
if two markers were highly correlated spatially, then the average
distance was smaller on the map. On the other hand, if two

markers were distant, the mean distance was larger in the spatial
proximity analysis. The green and magenta colors showed the
cells from distinct markers, and the blue line connected each cell
from the first marker to its nearest neighbor cell in the second
marker. The histogram on the bottom of each spatial proximity
map denoted the distribution of the closest distances. A heatmap
representation of these distances average provided both the spa-
tial proximity and the density between markers (Fig. 6¢ and
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Fig. 5 Intra-cluster distance maps of markers that are expressed in single-cells from each anatomical cluster. Intra-cluster average spatial distance
network maps are presented for single-cells from multiplexed markers inside anatomical clusters for each multiplexed image pair in healthy and diseased
tonsils. The number of markers is 19-22. The color of nodes represents the corresponding cluster of the marker images. Here, only markers within the same
cluster determined by anatomical clustering are linked. The red edges between network nodes show short average distances, while blue ones indicate
relatively distant marker pairs (scale bar 500 um).
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Fig. 6 Spatial proximity maps of cell-pairs within a k-nearest neighbor (k-NN) distance in healthy and disease tonsil tonsils. a, b Spatial proximity maps
of cell-pairs within k-NN of 5-cell radius distance in healthy and diseased tonsils are visualized. Magenta and green color represent individual cells in the
pair of markers (Granzyme B/CD68 and Pankeratin/E-cadherin), wherein the blue is the distance vector between the marker pairs for each cell. The scale
bar is 200 um. The histogram shows the distance distribution for each pair of markers, with the y-axis showing the proportion corresponding to the

distance on the x-axis. The x-axis is distributed in 20 bins of data. ¢ Heatmap representations of the average spatial proximity distances between the pairs

of all the markers in the multiplexed IMC data are shown.

Supplementary Figs. 15-16). This approach of taking the top
nearest neighbor’s distances yielded the visualization of spatial
proximity between markers in an unbiased manner, whereas
calculating the pairwise distance of all cells would be biased by the

region area and density of a marker. CD3 and CD4 markers
demonstrated high spatial proximity and GrB and CD68 markers
for both disease and healthy tonsil datasets (Fig. 6 and Supple-
mentary Figs. 17-19).
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SpatialViz topographic map of tissue layers. Tissues typically
exhibit multiple cell layers that are wrapped around distinct
anatomical features. Visualization and quantification of “layering”
in the multiplexed data can be informative of tissue architecture
that may alter its shape and structure during disease formation. In
our tonsil data, around the crypt region of tissues from diseased
tonsil specimens, cell-surface antigen marker CD44 exhibited
layering formation in both basal, parabasal, and middle layers of
the surface and crypt epithelium3®. While the THC analysis
showed the presence of CD44 as the basal part of the epithelial
layers in previous reports, it would have been challenging to
visualize the “layering” of the crypt and epithelial regions without
the multiplexed protein images. To address this issue, we pre-
sented a combination of two-dimensional (2D) spatial topo-
graphic and three-dimensional (3D) surface visualization of
CD44 positive cells in the form of layered tissue anatomy that was
mostly observed in the diseased tonsils but not in normal tonsils
(Fig. 7). The topographic plot is classically used for representing
geographic layers accurately on a two-dimensional surface using
latitudes and longitudes. Akin to this spatial layering graph,
visualization of CD44 marker expression levels using a topo-
graphic map provided an accurate representation of expression
levels as contour plots of 2D images and 3D surface visualization
for interactive or animated visualization (Supplementary
Movies 1-4).

The 2D intensity plot showed three marker expressions that
included CD44 (blue), Pankeratin (red), and GrB (green) (Fig. 7a).
In diseased tonsil cases, the crypt region coexisted with the GrB
marker. The crypt region border was surrounded by a pankeratin
marker that separated the surface epithelia from the crypt region.
Around the crypt and epithelial layers, CD44 exhibited a distinct
layering near the crypt border, whereas CD44 lacked layering in
the normal tonsil. The 2D topography plot indicated the layered
CD44 marker distributions in the form of contours (Fig. 7b). The
3D topography plot demonstrated the CD44 marker expression
level in a 3D layering graph (Fig. 7c). The average distance
between the peak of pankeratin and CD44 markers in the DT2
tonsil was 126-pym, and in the DT3 tonsil was 228-um.
Topographic visuals preserve relative physical distances in 2D/
3D representations, and they may experience esthetic variations
due to the depth perception.

SpatialViz reference for multiple tissue organization groups.
One common issue in spatial data analytics is that comparisons
across imaging data may be complicated due to the diversity of
image heterogeneity. Conventionally, colocalization of markers,
the density differences of cells, and differential expression analysis
are used to compare multiple spatial maps arising from health
and disease conditions using the same marker data. However, a
single statistical representation to visualize the differences of
spatial complexity in multiplexed datasets would be needed to
quantify the differences in tissues from healthy and diseased
subjects. To generate a common visual representation for a wide
range of spatial tissue architectures, we defined spatial statistical
analysis of marker expressions and single-cell positions of the
tissue data in a “fixed-node” as part of a spatial reference fra-
mework map (Fig. 8a). While a fixed-node landmark network
map exists?0, it is limited to analyzing cell population similarity
and understanding of cell organization by comparing correlation
with known cell phenotypes. For instance, the Scaffold framework
provided comparisons of cell structures from different mass
cytometry datasets in a graphical representation by analyzing
their protein expressions’ similarity without any spatial inference.
Thus, SpatialViz presented a fixed-node spatial reference frame-
work based on the anatomical characteristic of marker

expressions of multiplexed images to generate reference maps for
comparisons across healthy and disease datasets.

The spatial reference maps modeled the distance between cells
in pairs of markers and each maker’s area ratio from multiplex
tissue images. The edges between nodes showed the average
distance between markers, while the nodes’ size represented the
area ratio of a specific marker. We compared the markers’ spatial
organization in normal and disease tonsil datasets by fixing
common markers (DNA1, DNA2, Histone3, CD3, CD4, CD8a,
CD20) and let other marker nodes position themselves using
force-directed graph algorithm*!. DNA1, DNA2, and Histone3
nodes have the biggest size across all datasets because of the high
area ratio, while GrB and CD68 nodes diameter is larger in
disease tonsil than normal tonsil. The edges between CD68,
Vimentin, and GrB in disease tonsil also suggest a higher spatial
correlation than normal tonsil. These findings correlated with the
SpatialViz Anatomy analysis that was shown previously.

Quantification across tissue datasets for marker expression
level and cell prevalence area per marker (Fig. 8b) showed
consistency in both expression level (circle color) and cell
prevalence area (circle area) for healthy and diseased tonsils.
Pairwise marker cell distance and a fraction of length <30 um
(Fig. 8¢ and Supplementary Fig. 20) exhibited higher values for
Granzyme B and CD68 in diseased tonsils than healthy tonsils.
Clustering of three healthy and three diseased tonsil datasets
provided noticeable differences in markers’ expression level and
markers’ cell prevalence area. The mean value of pairwise analysis
yielded different cell-to-cell distances and spatial proximity
within a fraction of length inferior to 30-um separation in
healthy and disease tonsil data (Supplementary Fig. 21).

Discussion

SpatialViz uniquely combines the bottom-up and top-down data
analyses to decipher the anatomical characteristics such as dis-
tinct tissue regions and region-dependent single-cell distributions
(Supplementary Fig. 22). The intra-cluster and the inter-cluster
analysis revealed the heterogeneity and tissue-scale variance of
cellular distributions in tonsil tissues from healthy and diseased
subjects. Consistently, the biological finding of GrB and CD86
coexpression was observed in diseased tonsils compared to
healthy tonsils. The corresponding spatial proximity maps
revealed the relative distances of these two markers with a small
average separation measurement and significant spatially resolved
shared network maps between the two markers. Diseased tonsils
contained large crypt regions on the outer surface epithelium that
separates epithelial cells and other immune cell types®®. The crypt
region’s presence depended on the image dataset as it was not
always present in diseased tonsils (Supplementary Fig. 14). This
observation is akin to normal tissues found in tumor biopsies,
wherein local regions might have more infection presence than
other parts of the tissue. In this SpatialViz analysis, we separated
the crypt phenotypes from those without significant crypt for-
mation in the tissue regions. In diseased tonsils that contain the
crypt region, the CD44 marker exhibited high expression around
the surface epithelium surrounded by pankeratin marker dis-
tributions. At the same time, GrB was highly expressed in the
crypt region. On the other hand, the CD44 marker high expres-
sion area was more randomly spread without obvious layering
when crypt regions were not present.

The SpatialViz toolkit proposed in this paper visualized the
high-dimensional multiplex imaging data for the anatomical
characteristics and spatial relationships among multiple markers.
While the presented results were primarily demonstrated to study
tonsil biology, these spatial visualization methods can be applied
to tumor tissues. The same analysis clusters anatomical regions
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- CD44 - Pankeratin - Granzyme B Surface epithelium

Fig. 7 Spatial topographic map for two-dimensional (2D) and three-dimensional (3D) visualization of CD44, Pankeratin, and Granzyme B layering in
diseased and healthy tonsil tissues. a 2D intensity plot of overlaid CD44 (blue), Pankeratin (red), Granzyme B (green) markers is shown. The scale bar is
200 um. b 2D topography plot of density maps of markers in the form of contours is presented. The light blue dashed lines denoted the surface epithelial
boundary and the crypt region in the disease tonsil. The scale bar is 200 um. € 3D topography plot of the same three markers is shown. Distinct 3D areas
with high CD44 and Pankeratin expressions were layered concerning each other's spatial distribution in diseased tonsils, whereas CD44 enrichment was

more randomly distributed in normal tonsils. The scale bar is 200 um.

based on various multiplexed marker expressions and their
dominant spatial enrichments in distinct tissue regions, providing
the hierarchy of single-cell to anatomy relationships in cancer
biopsies. With the addition of patient information, disease stage,
and type, SpatialViz can design more personalized treatments
using complementary deep learning-based analysis pipelines.

Methods

Tonsil tissue preparation and isotope-conjugated antibody labeling. Normal
tonsil and diseased formalin-fixed paraffin-embedded (FFPE) blocks were pur-
chased from a third-party vendor (Biomax US with tissue IDs 1052993.7 and
1051869.3). The FFPE tissue blocks were then cut into serial sections at a thickness
of 5-um and mounted on Superfrost™ Plus Gold Slides (Catalog number:
FT4981GLPLUS, ThermoFisher). Three serial tissue slices from each condition
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(healthy and diseased) were used for this study. To prepare the sample for labeling
and image, they were first deparaffinized by xylene immersion and rehydrated by
sequential immersion steps in descending ethanol concentrations (100, 95, 80, 70,
and 50%) and a final wash step in deionized water. The tissue slides were then

immersed in a basic target retrieval solution with pH =9 (Catalog number: 52367,
Agilent Dako) as per Fluidigm recommendation and left in a pressure cooker on
the high-pressure setting (20 min) to achieve the heat-induced epitope retrieval

(HIER) process. After the HIER process, the samples were left in the target retrieval
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solution for additional 20 min at room temperature. The samples were then dried,
and a PAP pen was used to draw a hydrophobic barrier around the specimen on
the slide. After this step, a serum-free, ready-to-use protein blocking buffer (Cat-
alog number: X090930-2, Agilent Dako) was applied to the sample for 30 min at
room temperature. After three washes of Maxpar PBS (Catalog number: 201058,
Fluidigm), the tonsil tissues were then stained with a metal-conjugated antibody
cocktail mix for immune markers overnight (4 °C) following Fluidigm labeling

protocol (Supplementary Table 1). The tissue slides were then washed with Maxpar
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Fig. 8 Spatial reference framework of multiplied markers in single-cells of pathological clusters in healthy tonsil and chronic tonsillitis cases. a The
spatial reference framework shows the highest five k-nearest neighbor (k-NN) distances for each marker. The pink nodes represent fixed reference
landmark markers, whereas blue nodes denote position-free markers, providing a reference of marker alterations from health to disease across tonsil tissue
biology. The colors of the edge between the nodes represent the relative nearest neighbor distance among markers for individual cells. b Dot plot
representations of marker expression levels and cell prevalence areas across three normal datasets and three disease datasets are shown. The circle area
represents the cell prevalence area of a specific marker, and the colormap represents the normalized expression level. ¢ Dot plot represents the mean value
of pairwise marker sets of cell-to-cell distances and fraction of length inferior to 30 um across three normal tonsil datasets and three diseased tonsil
datasets. The circle area represents the fraction of measurement within 30 pm of a specific marker, and the colormap indicates the mean cell-to-cell

distance.

PBS (three times), and the nuclear staining was performed using an Iridium-
conjugated intercalator (Catalog number 2011924, Fluidigm) for 30 min at room
temperature. Finally, slides were washed with three changes of Maxpar PBS and left
to dry overnight.

Imaging and analysis of tonsil tissues. Three sections from the normal tonsil
FFPE block and three additional sections from the diseased tonsil FFPE block were
used for this experiment. These samples were first imaged using the bright field
imaging setting on the Keyence microscope (BZX 810) to mark the ROIs that
were used to reference the IMC signal acquisition. Two different ROIs were chosen
from each section. Thus, we had six different ROIs from each condition with the
size of 2500 pm x 2500 pm, adding up to a total of 12 ROIs from both healthy and
diseased tonsils. Fluidigm’s Hyperion imaging system was used to retrieve signals
from 18 mass channels associated with biomarkers of interest in addition to two
nuclear channels (Supplementary Tables 2-3). After the Hyperion system is done
with imaging the chosen areas, it automatically saves the data corresponding to
each ROI as a separate MathCad file. These files were first analyzed on the MCD
Viewer software (v1.0.560.6) and exported as OME-TIFF 16-bit file format (Sup-
plementary data 1). Each ROI would have 20 different OME-TIFF files, each
corresponding to a different mass-channel and its conjugated protein. After a series
of optimizations, cellular segmentation masks and single-cell protein expression
data were generated using the Cellprofiler (4.0.7) data analysis pipeline as
recommended by Fluidigm. All ROIs with their corresponding OME-TIFF files
were first imported into CellProfiler. The Metadata function was used to divide the
images based on their ROI number, isotope name, and sample name. Then, the
NamesAndTypes function was used to match the isotopes’ names to their con-
jugated antibodies and proteins. The “groups” function was used to group indi-
vidual OME-TIFF images based on their corresponding ROL Finally, the data
analysis pipeline was applied to each ROI file separately.

Data analysis pipeline was generated by adding different CellProfiler modules.
In the image processing library, the “ImageMath” module was added and applied
to DNA signals from '°!Ir and 1%Ir. This function multiplied the nuclear signal by
ten to make the process of nucleus segmentation more efficient. The nucleus signal
was then segmented and added using the “IdentifyPrimaryObjects” module in the
object processing library pipeline. After a few iterations, the nuclei diameter range
was set to be 5-20 pixels. Cell membrane boundaries were segmented using the
“IdentifySecondaryObjects” module by expanding the primary objects’ pixel size by
three. Single-cell protein expression data were extracted from the
“MeasureObjectIntensity” module in the measurement library. This data was
exported to a spreadsheet in the file format.csv by the module
“ExportToSpreadsheet” from the data tools library. Finally, cell masks were
generated for later downstream processing using the “ConvertObjectsToImage”
module from the object processing library such that each ROI had a separate cell
segmentation mask. Finally, ROIs in the form of OME-TIFF data were extracted
from MCD Viewer alongside their cell mask generated by CellProlifer were all
imported to HistoCAT to analyze correlation and cellular compositions of the
tonsil tissue in health and disease state at the subcellular level.

Pixel-level image clustering using K-means. Marker images were clustered in an
unsupervised manner using the K-means algorithm on each IMC image’s grayscale
pixel level. K-means clustering was performed using the Scikit-Learn package
cluster K-Means in Python with default parameters. From each marker image
(2500 x 2500 pixels), we extracted the expression binary mask representing the
anatomical region. The binary mask is defined as binary thresholding with a
threshold of 60 that was determined experimentally. Each marker mask was then
flattened to a single vector (matrix size: 6375000) and stacked together. The
resulting matrix (22 x 6375000) is used for K-means clustering using the Scikit-
Learn package in Python with default parameters (n_initial = 10, max-
imum_iterations = 300, tolerance = le—4). The K values were chosen from
empirical results, given the better separation of images.

Combined cluster representation plot. Each cluster marker image was processed
using the anatomical clusters’ mean values to visualize that marker. Each cluster
image is scaled to the 2nd and 98th percentile intensity value and assigned with a
unique color using the “gist_rainbow” colormap from the Matplotlib package in

Python. Finally, all the cluster marker images are combined into a single visuali-
zation plot to show the anatomical regions of the ROL

k-NN distance. k-NN of distance for each cell was computed using the K-
Neighbors Classifier module of the Scikit-Learn package in Python with default
parameters. The k-NN classifier was performed using the Scikit-Learn library in
Python with default parameters (leaf_size = 30, p = 2, metric = ‘minkowski’,
weights = ‘uniform’). For each individual single-cell, only ten nearest neighbors
were chosen for calculating the pairwise distance between markers.

Network graph. Custom-developed Python scripts were used for generating both
intra-cluster/inter-cluster spatial network maps and spatial reference maps using
the Python NetworkX library. NetworkX is a Python package for exploration and
analysis of networks and networks algorithm that provides data structures repre-
senting many types of networks, both directed and undirected. Using NetworkX
generates various graph formats with flexibility in Python language and connects to
other Python packages such as SciPy, NumPy, or Sklearn. From the average of the
calculated k-NN distance, the spatial proximity network graph was laid out using
the Networkx package*? in Python with spring layout (k = 0.3 and iteration = 30).
The area ratio of the marker determined the size of the nodes. The nodes’ color
corresponded to the cluster to which they belong, and the weight between the
nodes showed the average k-NN distance between two markers or clusters. Edges
between the nodes showed the average k-NN distance between two markers or
clusters.

Topographic map. The 2D intensity map and 2D topographic plot were imple-
mented using the Matplotlib package?® in Python. For the 2D intensity map, the
background was the cell segmentation mask, and original marker-specific expres-
sion images were overlaid with the original cell mask. Based on the intensity level,
the 3D topography plot was generated using the Plotly package in Python. The
height measures in the 3D topography plot represented the pixel intensity dis-
tributions of the markers.

Spatial proximity map. The spatial proximity maps were composed of two
selected components that included visual distance plots of marker pairs and the
distances” histogram distribution. Each cell centroid from the first marker (in
magenta) was connected to the nearest distance cell in the other marker cell
centroids (in green) with a blue line. The cell centroid was obtained using the
Measure module of the scikit-image package in Python from the cell segmentation
masks. The origin marker cells were represented in magenta, and the destination
cells were shown in green. The histogram plot yielded the relative distances
between the markers that are expressed on each cell.

Spatial reference landmarks. Spatial reference landmarks network was laid out
using the Networkx package in Python with spring layout (k = 3.0 and iteration =
5). The landmark nodes in red were fixed positions, and the blue nodes were
positioned by both the node size that represented the area ratio and the edge
weights calculated by the k-NN distance. For each marker, the average k-NN
distances between its cell and other marker cells were computed, and only the
highest k-NN that covered a five-cell radius were preserved. The starting of the
edges between two nodes indicated the origin marker from which cell distances.
The arrow’s end corresponded to the markers with the closest k-NN distance from
the presumed marker to be the origin. The color of the edges denoted the relative
distance between the two markers.

Statistics and reproducibility. Images, exhibited in Figs. 1-8 and Supplementary
Figs. 1-22, denote data from at least three independent experiments for health and
disease. Cellprofiler (Version 4.0.7) was used for processing. Python (Version 3.8.6)
processing was performed in the Anaconda environment (Version 4.9.2) using
Jupyter notebook. Box plots showed median first and third quartile, minimum and
maximum (excluding outliers). Statistical analyses were performed with the Python
Scipy package (Version 1.5.2) and HistoCAT (Version 1.76). The two-sample
Kolmogorov-Smirnov test was used for data distribution comparison. A p-value of
<0.001 (***) was considered statistically significant.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Supplementary data 1 contains the source data for Fig. 2g-h and Fig. 3a-b. All data and
analysis results are available at https://github.com/coskunlab/SpatialViz and https://doi.
org/10.5281/zenodo.466285444,

Code availability
The IMC image processing codes are available** at https://github.com/coskunlab/
SpatialViz and https://doi.org/10.5281/zenodo.4662854.
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