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Abstract 
Background: Postnatal gestational age (GA) algorithms derived from 
newborn metabolic profiles have emerged as a novel method of 
acquiring population-level preterm birth estimates in low resource 
settings. To date, model development and validation have been 
carried out in North American settings. Validation outside of these 
settings is warranted.   
Methods: This was a retrospective database study using data from 
newborn screening programs in Canada, the Philippines and 
China. ELASTICNET machine learning models were developed to 
estimate GA in a cohort of infants from Canada using sex, birth weight 
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and metabolomic markers from newborn heel prick blood samples. 
Final models were internally validated in an independent group of 
infants, and externally validated in cohorts of infants from the 
Philippines and China.  
Results: Cohorts included 39,666 infants from Canada, 82,909 from 
the Philippines and 4,448 from China.  For the full model including 
sex, birth weight and metabolomic markers, GA estimates were within 
5 days of ultrasound values in the Canadian internal validation (mean 
absolute error (MAE) 0.71, 95% CI: 0.71, 0.72), and within 6 days of 
ultrasound GA in both the Filipino (0.90 (0.90, 0.91)) and Chinese 
cohorts (0.89 (0.86, 0.92)). Despite the decreased accuracy in external 
settings, our models incorporating metabolomic markers performed 
better than the baseline model, which relied on sex and birth weight 
alone. In preterm and growth-restricted infants, the accuracy of 
metabolomic models was markedly higher than the baseline model. 
Conclusions: Accuracy of metabolic GA algorithms was attenuated 
when applied in external settings.  Models including metabolomic 
markers demonstrated higher accuracy than models using sex and 
birth weight alone. As innovators look to take this work to scale, 
further investigation of modeling and data normalization techniques 
will be needed to improve robustness and generalizability of 
metabolomic GA estimates in low resource settings, where this could 
have the most clinical utility.

Keywords 
biological modelling, gestational age, preterm birth, newborn 
screening
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Introduction
Global- and population-level surveillance of preterm birth is 
challenging. Inconsistent use of international standards to define 
preterm birth and gestational age (GA) categories, the range 
of methods and timing used for GA assessment, and inadequate 
jurisdictional or national health data systems all hamper reli-
able population estimates of preterm birth1. As complications  
related to preterm birth continue to be the most common cause 
of mortality for children under five2, robust data on the bur-
den of preterm birth are needed to maximize the effectiveness  
of resource allocation and global health interventions.

Newborn screening is a public health initiative that screens 
infants for rare, serious, but treatable diseases. Most of the target 
diseases are screened through the analysis of blood spots taken 
by heel-prick sampling. Samples are typically collected within 
the first few days after birth, but under special circumstances 
(e.g., preterm birth, neonatal transfer) may be collected later.  
Newborn samples are analyzed for a range of diseases, such as 
inborn errors of metabolism, hemoglobinopathies, and endocrine 
disorders, using tandem mass spectrometry, colorimetric and 
immunoassays, and high-performance liquid chromatography3.  
Postnatal GA algorithms derived from newborn characteris-
tics and metabolic profiles have emerged as a novel method of 
estimating GA after birth. Using anonymized data from state 
and provincial newborn screening programs, three groups in 
North America have developed algorithms capable of accurately  
estimating infant GA to within 1 to 2 weeks4–6. Recent work 
to refine metabolic GA models7, as well as internally and exter-
nally validate their performance in diverse ethnic groups and 
in low-income settings, has demonstrated the potential of these  
algorithms beyond proof-of-concept applications8,9.

Published approaches to model development and validation to 
date have been carried out in cohorts of infants from in North 
American settings4–6. Although internal validation of these 
models has been conducted among infants from diverse ethnic  
backgrounds4,8, external validation of model performance outside 
of the North American context is essential to evaluate the gener-
alizability of models to low income settings where they would 
have the most clinical utility. Birth weight, a significant covari-
ate in all published models, is strongly correlated with GA and 
varies significantly by ethnicity10. Metabolic variations in new-
born screening profiles that result from variation in genetic and  
in utero exposures may also affect the performance of established 
algorithms across ethnic or geographic subpopulations11. Impor-
tantly, as innovators seek to take this work to scale, validation  
of metabolic models using data stemming from different labora-
tories is warranted. In this study, we sought to validate a Cana-
dian metabolic GA estimation algorithm in data derived from 
newborn screening databases based in the Philippines and  
China.

Methods
Study design
This was a retrospective database study that relied on secondary 
use of newborn screening data from three established newborn  

screening programs: Newborn Screening Ontario (Ottawa,  
Canada); Newborn Screening Reference Centre (Manila, the 
Philippines); and the Shanghai Neonatal Screening Center 
(Shanghai, China). Approval for the study was obtained from 
the Ottawa Health Sciences Network Research Ethics Board 
(20160056-01H), and research ethics committees at both the  
University of the Philippines Manila (2016-269-01), and the  
Xinhua Hospital (XHEC-C-2016). The need for express informed 
consent from participants was waived by the ethics committees  
for this retrospective study.

Study population and data sources
Infants whose blood spot samples were collected more than  
48 hours after birth were excluded from model development in 
the Ontario cohort. In the China and Philippines datasets, the age 
of infant at sample collection was only available to the nearest 
calendar day. Samples were excluded from analysis if they were 
collected more than 72 hours after birth as most samples would 
have been excluded if the >48-hour exclusion were applied to  
these validation cohorts.

Newborn Screening Ontario (NSO): a provincial newborn 
screening program that coordinates the screening of infants 
born in Ontario, Canada. The program screens approximately 
145,000 infants (>99% population coverage) annually for 29 rare  
conditions, including metabolic and endocrine diseases, sickle 
cell disease, and cystic fibrosis12. Newborn screening data col-
lected between January 2012 and December 2014 were used  
in model building and internal validation.

Newborn Screening Reference Center: coordinates screening  
across six operations sites in the Philippines. The program 
screens approximately 1.5 million infants (68%) annually, offer-
ing two screening panels, either a basic panel of six disorders or 
an expanded panel of 28 disorders. Data from this study were 
obtained from one of the newborn screening centers, the National 
Institutes of Health at the University of the Philippines Manila.  
Data were included for infants born between January 2015 
and October 2016 who were screened using the expanded 
panel of 28 disorders. Disorders screened included metabolic  
disorders, and hemoglobinopathies.

Shanghai Neonatal Screening Center, National Research Center 
for Neonatal Screening and Genetic Metabolic Diseases: coor-
dinates the screening of infants born in Shanghai, China. 
The program screens approximately 110,000 infants (>98%)  
annually for between 4 and over 20 rare conditions including 
metabolic and endocrine diseases. Four screening tests - for phe-
nylketonuria, congenital adrenal hyperplasia, hypothyroidism 
and Glucose-6-phosphate dehydrogenase deficiency - are funded 
by the government. Screening tests reliant on tandem mass spec-
trometry are funded by the newborn’s family or the Shanghai 
neonatal screening center. Data collected from the Shanghai 
Jiaotong University School of Medicine Xinhua Hospital were 
used for this study. Infants born between February 2014 and 
December 2016 and for whom tandem mass spectrometry data  
were available were included.
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Reference GA assessment. In newborn cohorts from Ontario  
and China, GA was measured using gold-standard first trimes-
ter gestational dating ultrasound in approximately 98% of cases, 
and was reported in weeks and days of gestation (for exam-
ple 37 weeks and 6 days would be reported as 37.86 weeks). In 
the Philippines cohort, mothers who delivered in private hos-
pitals generally received gestational dating ultrasounds while 
other infants’ GAs were generally measured using Ballard  
Scoring. GAs were reported in completed weeks (for example 
37 weeks and 6 days would be recorded as 37 weeks). There-
fore, for the Philippines cohort only, model-based GA esti-
mates were rounded down in the same way for comparison to  
reference GA in the presentation of validation results.

Specific data elements used in this study from each respec-
tive newborn screening program are provided in Table 1.  
The Newborn Screening Ontario (Canada) disease panel included 
the greatest number of analytes. All analytes included in the 
newborn screening panels of the Newborn Screening Reference 
Centre (the Philippines) and the Shanghai Newborn Screening 
Program (China) were also available from Newborn Screening  
Ontario.

Statistical methods
Data cleaning and normalization. Data from the Ontario 
cohort were used for model development. Many of the details 
of the data preparation, model building, and internal valida-
tion have been reported previously7. A series of steps were taken  
to prepare the newborn screening analyte data for modeling:

1)   �In the Ontario cohort, all screen-positive results were 
excluded from analysis, which had the effect of removing a 
large proportion of extreme outliers and atypical metabolic 
profiles. Further, samples used in model development were  
limited to those collected within 48 hours of birth given that 
GA estimation is intended to be applied in LMICs where  
samples are expected to be collected almost exclusively  
within the first few hours after birth.

Statistical modelling. The Ontario-derived dataset was ran-
domly divided into three sub-cohorts: 1) a model development  
sub-cohort (50%); 2) an internal validation sub-cohort (25%); 
and 3) a test sub-cohort (25%). Stratified random sampling was 
used to ensure that these three sub-cohorts retained the same  
distribution of GA as the overall cohort.

A total of 47 newborn screening analytes, as well as sex, birth 
weight and multiple birth status, were used in our original model 
development. GA at birth (in weeks) determined by first tri-
mester gestational dating ultrasound was the dependent vari-
able. Multiple birth status and a subset of screening analytes 
were not available in the external cohorts, therefore we developed  
restricted Ontario models including those covariates available 
in each of the two external cohorts. Three main models were 
derived and evaluated (with variations in the included analyte  
predictors based on availability in each external cohort) (Table 2):

Model 1: Baseline model containing only infant sex, birth 
weight (grams), and the interaction between these, sex and birth  
weight.

Table 1. Newborn screening data used in model development.

Newborn Screening Ontario, Canada Newborn Screening Reference 
Centre, the Philippines

Shanghai Newborn Screening 
Program, China

Birth weight,  
Hemoglobins (F1, F, A), TSH, 17OHP, 
alanine, arginine, citruline, glycine, 
leucine, methionine, ornithine, 
phenylalanine, tyrosine, valine, C0, C2, 
C3, C4, C5, C6, C8, C10, C12, C14, C16, 
C18, C10:1, C12:1, C14OH, C14:1, C14:2, 
C16OH, C16:1OH, C18OH, C18:1, C18:2, 
C18:1OH, C3DC, C4DC, C4OH, C5DC, 
C5OH, C5:1, C6DC, C8:1, IRT, GALT, BIO

Birth weight, 
Hemoglobins (F1, F, A), TSH, 17OHP, 
alanine, arginine, citruline, glycine, 
leucine, methionine, ornithine, 
phenylalanine, tyrosine, valine, C0, 
C2, C3, C4, C5, C6, C8, C10, C12, C14, 
C16, C18, C10:1, C12:1, C14OH, C14:1, 
C16OH, C16:1OH, C18:1, C18:2, C3DC, 
C4DC, C4OH, C5DC, C5OH, C6DC, 
C8:1, IRT, BIO

Birth weight, 
TSH, 17OHP, alanine, arginine, 
citruline, glycine, leucine, methionine, 
ornithine, phenylalanine, tyrosine, 
valine, C0, C2, C3, C4, C5, C6, C8, C10, 
C12, C14, C16, C18, C10:1, C12:1, 
C14OH, C14:1, C14:2, C16OH, C18OH, 
C18:1, C18:2, C3DC, C4DC, C4OH, 
C5DC, C5OH, C5:1, C6DC, C8:1 

TSH, thyroid stimulating hormone; 17OHP, 17 hydroxyprogesterone; GALT, galactose-1-phosphate uridyl transferase; IRT, Immuno-reactive 
trypsinogen, BIO, biotinidase. Analytes in bold italics are not available in one or more of the external validation cohorts.

Table 2. Summary of models tested.

Model Description

Model 1 Multivariable regression model including sex, birth weight 
and their interaction 

Model 2 ELASTIC NET regression model including sex, analytes and 
pairwise interactions among predictors

Model 3 ELASTIC NET regression model including sex, birth weight, 
analytes and pairwise interactions among predictors
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MSE, also referred to as root mean square error (RMSE), is 
also expressed in the same units as GA (weeks). Lower values 
of both MAE and standard error of estimation (RMSE) reflects 
more accurate model estimated GA. For example, a reported  
MAE of 1.0 weeks reflects that the average discrepancy between 
model estimated GA and reference GA was 7 days. We also cal-
culated the percentage of infants with GAs correctly estimated 
within 7 and 14 days of reference GA. We assessed model per-
formance overall and in important subgroups: preterm birth 
(<37 weeks GA), and small-for-gestational age: below the 10th 
(SGA10) and 3rd (SGA3) percentile for birth weight within cat-
egories of gestational week at delivery and infant sex based on 
INTERGROWTH-21 gestational weight for GA percentiles13.  
Parametric standard error estimates were not readily calcu-
lable for all of our performance metrics, therefore we calcu-
lated 95% bootstrap percentile confidence intervals for all 
validation performance metrics, based on the 2.5th and 97.5th 
percentiles for performance metrics over 1000 bootstrap repli-
cates for each validation cohort14. Replication code is available as  
Extended data15.

Results
Cohort characteristics
Cohort characteristics are presented in Table 3. In all, the 
final infant cohorts for model validation included 39,666 
infants from Ontario, Canada, 82,909 infants from the Manila,  

Table 3. Cohort Characteristics.

Canada 
n=39,666 (Ontario 
test cohort)

Philippines 
n=82,909

China 
n=4,448

Sex, n (%)

Male 19,536 (49.3%) 42,867 (51.7%) 2351 (52.9 %)

Female 20,130 (50.5%) 40,042 (48.3%) 2097 (47.1 %)

Birth weight (g), mean±SD

Overall 3379 ± 530.2 3007.7 ± 452.0 3337 ± 437.3

Term infants only 3430.6 ± 476.1 3044.4 ± 413.5 3369.1 ± 406.7

Preterm infants only 2504.1 ± 622.8 2250.1 ± 538.8 2709.6 ± 535.5

SGA (<10th Centile), n (%) 1561 (3.94%) 11,295 (13.6%) 123 (2.8%)

SGA (<3rd Centile), n (%) 363 (0.92%) 3407 (4.1%) 19 (0.4 %)

Completed gestational age 
(wks), mean±SD

39.3±1.6 38.5±1.4 38.9±1.4

Term (≥37 wks), n (%) 37,440 (94.4%) 79,077 (95.4%) 4233 (95.2%)

Late Preterm (32–36 wks), n (%) 2049 (5.2%) 3566 (4.3%) 197 (4.4 %)

Very Preterm (28–31 wks), n (%) 126 (0.3%) 233 (0.3%) 11 (0.3 %)

Extremely Preterm (<28 wks), n (%) 51 (0.1%) 33 (0.0%) 7 (0.2 %)
SGA, small for gestational age (lowest 10 and 3 centiles within gestational age and sex strata, calculated in 
the Ontario cohort using Intergrowth-21 centiles and applied uniformly in the Ontario, China and Philippines 
cohorts)

Model 2: Analytes model including infant sex, newborn screen-
ing analytes (listed in Table 1), and pairwise interactions  
among covariates.

Model 3: Full model containing infant sex, birth weight 
(grams), newborn screening analytes, and pairwise interactions  
among covariates.

To efficiently manage the large number of covariates and inter-
actions involved, Models 2 and 3 were fit using an ELASTIC 
NET machine learning approach. Final Ontario model equa-
tions were used to calculate an estimated GA in the test sub-
set (N=39,666) of the Ontario cohort that had no role in model 
development, as well as in the China and Philippines external 
validation cohorts. For each infant, model performance was  
assessed by comparing the estimated GA from the model to 
the ultrasound-derived GA and calculating validation metrics 
that reflect the precision of model estimates compared to ref-
erence GA values. The primary metric we have presented is 
the mean absolute error (MAE). MAE is the average of abso-
lute values of residuals (values of the model estimate minus 
the reference GA) across all observations). MAE reflects the  
average deviation of the model estimate compared to the refer-
ence estimate, expressed in the same units as GA (weeks). In 
addition, we report the standard error of estimation, which is the 
square root of the mean square error (MSE). The square root of 
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Philippines cohort and 4,448 infants from the Shanghai, China 
cohort. Mean (SD) of clinically reported GAs for the Ontarian,  
Filipino and Chinese cohorts were 39.3 (1.6), 38.5 (1.4) and 
38.9 (1.4) weeks, respectively. Preterm infants (GA <37 weeks)  
comprised 2226/39666 (5.6%) of the Ontario cohort, 3832/82909 
(4.6%) of the Philippines cohort, and 215/4448 (4.8%) of the  
China cohort.

Internal validation of model performance in Ontario, 
Canada
Estimation of GA using Model 1 (including only sex and 
birth weight) yielded an MAE (95% CI) of 0.96 (0.96, 0.97) 
weeks in the Ontario cohort, indicating that the model pro-
vided GA estimates that were accurate to within 7 days of refer-
ence GA. Model 2, (including sex and metabolomic markers),  
was accurate within an average of 6 days (MAE 0.79 (0.79, 
0.80) weeks) and Model 3, which included sex, birth weight 
and metabolomic markers was the most accurate, estimat-
ing GA within about 5 days of ultrasound-assigned GA (MAE 
0.71 (0.71, 0.72) weeks), and estimated GA within ± 1 week in  
74.6% of infants overall. Model 3 was the best performing 
model in preterm infants (GA<37 weeks), with an MAE (95% 
CI) of 1.03 (0.99, 1.06) compared to MAE of 1.78 (1.73, 1.82) 
for Model 1 and 1.25 (1.21, 1.29) for Model 2. In contrast, 
Model 2, which did not include birth weight, performed the best 
in growth restricted infants, with MAE of 0.90 (0.85 to 0.94) in  
SGA10 infants and 1.03 (0.92, 1.13) in SGA3 infants, and was 
slightly better than Model 3, which did include birth weight. 
However, Model 1, including only sex and birth weight, was 
extremely inaccurate in both SGA10 and SGA3 infants with 
MAE of 2.71 (2.66, 2.76) and 3.84 (3.75, 3.95) respectively  
(Table 4).

Restricted models including the subset of analytes available in 
the Philippines and China cohorts performed comparably to 
the unrestricted Ontario models overall. When applied to the 
Ontario internal validation cohort, accuracy of both the China- 
and Philippines-restricted models was slightly lower overall 
and lower in important subgroups, most notably in preterm and 
growth restricted infants for cohort (Model 2 and Model 3 China  
restricted and Philippines restricted) (Table 4).

External validation of model performance in the 
Philippines cohort
When applied to infant samples from the Philippines cohort, 
Model 1 yielded a MAE (95% CI) of 0.96 (0.95, 0.97). Accu-
racy was slightly decreased for Model 2, with MAE of 1.02 
(1.02, 1.03). Model 3 which included sex, birth weight and 
screening analytes available in the Philippines database per-
formed the best, with an MAE of 0.90 (0.90, 0.91). Model 3 was 
also the best performing model in preterm infants, with MAE of  
1.49 (1.45, 1.53) compared to 1.87 (1.83, 1.92) for Model 1 and 
1.96 (1.91, 2.01) for Model 2. Model 3 also yielded the most 
accurate GA estimates in growth restricted infants, with MAE of 
0.97/1.27 for SGA10/SGA3 infants compared to 1.47/2.65 for 
Model 1 and 1.08/1.18 for Model 2 for SGA10/SGA3 infants  
(Table 4). Based on GA estimates from Model 3, the estimated  
preterm birth rate was 4.2% (95% CI: 4.1%, 4.4%), compared 

to 4.3% using the observed reference GA in the Philippines 
cohort. Both Model 1 and Model 2 overestimated the preterm  
birth rate, at 5.1% and 5.0%, respectively.

External validation of model performance in the China 
cohort
In the China cohort, Model 1 estimated GA to within 6 days over-
all, with an MAE of 0.90 (0.87, 0.92). Model 3 demonstrated 
similar accuracy to Model 1 with MAE of 0.89 (0.86, 0.91), and 
Model 2 performed the worst with MAE of 1.07 (1.04, 1.10). 
Model 3 performed the best in preterm infants, with MAE of 
1.74 (1.49, 2.05) versus 2.49 (2.21, 2.80) for Model 2 and 2.02  
(1.76, 2.33) for Model 1. In growth restricted infants, Model 2 
was the most accurate, with MAE of 1.00/1.03 in SGA10/SGA3 
infants compared to 1.48/2.04 for Model 3 and 2.72/3.90 for  
Model 1.

Based on GA estimates from Model 3, the estimated preterm 
birth rate was 4.2% (95% CI: 3.7%, 4.8%), and Model 1, which 
demonstrated similar overall accuracy, estimated a rate of 4.9% 
(4.3%, 5.6%) compared to 4.8% based on the observed refer-
ence GA in the China cohort. Model 2, the least accurate of the 
three in the China cohort, underestimated the preterm birth  
rate to be 3.6%.

Model performance across spectrum of GA
In all models applied to both external validation cohorts, GA 
estimates were most accurate in term infants and accuracy  
tended to be lower in preterm infants (Figure 1). Across the 
spectrum of ultrasound-assigned GA, Model 3 provided the  
most accurate estimates overall.

Discussion
In this study, we demonstrated that the performance of gesta-
tional dating algorithms developed in a cohort of infants from 
Ontario, Canada including newborn screening metabolomic 
markers from dried blood-spot samples was attenuated when 
the models were applied to data derived from external laborato-
ries and populations. When these Canadian-based models were  
tailored to the analytes available from newborn screening pro-
grams in Shanghai, China and Manila, Philippines, the models 
were less accurate in estimating absolute GA in infant cohorts 
from these locations than when the same models were applied 
to an Ontario infant cohort. Models including analytes gener-
ally demonstrated improved accuracy over those relying on sex 
and birth weight alone, but the added benefit of models including 
blood-spot metabolomic markers (Model 2 and Model 3) was not  
substantial when looking at overall accuracy. However, our mod-
els that included metabolomic markers did demonstrate mark-
edly improved accuracy over sex and birth weight in important 
subgroups (preterm and growth restricted infants), with Model 
3 which included sex, birth weight and metabolomic mark-
ers demonstrating the best performance in almost all settings.  
The exception to this observation was in growth restricted infants 
(SGA10 and SGA3), where Model 2 often performed the best. 
This is not surprising, as birth weight is clearly a misleading pre-
dictor of GA in growth restricted infants, and although Model 3 
still outperformed Model 1, its accuracy was impacted by the 
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Figure 1. Agreement between algorithmic gestational age estimations compared to ultrasound-assigned gestational age.  
(A) Legend, and overall MAE (95% CI) for each model applied to data from the Philippines and China. Dot size in plots is proportional to 
sample size in each gestational age category. Performance of each model by ultrasound-assigned gestational age when applied to data 
from (B) the Philippines (C) China. MAE, mean absolute error (average absolute deviation of observed vs. predicted gestational age in 
weeks).

inclusion of birth weight in addition to metabolomic markers.  
Therefore, the decision of whether to prefer Model 2 or Model 
3 may hinge on whether the prevalence of growth restriction is 
known to be high in the setting where the GA estimation algorithm  
is to be deployed. When we compared preterm birth rates (<37 
weeks GA) calculated based on model estimates, to those cal-
culated based on reference GA in each cohort, the model-
based estimates from the best performing model (Model 3) 
agreed reasonably well with the reference preterm birth rates  
(4.2% vs 4.8% for China and 4.2% vs 4.6% for the Philippines). 
Unfortunately, as with any dichotomization of a continuous 
measure (GA), there are significant edge effects that can con-
tribute to perceived misclassification (e.g. GA of 36.9 weeks is 
classified as preterm while a GA of 37.1 weeks is classified as  
term, despite a difference in GA of only about 1 day).

There are several reasons why the metabolic gestational dat-
ing algorithm we developed from a North American newborn 
cohort may not have performed as well using data derived 
from other infant populations. First, as observed in the dif-
ferences in performance across the birth weight-only models  
developed in the three cohorts, the predictive utility of anthro-
pomorphic measurements for estimating GA may vary across 
populations. Second, metabolic profiles may be influenced by the  
differences in genetic and environmental exposures experienced 
by each cohort, as well as non-biological heterogeneity attribut-
able to different laboratories conducting the screening assays. 

Previous validation of our models among infants born to landed-
immigrant mothers from eight different countries across Asia 
and North and Sub-Saharan Africa suggested that inherent bio-
logical differences may not be a significant contributor to new-
born metabolic data and the performance of our algorithms8, but 
in this study, as well as in an external validation of previously  
developed GA estimation models in a prospective cohort from 
South Asia9, differences were more pronounced. Third, varia-
tions in the clinical measures of GA used across the cohorts may 
have impeded the accuracy of our algorithms. Our GA mod-
els were originally developed with first trimester ultrasound-
assigned GA as the dependent variable. Whereas first trimes-
ter ultrasounds were the gold standard in the Ontario and China  
cohorts, GAs for the Philippines cohort were determined by a 
mixture of gestational dating ultrasound and Ballard scores, and 
were only available to the nearest completed week of GA. Lastly, 
and perhaps most importantly, variations in the collection pro-
cedures and analytical methods used by each of the newborn 
screening programs are likely to have impacted the measurable 
relationship between the analytes and newborn GA. At the new-
born screening program in Shanghai, China, samples were col-
lected, on average, about one day later after birth particularly 
among preterm infants with the majority being collected between  
48–72 hours. Variations in temperature, climate, sample han-
dling, and storage among the three newborn screening laborato-
ries may have also contributed to heterogeneity of findings. The 
screening laboratories in Ontario, Shanghai, China and Manila 
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also likely relied on different equipment, assays and reagents to 
quantify the measured analytes. We attempted to address these 
sources of heterogeneity and bias through our data prepara-
tion steps, which involved local standardization of analyte val-
ues and birth weight. Extreme outliers, skewed distributions, 
heteroscedasticity, and systematic biases within and between  
laboratories are all factors that may obscure biological sig-
nals. Normalization and other data pre-processing steps are  
therefore crucial to the analysis of metabolomic data, and we 
continue to investigate the impact of alternative data normali-
zation techniques in improving the generalizability of our GA  
estimation models, while still taking care to preserve the  
biological signals of interest. This is an active area of active 
research as it relates to the use of ‘omics data in prognostic  
models more generally16,17. 

Our study has several strengths and limitations. Notable strengths 
include the size of our Ontario, China and Philippines cohorts, 
the commonality of a preponderance of the analytes across 
populations, the ability to tailor models to the specific ana-
lytes available for each cohort, and the methodological rigor we 
imposed in our modeling and validation. Limitations include 
the inability to examine the impact of environmental factors  
(socio-economic conditions, dietary and environmental expo-
sures during pregnancy), variations in approaches to newborn 
screening that may not have been accounted for in our analyses, 
and generally smaller sample sizes for more severely preterm  
children.

While there are numerous options currently available to health 
care providers to determine postnatal GA, none are as accurate 
as first trimester dating ultrasound18. Where access to antena-
tal dating technologies are limited, and the reliability of postna-
tal assessments is variable, there is a recognized need for new 
and innovative approaches to ascertaining population-level bur-
dens of preterm birth in low resource settings18,19. Metabolic 
GA estimation models in particular have proven particularly  
promising19, and we continue to refine and evaluate these mod-
els in a variety of populations6,7,20 and laboratories in an effort 
to ready this innovation for broader application. The findings of 
this study suggest that the accuracy of metabolic gestational dat-
ing algorithms may be improved where newborn samples can 
be analyzed in the same laboratories from which the algorithms 
were originally derived and underscore our previous findings 
of their potential particularly among low birth weight or SGA 
infants7. Validation of our ELASTIC NET machine learning 
models is also being completed in prospective cohorts of infants 
from low income settings in Bangladesh and Zambia20, with vali-
dation of previously developed models already completed in  
Bangladesh9. The effects of laboratory-specific variables are 
being mitigated through the standardization of collection and 
analytical procedures applied to newborn samples; preliminary 
results are promising. As efforts to optimize gestational dat-
ing algorithms based on newborn metabolic data continue, and 
innovators seek to take this work to scale, future work should 
identify opportunities to develop algorithms locally where 
newborn screening laboratories exist, and to build capacity  
in low resource settings for these purposes.

Data availability
Underlying data
The data from Ontario, Canada used to develop models, and 
the data for the external validation cohorts in which model  
performance was evaluated were obtained through bilateral 
data sharing agreements with the Ontario Newborn Screening 
Program and BORN Ontario, and newborn screening laborato-
ries at Xinhua Hospital in Shanghai, China and University of 
the Philippines, Manila, Philippines. These data sharing agree-
ments prohibited the sharing of patient-level data beyond our  
research team.

Ontario data
Those wishing to request access to Ontario screening data can 
contact newbornscreening@cheo.on.ca, and the request will 
be assessed as per NSO’s data request and secondary use poli-
cies. For more information, please visit the NSO website: https://
www.newbornscreening.on.ca/en/screening-facts/screening-faq  
(‘What happens when a researcher wants to access stored sam-
ples for research’); https://www.newbornscreening.on.ca/en/ 
privacy-and-confidentiality.

Philippines data
Researchers can request access to the de-identified data (sex, 
birthweight, gestational age and screening analyte levels) from 
the Philippines for future replication of the study by sending a 
request letter to the Director of Newborn Screening Reference  
Center stating the study objectives in addition to:

a.   �A copy of the study protocol approved by a technical  
and ethics review board that includes methods and  
statistical analysis plans;

b.   �Full name, designation, affiliation of the person with  
whom the data will be shared; and,

c.   �Time period that the data will be accessed.

Data requests must be addressed to: Dr. Noel R. Juban, Direc-
tor of the Newborn Screening Reference Center National Insti-
tutes of Health, Unit 304 New Gold Bond Building, 1579  
F. T. Benitez St, Ermita, Manila, Philippines, info@newbornscreen-
ing.ph.

China data
Researchers can request access to the de-identified data (sex, 
birthweight, gestational age, age at sample collection, and screen-
ing analyte levels) from China by sending a written request 
to the corresponding author, Dr. Steven Hawken (shawken@
ohri.ca), which must include a copy of the study protocol and  
approval from the researcher’s local ethics board.

Extended data
SAS and R code for data preparation and cleaning, model fit-
ting and external model validation are available at: https://github. 
com/stevenhawken/Gates-Repository-China-Phil.

Archived code at time of publication: http://doi.org/10.5281/ 
zenodo.408532015.

License: GNU General Public License v3.
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We are pleased to go through this interesting article by Hawken et al., dealing with 
estimation of gestational age among neonates born in low-resource settings that illustrates 
novel clinical and metabolomic parameter-based models. We congratulate the authors for 
taking up this study on account of several outstanding features:

Conceptualizing the study idea of estimating gestational age postnatally, using a mix 
of conventional and novel metabolomic based objective parameters.

○

Enrolling neonates in large numbers from population based cohort to develop the 
model as well as validating internally.

○

Stratified random distribution of neonates among the derivation sub-cohorts to 
match the overall gestational age (GA) of the development cohort.

○

Using efficient study design of retrospective databases to source the samples - often 
stringently available in neonatal prospective cohort studies.

○

Utilizing machine-learning approaches to refine the algorithm.○

Undertaking the enormous task of external validation rigorously - involving settings 
that may find the algorithm most useful, recruiting huge cohorts, harmonizing tools 
and processes across the sites, etc.

○

Finally, ensuring that the data is accessible to all interested in taking up future 
studies.

○

○

However, we have a few comments to make, especially from the clinical rather than public health 
viewpoints. Major comments are: the model’s performance in term infants seems more reliable 
than preterms or SGAs. However the latter are the subgroups where gestation estimation maybe 
much more useful in clinical settings. One of the reasons could have been because the derivation 
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cohort itself had very few preterm infants (less than 5%) and so future studies should be planned 
for preterms and SGA categories. Also, as elaborated further, there appears to be much scope for 
conducting large multi-centric prospective study to remarkably improve and validate the GA 
algorithm, given that the article presents a promising alternative to grapple with this long-
standing issue.

We are of the opinion that GA estimation by the algorithm beyond ± 1 week may not be 
clinically as useful; so, the model performance in Table 4 in the main text should primarily 
depict this parameter and avoid parameters like “% ±  14 d”. The latter may actually be 
shifted to the web appendix if needed at all. This may also make the table less unsettling to 
the eyes. 
 

○

The authors admit that the model performance got attenuated from derivation to external 
validation such that the best performing model i. e. #3 lost its accuracy remarkably from 
average MAE of 0.71 (0.71, 0.72) in Ontario cohort to MAE of 0.90 (0.90, 0.91) and 0.89 (0.86, 
0.91) in Manila and Shanghai cohorts respectively. The authors have rightly attributed this 
finding to factors like biological differences, sample collection or lab/equipment variations 
and as yet unknown data (pre-)processing techniques. 
 

○

However, as depicted in Figure 1 and accepted by the authors, during external validation 
among the different models, the full model (#3) only marginally improved the agreement 
over that already achieved by birthweight model or model 1 (average MAE 0.90 
(Philippine)/0.89 (China) vs 0.96 (Canada)). This is in contrast to internal validation; addition of 
metabolic analytes (i.e. model #3; average MAE 0.71) or for that matter, restricting to 
analytes only model (model #2; 0.79) had significantly improved over the basic birthweight 
model (0.96). Two points emerge from this discussion:

Firstly, birthweight remains the most fundamental factor to predict GA with the lion’s 
share of explanatory attribute; this implies possible variability in measuring 
birthweight, quite plausible in resource-constrained settings and appears to be the 
crucial factor and should be minimized.

○

Secondly, the addition of analytes may not substantially improve beyond the 
bithweight’s robust contribution in the algorithm unless we consider critical 
remedies. One most likely pointer towards the solution may be attributed to the 
postnatal age cut off taken to collect the samples for metabolomic studies. The 
Ontario cohort’s sample collection cut off was 48 h compared to the other two 
cohorts of 72 h. Though the authors do mention that in the latter two cohorts, “most 
samples would have been excluded” with 48 h cut off, it may be pertinent to give the 
break up to describe the “most”.

○

Further it will be worthwhile to see how the model performs by removing the 
samples between 48 h and 72 h, and the same be included in the appendix.

○

If possible, analyzes involving samples more closer to birth e.g. within 24 h should 
also be alluded to give a broader understanding to the audience. Such exercises may 
aid towards improving the current performance of the model at nearly 75% of 
samples being predicted with GA ±  1 w. We do believe certainly that the latter target 
should be much higher- maybe close to 90%.

○

Thus, as raised earlier, we would like to emphasize that a prospective cohort study 
design for validation with the samples collected well within 48 h may lead to better 
algorithm development. In fact, we would suggest this esteemed group of authors 
led by Hawken et al. to consider developing algorithm especially for the preterm 

○

○
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infants recruiting subjects prospectively. 
 

Reference GA assessment for the Philippines cohort has been mentioned to have “generally 
received gestational dating ultrasounds” for infants born in private hospitals while “other 
infants GA were generally assessed using Ballard scoring”. This discrepancy probably 
explains why the Philippines restricted models (#3 or #2) did not perform well while 
validating with Manila cohort than with Ontario cohort. For example, for model # 3, the 
average MAE is higher for Manila cohort at 0.90 (0.90, 0.91) against Ontario cohort at 0.72 
(0.71, 0.72) (Table 4). In contrast, the average MAE for China restricted model against 
Ontario cohort (0.76; 0.75, 0.76) is slightly closer to Shanghai cohort (0.89; 0.86, 0.91).

Therefore, firstly, we would suggest to provide the break up of two methods of 
reference GA ascertainment for the Philippines cohort.

○

Secondly, we would like the authors to consider reviewing the analyses of the Manila 
cohort excluding the infants with GA assessed by Ballard scoring. We assume the 
remaining cohort may still be large to validate the algorithm robustly given that it 
originally comprises of over 80,000 infants.

○

In addition, the need for the suggested review may also be relevant because of 
another example, of SGA cohorts. As highlighted by the authors, model 2 should 
better perform in the SGA cohorts. However, for Manila SGA10 cohort, model 2 of 
Philippines restricted model has higher MAE (1.08; 1.06, 1.09) compared to that of 
model 3 (0.97; 0.96, 0.99). This is contrary to the Canadian scenario: (0.90; 0.85, 0.94) 
vs. (1.13; 1.09, 1.17) or even the Chinese scenario: (1.00; 0.84, 1.15) vs. (1.48; 1.32, 
1.64). 
 

○

○

It will also be worthwhile to have a view at the agreement plots (as in Figure 3) after 
removing the SGAs - SGA10, SGA3 and both in that order, especially in the Philippine cohort 
where SGAs constitute around 13% infants. This may also improve the average MAEs across 
the models 1 – 3. Additionally, separate agreement plots for SGAs should be explored as 
well, and considered to be included in the appendix if they make sense. This may 
particularly helpful for deveral LMICs regions having high prevalence of IUGR like South-
east Asian Region. 
 

○

We have noted a typo error: the proportion of infants predicted by Philippines restricted 
model for the Ontario cohort within +/- 2 weeks is mentioned as 69.9; this should perhaps 
be 96.9, going by the 95% CIs.

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
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The authors report the results of a validation study of previously developed algorithms to predict 
gestational age in post-natal settings. This is a complex task considering the many differences 
between the countries and the authors have gathered substantial datasets for this study. One 
model is based on sex and birthweight only. The two other models include metabolic profiles 
measured on dried blood spot samples during newborn screening for congenital disorders. The 
models were applied on data acquired in different laboratories in China and the Philippines in 
comparison with data from a Canadian laboratory where it was developed. The ultimate goal is 
legitimate and, although the results are promising, given the limitations observed for preterm 
infants, several aspects must be addressed and explored before the method can be used in the 
clinic. 
 
I could not assess the relevance or correct application of the deep learning method used, as well 
as bootstrap percentile confidence intervals, as these are not within my area of expertise. 
 
Comments: 
 
Introduction:

In paragraph 2, you state that “Samples are typically collected within the first few days after 
birth, but under special circumstances (e.g., preterm birth, neonatal transfer) may be 
collected later”. In your study, you selected samples collected within 48 hours only, and 
explain that the reason is that LMIC usually collect the samples in this timeframe. However, 
you also state that “most samples would have been excluded if the >48-hour exclusion were 
applied to these validation cohorts” (Methods, paragraph 2), so it seems that many samples 

○

Gates Open Research

 
Page 14 of 31

Gates Open Research 2020, 4:164 Last updated: 27 MAY 2021

https://doi.org/10.21956/gatesopenres.14318.r30526
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-6797-7129


were collected between 48 and 72 hours as mentioned in the discussion. 
 

Please discuss whether your algorithm could then be used to target the right 
population, i.e. preterm birth, when the samples might not be collected within 48 or 
even 72 hours. 
 

○

In untargeted metabolomics of newborn dried blood spots, it has been shown that 
the baby’s age at sampling is a critical variable when one considers metabolic 
profiles, and only a few days difference has significant impact. Have you investigated 
the extent of impact of this variable on your targeted metabolic profiling? How do 
you intend to address this in your future research or when applying your algorithm? 
Have you considered integrating age at sampling as a variable in the algorithm (or as 
a stratification variable for the partitioning into subsets)? See also my comment 
regarding the discussion. 
 

○

Please discuss the limitation of applying the algorithm outside the age at sampling 
range on which it was developed (or mention/rephrase this limitation more 
specifically in the discussion: “one day later after birth than the samples used for model 
development” as no sample >48 hours was included during model development).

○

In untargeted metabolomics of newborn dried blood spots, another crucial covariate 
impacting metabolic profiling is month of birth (see Courraud et al. 2021), or so at least in 
Denmark. Being born in summer or winter is remarkably visible. Such effect might be or not 
be visible in various countries. Have you investigated this potential covariate in your 
targeted profiling and/or considered integrating it in the algorithm? 
 

○

Methods:
Paragraphs 3-5. Please specify which analytical methods are used in each center included in 
the study. Is it mass spectrometry everywhere? Do they use a marketed kit or laboratory-
developed tests? Consider giving more methodological details as supplementary material as 
different platforms may not give the same analytical performance. 
 

○

Paragraph 4. Please clarify why some infants get the expanded screening panel of 28 
diseases and discuss the risk of selection bias when choosing these infants for the 
validation. 
 

○

Paragraph 5. Please discuss the risk of selection bias when choosing to include only infants 
for whom tandem mass spectrometry data were available. Does this mean that all 
metabolites have been measured with this method? (Is this the method used to screen for 
phenylketonuria, congenital adrenal hyperplasia, hypothyroidism and Glucose-6-phosphate 
dehydrogenase deficiency?). 
 

○

If the applicability of the algorithm is dependent on the family’s income (being able to pay 
for extra screening), will it achieve its goal to reflect preterm birth globally, given that 
preterm birth is more frequent in families struggling economically? Please discuss. 
 

○

Paragraph 6 on GA assessment: for the Philippines, please indicate the proportion of infants 
for whom GA was assessed by ultrasound or using Ballard Scoring. A note on the precision 
of the Ballard scoring with a relevant reference would help the reader. 

○
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On the same topic, you later state that “model performance was assessed by comparing the 
estimated GA from the model to the ultrasound-derived GA”. So it is unclear whether or not 
the infants for whom GA was assessed using Ballard Scoring are included at all. Please 
clarify. 
 

○

Table 1:
Please indicate what “C0”, “C2”, etc. refer to precisely. It might be obvious for someone in 
the field, but not to many readers for whom C18 might just be a free fatty acid and not the 
acyl-carnitine. You could for instance provide a list in supplementary data with full names 
and PubChemIDs. It helps bridging with the untargeted metabolomics community who is 
also working on the topic. 
 

○

Please be more specific as to which metabolites are included in model 2 and 3. It’s not clear, 
especially considering the “restricted models” in Table 4.

○

Models including newborn screening analytes: How did you cope with the metabolites 
missing in the validation cohorts? In the result section, you mention “Philippines-restricted” 
models, etc., please introduce them in the method section. Are the equations the same, just 
removing the missing metabolites or did you “re-develop” the models? Or? 
 

○

Are your models “resistant” to missing values? (In the real world, there will be missing 
values.) 
 

○

Would it be possible to report which metabolites have the biggest influence in each model? 
 

○

Have you considered a “model 4” restricted to the few metabolites measured for the “basic” 
screening panels offered in China and the Philippines? It would be accessible to more 
people as far as I understand, and might still perform better than just birthweight and sex. 
 

○

Statistical modeling: while MAE is clearly explained, it is unclear how RMSE is calculated and 
what it brings. An extra sentence would be welcome, for instance with an example as given 
for MAE. RMSE values in Table 4 are not discussed in the manuscript, so if this metric does 
not bring important elements to understand the work, consider giving the values in 
supplementary data. Else, please discuss this metric. 
 

○

Results and discussion:
Can you comment on the high percentage of SGA in the Filipino cohort? Could it be that the 
thresholds used (ref 14) are not applicable to this population? Could it also be why models 
generally perform better in the Filipino cohort for the SGA infants as compared to Canadian 
and Chinese cohorts? (More power). 
 

○

In relation to my comment above (introduction), you mention that a majority of Chinese 
samples have been collected between 48-72 hours. Without going into extensive details, 
could you present your hypotheses as to why this variable matters? (Are there special 
metabolic changes during this window for instance?).

○

 
Minor comments: 
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Introduction and methods:
Paragraph 3. “in cohorts of infants from in North American settings”. Please remove the 
“from”. 
 

○

Data cleaning and normalization: Please develop the LMIC abbreviation. 
 

○

Statistical modeling: “a reported MAE of 1.0 weeks”. Please write “week” for values below 2.0 
weeks throughout the manuscript (several places). 
 

○

Results:
Table 3: 
 

Females in Canadian cohort, please correct the percentage to 50.7%. 
 

○

Birthweight values. I do not think that the decimal makes sense considering the 
precision of the measurements. I doubt that the used equipment goes below 1 g of 
precision. I would present birthweight with no decimal. 
 

○

Please use only one decimal for percentage of SGA counts. 
 

○

○

Please add thousands separators throughout the manuscript in a homogeneous way. 
 

○

Internal validation: The second sentence is 61 words long. Please split it in 2-3 sentences for 
clarity. 
 

○

External validation in the Philippines cohort: please indicate the CI for model 1 and 2 
regarding the estimated preterm birth rate. 
 

○

Same comment for estimated preterm birth rate in the Chinese cohort using model 2. 
 

○

Figure 1.
(A) It would be more informative to describe models as follows:  Model 1: sex + birth 
weight; Model 2: sex + analytes; Model 3: sex + birth weight + analytes. “analyte 
model” and “full model” are not very clear. 
 

○

(C) redundant x axis legend. 
 

○

○

Discussion:
You write: “First, as observed in the differences in performance across the birth weight-only 
models developed in the three cohorts, the predictive utility of anthropomorphic 
measurements for estimating GA may vary across populations”. 
 

“birth weight-only models developed ” Do you mean the unique model 1 (sex + birth 
weight) applied in the 3 cohorts? This sentence is confusing as it implies that there 
are several models that were developed, when I had understood that you developed 
one model 1 based on the Canadian infants and applied “the final equations” to the 
other cohorts no involved in the development. Please clarify. 
 

○

○
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Also, why do you think that the “predictive utility of anthropomorphic measurements 
for estimating GA may vary across populations”? It could be that anthropomorphic 
measurements are indeed too different between Canada and Asian populations, so 
the models developed with Canadian data are not performing in Chinese infants. But 
why question the utility of the measurement itself? (To make a comparison with, for 
instance, month of birth, one could argue that seasonal variation is relevant in some 
climates but not in others. I’m not sure why birthweight would be more or less 
relevant and I’m just curious as to whether you have a more specific hypothesis.) 
 

○

Sentence starting with “Previous validation of our models among”: Please split this sentence 
as it is too long and difficult to know what you are referring to when you end with 
“differences were more pronounced” (between what? These different subgroups? More 
pronounced compared to?). When you write “inherent biological differences”, do you mean 
both genetic and environmental? Please clarify.

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Metabolomics, LC-MS/MS, clinical study design, clinical assays and quality

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Reviewer Report 29 March 2021
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© 2021 Villar J et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

José Villar  
Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK 
Eric Ohuma  
London School of Hygiene & Tropical Medicine, London, UK 

In this manuscript by Hawken et al., the authors have performed an external validation of 
newborn metabolomic markers for postnatal GA estimation in East and South-East Asian infants 
using an Elastic Net regression modelling approach. 
 
Main comments:

There is no doubt that an accurate estimate of GA is key. However, the authors propose a 
postnatal estimation of GA which does very little in advancing and encouraging 
determination of GA in early pregnancy. This is the recommendation of the WHO, The 
Brighton Collaboration GAIA definitions Prematurity and assessment of gestational age, The 
National Institute for Health and Care Excellence (NICE) Guideline for Routine Antenatal 
Care (2008), and International Society of Ultrasound in Obstetrics and Gynaecology (ISUOG). 
 

○

There is a clear gap identified in the accuracy of determining GA especially in LMIC and I 
strongly doubt this approach will help in better characterising of the burden of vulnerable 
newborns and the potential impact towards achieving better estimates for population rates 
of preterm birth, low birth weight, small-for-gestational age, and combinations of these to 
identify other vulnerable newborn phenotypes. 

○

Overall reporting of results warrants improvement, the authors have decided to report 
overall mean agreement in GA between gold standard GA with model predicted GA and yet 
there are clearly large differences in precision and this differs according to GA (Figure 1). 
The authors should state explicitly what is meant by agreement within 7 days. For example, 
if on average, model estimate agrees within 7 days, this technically means ± 7 days and 
therefore for a given fetus say model GA estimate is 32 weeks + 0 days, this would mean 
that the true GA ranges between 31 weeks + 0 days and 33 weeks + 0 days which is 
effectively 2 weeks. Following this, the best model estimate (model 3) on average will be 
accurate to within 10 days at best. The authors should show a plot of true GA vs. predicted 
GA as this will evidently show the variability of the prediction as a function of GA as opposed 
to the aggregated estimates they have presented by GA in Figure 1.

○

Across all models, great discrepancies and perhaps unacceptable discrepancies are 
observed for GA before 39 weeks. I am not convinced this approach offers any 
benefit/added value/utility compared to other methods in common use such as best 
obstetric methods for ascertaining GA.

○

The team used blood spot samples collected within 48hrs of delivery – there is considerable 
extra effort involved, time, and cost for drawing blood spots and processing of analytes. I 
do not see how this would be a feasible alternative especially for LMIC where accurate 
estimation of GA is a key data gap. The merits of the proposed approach have to clearly 
outweigh the performance of other known methods for postnatal GA determination such as 
the Ballard Score.

○
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Statistical modelling:

Statistical modelling uses split-sampling for model derivation and model validation. Data 
splitting is an unstable method for validating models because if you were to split the data 
again, develop a new model on the training sample, and test it on the holdout sample, the 
results are likely to vary significantly. Recommended resampling approaches are cross-
validation and bootstrapping and the authors should consider this. 
 

○

The authors should also report recommended metrics for evaluating model performance 
i.e., discrimination and calibration of the models.

○

Interaction terms for models 1-3 – could the authors comment on the added value of the 
interaction parameters and how much improvement in model performance can be 
attributed to the inclusion of the interaction parameters? 
 

○

Reference for classifying SGA – the authors provide the reference INTERGROWTH-21st very 
preterm size at birth reference charts. The reference provided is only for infants born 24 to 
<33 weeks. What about for infants born after 33 weeks? Can the authors confirm that for 
infants born ³33 weeks they used the IG standards provided here: Villar et al. (20141).

○

 
Results:

The authors should comment on the very low % preterm across the three cohorts. 
According to Blencowe et al. (20122), in 2010, the preterm birth rate in Philippines was 
estimated to be 15% (vs 4.6% in current cohort) and was 7.1% in China (vs 4.8% in current 
cohort).

○

In table 3, can the authors also include % low birth weight and % LGA?○

 
Minor comments:

It is unnecessary to have elastic net in the title – it distracts the main focus of the paper.○

 
 
References 
1. Villar J, Ismail L, Victora C, Ohuma E, et al.: International standards for newborn weight, length, 
and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the 
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Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Medical Statistician with experience in the field of maternal and child health

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 13 May 2021
Kumanan Wilson, Ottawa Hospital Research Institute, Ottawa, Canada 

Thank you for your review. We have carefully responded to your concerns. We are updating the 
manuscript accordingly and it will be posted shortly. 
 
Reviewer:  
In this manuscript by Hawken et al., the authors have performed an external validation of 
newborn metabolomic markers for postnatal GA estimation in East and South-East Asian 
infants using an Elastic Net regression modelling approach. 
 
Main comments:

There is no doubt that an accurate estimate of GA is key. However, the authors 
propose a postnatal estimation of GA which does very little in advancing and 
encouraging determination of GA in early pregnancy. This is the recommendation of 
the WHO, The Brighton Collaboration GAIA definitions Prematurity and assessment of 
gestational age, The National Institute for Health and Care Excellence (NICE) 
Guideline for Routine Antenatal Care (2008), and International Society of Ultrasound 
in Obstetrics and Gynaecology (ISUOG).

○

 
Response:  
While the authors agree that accurate estimation of GA in early pregnancy is critical as the 
reviewer has outlined above, our objective was to provide a non-invasive alternative in low 
resource settings where prenatal care involving GA dating ultrasound in the first trimester 
is not widely accessible. 
 
Reviewer: 
There is a clear gap identified in the accuracy of determining GA especially in LMIC and I 

Gates Open Research

 
Page 21 of 31

Gates Open Research 2020, 4:164 Last updated: 27 MAY 2021



strongly doubt this approach will help in better characterising of the burden of vulnerable 
newborns and the potential impact towards achieving better estimates for population rates 
of preterm birth, low birth weight, small-for-gestational age, and combinations of these to 
identify other vulnerable newborn phenotypes.  
 
Response: 
Post-natal estimation of GA has been identified as a priority of the Gates Foundation to 
facilitate population-based surveillance https://www.linkedin.com/pulse/innovation-how-
50-year-old-drop-blood-helps-solve-urgent-mundel/ . In many LMIC's, accurate early 
pregnancy estimations of GA are not accessible due to lack of ultrasound, pre-natal care 
and the unreliability of LMP. Our goal was to develop and refine one more potential tool to 
support maternal newborn care and surveillance in low resource settings. This external 
validation study has provided important information on the strengths and limitations of 
applying this method in different settings. In combination with the work of 
others, this may be a component of a broader solution that combines the strengths of 
different approaches. This may be an acceptable approach for a demographic surveillance 
site, for example. Ultimately, non-invasive ‘omics methods may provide an alternative to 
first trimester ultrasound when not available. Furthermore, this approach could assist in 
distinguishing between SGA infants and pre-term infants to facilitate care at the individual 
infant level. However, the limitations of these approaches need to be recognized and our 
work identifies some of these challenges. 
 
Reviewer: 
Overall reporting of results warrants improvement, the authors have decided to report 
overall mean agreement in GA between gold standard GA with model predicted GA and yet 
there are clearly large differences in precision and this differs according to GA (Figure 1). 
The authors should state explicitly what is meant by agreement within 7 days. For example, 
if on average, model estimate agrees within 7 days, this technically means ± 7 days and 
therefore for a given fetus say model GA estimate is 32 weeks + 0 days, this would mean 
that the true GA ranges between 31 weeks + 0 days and 33 weeks + 0 days which is 
effectively 2 weeks. Following this, the best model estimate (model 3) on average will be 
accurate to within 10 days at best. The authors should show a plot of true GA vs. predicted 
GA as this will evidently show the variability of the prediction as a function of GA as opposed 
to the aggregated estimates they have presented by GA in Figure 1. 
 
Response:  
Thank you. We have clarified that “within” indicates ± X days from the true GA throughout 
the manuscript. We have now also included residual plots of predicted – observed by 
ultrasound-assigned gestational age (new Figure 2 in manuscript). 
 
Reviewer: 
Across all models, great discrepancies and perhaps unacceptable discrepancies are 
observed for GA before 39 weeks. I am not convinced this approach offers any 
benefit/added value/utility compared to other methods in common use such as best 
obstetric methods for ascertaining GA. 
 
Response: 
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We agree that the model did not perform well in infants born before 39 weeks’ gestation. 
However, results from our prospective validation studies are much more promising (1,2). In 
our previous prospective Bangladesh cohort, the model accurately estimated gestational 
age +/- 6 days (2). The current paper represents one component of our external validation 
strategy that included: a) validation in retrospective cohorts from established newborn 
screening programs and b) prospective validation in low-resource settings with primary 
data collection and better control over the quality of the ascertainment of the gold 
standard GA measurement.   
 

Murphy M, Hawken S, Cheng W, Wilson L, Lamoureux M, Henderson M et al. 
Postnatal gestational age estimation using newborn metabolic profiles: A validation 
study in Matlab, Bangladesh. Elife. 2019 Mar 19;8. pii: e42627. doi: 
10.7554/eLife.42627.

1. 

 
Hawken S, Ducharme R, Murphy MSQ, Olibris B, Bota AB, Wilson LA, et al. 
Development and external validation of machine learning algorithms for postnatal 
gestational age estimation using clinical data and metabolomic markers. BMC 
Medical Informatics and Decision Making (under review). Preprint: 
medRxiv 2020.07.21.20158196; doi: https://doi.org/10.1101/2020.07.21.20158196

1. 

The purpose of this study was to evaluate the utility of a model derived in the Ontario 
dataset but deployed in an external setting. It is possible that deriving models for each 
external site using the external data may yield more robust results, and this is something 
to possibly explore in the future. 
 
Reviewer: 
The team used blood spot samples collected within 48hrs of delivery – there is considerable 
extra effort involved, time, and cost for drawing blood spots and processing of analytes. I 
do not see how this would be a feasible alternative especially for LMIC where accurate 
estimation of GA is a key data gap. The merits of the proposed approach have to clearly 
outweigh the performance of other known methods for postnatal GA determination such as 
the Ballard Score. 
 
Response: 
Our objective in this external validation study was not to address feasibility, but rather to 
assess the performance of models developed in a North American cohort in infants in other 
international settings. The BMGF has funded our group to assess the feasibility of 
implementing our GA estimation method in multiple LMIC settings, including comparative 
accuracy/costs/burden versus other available methods so we will be able to address these 
important considerations when we publish. 
 
Statistical modelling: 
Reviewer: 
tatistical modelling uses split-sampling for model derivation and model validation. Data 
splitting is an unstable method for validating models because if you were to split the data 
again, develop a new model on the training sample, and test it on the holdout sample, the 
results are likely to vary significantly. Recommended resampling approaches are cross-
validation and bootstrapping and the authors should consider this. 
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Response: 
We agree with this comment, but in the context of much smaller databases. Although our 
modeling process did use bootstrapping and cross-validation in the model training phase 
(i.e. for optimizing ELASTICNET hyperparameters), our available sample was large enough 
to ensure that the test subset was large, stable and had a similar distribution of perinatal 
characteristics. Using a held-out test set also allowed us to exactly replicate the analysis 
pipeline that would be used in our external validations (i.e. data preprocessing, 
normalization etc. were executed separately, but using the same algorithm in the model 
training subset and in the internal validation subset, as well as in external validation 
settings, which would not be possible if a cross-validation approach was used). To reinforce 
this point, we conducted sensitivity analyses where we used different training and testing 
splits, and also a cross-validation approach, and these yielded nearly identical results. 
 
Reviewer: The authors should also report recommended metrics for evaluating model 
performance i.e., discrimination and calibration of the models. 
 
Response: 
In this paper, we did not report results from a logistic regression model or other method 
meant to classify term vs. preterm birth, so discrimination is not relevant in the context of 
the models we are reporting. However, based on our model estimates, we have reported 
the preterm birth rate that is based on observed GA above and below 37 weeks and model-
predicted GA above and below 37 weeks. This represents calibration in the large, which we 
have now clarified in the manuscript, and we have included plots of observed vs predicted 
GA (new Figure 2 in manuscript). 
 
Reviewer: 
Interaction terms for models 1-3 – could the authors comment on the added value of the 
interaction parameters and how much improvement in model performance can be 
attributed to the inclusion of the interaction parameters? 
 
Response:  
The inclusion of the interaction terms improved model performance appreciably, both 
overall and in important subgroups (<37 weeks and SGA10). The addition of the interaction 
terms reduced the MAE from 0.75 to 0.71 overall, from 1.14 to 1.03 in the <37 weeks 
subgroup, and from 1.39 to 1.13 in the SGA10 subgroup. We have now commented on the 
effect of the interactions in the methods section. 
 
Reviewer: 
Reference for classifying SGA – the authors provide the reference INTERGROWTH-21st very 
preterm size at birth reference charts. The reference provided is only for infants born 24 to 
<33 weeks. What about for infants born after 33 weeks? Can the authors confirm that for 
infants born ³33 weeks they used the IG standards provided here: Villar et al. (20141). 
 
Response: 
Yes, we confirm that the reference provided by the reviewer was used for infants born 33 
weeks and older. We have updated the text accordingly. 
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Results: 
 
Reviewer:  
The authors should comment on the very low % preterm across the three cohorts. 
According to Blencowe et al. (20122), in 2010, the preterm birth rate in Philippines was 
estimated to be 15% (vs 4.6% in current cohort) and was 7.1% in China (vs 4.8% in current 
cohort).Thank you we have commented on this in the discussion. The text now reads: 
 
Response: The preterm birth rate that we estimated in the current cohort (Philippines: 
4.6%, China: 4.8%) was less than previously estimated (Philippines: 15%, China: 7.1%)(3). 
Although newborn screening initiatives are meant to be universal in these populations, 
some tests were paid for by the families. In the Philippines, all newborn screening has been 
covered since 2019, but prior to that only 4 of the tests were covered. Considering we only 
tested samples which the full panel was available this could have contributed to selection 
bias in our sample population where infants born in higher resource/urban areas were 
preferentially included where preterm birth rates could be substantially different. We also 
excluded infants in whom samples were collected later than 72 hours after birth as these 
are subject to a high level of heterogeneity. This had a similar effect as it did in Ontario, 
disproportionately excluding preterm infants, lowering the preterm birth rate from 6.9% to 
4.8% in the China cohort (and thus accounting for the bulk of the discrepancy there) and 
from 5.6% to 4.62% in the Philippines cohort (thus accounting for only a very small part of 
the discrepancy). 
 
1. Blencowe H, Cousens S, Oestergaard M, Chou D, et al.: National, regional, and worldwide 
estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected 
countries: a systematic analysis and implications. The Lancet. 2012; 379 (9832): 2162-2172  
 
Reviewer: 
In table 3, can the authors also include % low birth weight and % LGA? 
 
Response: 
We have added low birthweight and LGA to Table 3. 
 
Reviewer; 
Minor comments:

It is unnecessary to have elastic net in the title – it distracts the main focus of the 
paper.

○

 
Response: 
Thank you, we have made this change. The title is now: External validation of machine 
learning models including newborn metabolomic markers for postnatal gestational age 
estimation in East and South-East Asian infants  
 
Reviewer References 
1. Villar J, Ismail L, Victora C, Ohuma E, et al.: International standards for newborn weight, 
length, and head circumference by gestational age and sex: the Newborn Cross-Sectional 
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Study of the INTERGROWTH-21st Project. The Lancet. 2014; 384 (9946): 857-868 Publisher 
Full Text 
2. Blencowe H, Cousens S, Oestergaard M, Chou D, et al.: National, regional, and worldwide 
estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected 
countries: a systematic analysis and implications. The Lancet. 2012; 379 (9832): 2162-2172 
Publisher Full Text  

Competing Interests: No competing interests were disclosed.

Reviewer Report 26 March 2021
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© 2021 Sazawal S. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Sunil Sazawal   
1 Centre for Public Health Kinetics, New Delhi, Delhi, India 
2 Johns Hopkins School of Public health, Baltimore, MD, USA 

General Comments: 
 
This is an interesting study where the authors have collected unique datasets both from 
developed country and developing country settings. The paper addresses a very pertinent 
question related to the gestational age dating especially in the developing country settings where 
early ultrasound dating is missing due to unavailability of resources or because of the cost 
involved in getting an ultrasound done. But it is yet to be seen whether taking blood spots in on 
Whatman paper is feasible and getting the screen done in a lab with MS is possible in these 
settings. The paper is generally well written and structured with enough details, however, there 
are some queries which the authors need to address to make the paper clearer and more 
transparent. 
 
Paper should be accepted for indexing with revisions.

Major Concern:
Although not highlighted but proved in the original manuscript there were exclusions 
and imputations. A section providing details of these and how these may have 
affected the outcome or made improvements needs to be clearly stated in methods 
and discussion. 
 

○

The full model seems to include addition Hb ratio’s and analyses not part of the 
newborn screening routinely, in terms of implications and discussion this needs 
better discussed. While in results a result that was obtained with metabolic screen 
with clinical variable routinely available as birth weight needs to be the key primary 
estimate and other estimates need to be provided as secondary exploratory results. 

○

1. 
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The distinction as provided current is blurred and confuses the reader. 
 

Other concerns:
Reference GA assessment○

2. 

Statement: In the Philippines cohort, mothers who delivered in private hospitals generally received 
gestational dating ultrasounds while other infants’ GAs were generally measured using Ballard 
Scoring 
 
Q: It is a discrepancy since Ontario based models trained data against USG confirmed GA. Then 
under External validation where Philippines samples were used: How can both ultrasound and 
Ballard scoring used under same bracket. 
 
Internal validation of model performance in Ontario, Canada  
Q: Was the internal validation performed with previously developed models including 47 analytes, 
birth weight, sex or the restricted model, needs clarification and discussed  
 
Q: Restricted model definition 
The proper definition of the restricted model is missing. Was a restricted model built separately 
for Manila and Shanghai or Separate models model were made for Manila and Shanghai 
 
Statistical methods 
Statement: In the Ontario cohort, all screen-positive results were excluded from analysis, which 
had the effect of removing a large proportion of extreme outliers and a typical metabolic profiles. 
 
Q: What is the meaning of screen positive? Does this mean that all children who had a metabolic 
disorder which might have abnormal values for some metabolites were removed? If so, was it 
done in the other two datasets and will the model then be not applicable to children who show 
abnormal values for the metabolites.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Partly
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Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease, pediatrics, epidemiology and statistics, global health

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 05 May 2021
Kumanan Wilson, Ottawa Hospital Research Institute, Ottawa, Canada 

Reviewer 1  
  
General Comments:  
  
This is an interesting study where the authors have collected unique datasets both from 
developed country and developing country settings. The paper addresses a very pertinent 
question related to the gestational age dating especially in the developing country settings 
where early ultrasound dating is missing due to unavailability of resources or because of 
the cost involved in getting an ultrasound done. But it is yet to be seen whether taking 
blood spots in on Whatman paper is feasible and getting the screen done in a lab with MS is 
possible in these settings. The paper is generally well written and structured with enough 
details, however, there are some queries which the authors need to address to make the 
paper clearer and more transparent.  
  
Paper should be accepted for indexing with revisions.  
  
Major Concerns: 

Although not highlighted but proved in the original manuscript there were exclusions 
and imputations. A section providing details of these and how these may have 
affected the outcome or made improvements needs to be clearly stated in methods 
and discussion 

○

  
Response: No imputation of missing analyte/covariate values was undertaken either in the 
Ontario cohort or in the international cohorts given large sample sizes and very low occurrence 
of missing values. We have now provided further detail on the exclusion criteria applied in 
preparing the Ontario cohort for model development. The two criteria leading to the most 
exclusions were 1) requiring gold-standard GA measurement via 1st-trimester dating ultrasound, 
and 2) screening bloodspot collection within 48 hours of birth.   
The first exclusion criteria may have excluded infants born in rural or underserved areas of the 
province where access to comprehensive prenatal care was lower. In many cases however, this is 
more likely to be a data quality issue, where dating ultrasound was used but not recorded as 
such. The second criteria led to the disproportionate exclusion of preterm infants who more often 
had delayed sample collection, despite this not being recommended practice. Although 
this exclusion biased the rate of preterm gestation observed in our Ontario study cohort 
downward, but it was unlikely to have had any important impact on GA model development, as 
we still had a large sample size across the full spectrum of gestational ages at birth to allow 
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robust model development and performance evaluation. Further, the inclusion 
of samples collected later than 48 hours would introduce a 
large amount of heterogeneity in analyte levels which had to be balanced against the impact of 
exclusions. We have added more details to the methods and discussion reflecting these 
considerations.  
  
   
Reviewer:   
The full model seems to include addition Hb ratio’s and analyses not part of the newborn 
screening routinely, in terms of implications and discussion this needs better discussed. 
While in results a result that was obtained with metabolic screen with clinical variable 
routinely available as birth weight needs to be the key primary estimate and other 
estimates need to be provided as secondary exploratory results. The distinction as provided 
current is blurred and confuses the reader.  
  
Response:   
Hemoglobin types (eg HbF HbA - fetal and adult hemoglobin types) are measured during routine 
NBS in Ontario and the Philippines, in the course of identifying mutant types associated 
with hemoglobinopathies. These are reported as “peak percentages” with respect to total 
hemoglobin.  We have used the peak percentages for normal HbF, HbF1 and HbA to construct a 
ratio of fetal to adult hemoglobin by calculating (HbF+HbF1)/(HbF+HbF1+HbA), to measure the 
proportion of normal fetal hemoglobin, relative to the proportion of total normal fetal + adult 
hemoglobin types. This is strongly predictive of gestational age as the transition from fetal to 
adult hemoglobin occurs apace with fetal development. We have added these details to the 
Methods.   
   
 
Reviewer: 
Other concerns:  
Reference GA assessment  
Statement: In the Philippines cohort, mothers who delivered in private hospitals generally 
received gestational dating ultrasounds while other infants’ GAs were generally measured 
using Ballard Scoring  
  
Q: It is a discrepancy since Ontario based models trained data against USG confirmed GA. 
Then under External validation where Philippines samples were used: How can both 
ultrasound and Ballard scoring used under same bracket.  
  
Response:   
Although we knew general practice patterns of gestational dating method used in the Philippines, 
we did not have individual-level data on what method was used in each individual pregnancy, 
hence we accepted this as an additional source of validation error which would lead to 
larger MAE/RMSE. This was presented as a limitation in the discussion and we have clarified the 
description in the methods. It now reads:   
  
‘In the Philippines cohort, mothers who delivered in private hospitals generally received 
gestational dating ultrasounds while other infants’ GAs were generally measured using Ballard 
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Scoring, however individual-level data identifying which GA measurement method was used was 
not available.’  
 
 
Reviewer:  
Internal validation of model performance in Ontario, Canada   
Q: Was the internal validation performed with previously developed models including 
47 analytes, birth weight, sex or the restricted model, needs clarification and discussed   
  
Response: 
The internal validation of models 1-3 was conducted on an independent test dataset of Ontario 
infants using all 47 analytes, multiple gestation, birthweight and sex. Since not all of the 
predictors available for the Ontario dataset were also available for the external datasets (multiple 
gestation and a small subset of analytes were absent), we tailored the models to include the 
maximum number of available predictors in each of the external datasets (which we called 
‘restricted models’). The list of analytes available at each site is presented in Table 1. The tailored 
models were fit in the Ontario dataset, and validated in the Ontario test set and external 
datasets. We have added a figure (Figure 1) to clarify the different models tested. The Methods 
section now states:  
  
'A total of 47 newborn screening analytes, as well as sex, birth weight and multiple birth status, 
were used in the original Ontario model development. GA at birth (in weeks) determined by first 
trimester gestational dating ultrasound was the dependent variable. A subset of 
screening analytes, as well as multiple gestation status were not available in the external cohorts 
(Table 1). Three main models were developed and evaluated in the Ontario cohort (Table 2). For 
models 2 and 3, we also developed restricted models including only the covariates available in 
each of the two external cohorts (Figure 1). Restricted models were trained on the Ontario 
datasets but deployed in the external cohorts.'  
  
 
Reviewer: 
Q: Restricted model definition  
The proper definition of the restricted model is missing. Was a restricted model built 
separately for Manila and Shanghai or Separate models model were made for Manila and 
Shanghai  
  
Response: 
Restricted models were built separately to be applied in Manila and Shanghai based on 
availability of screening analytes/predictors in each setting. These models were trained in the 
Ontario data and then deployed in the external cohorts. We have updated the text and the 
methods now read:  
  
A total of 47 newborn screening analytes, as well as sex, birth weight and multiple birth status, 
were used in the original Ontario model development. GA at birth (in weeks) determined by first 
trimester gestational dating ultrasound was the dependent variable. A subset of 
screening analytes as well as multiple gestation were not available in the external cohorts (Table 
1). Three main models were developed and evaluated in the Ontario cohort (Table 2). Model 1 was 
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developed excluding multiple gestation status, and for models 2 and 3, we also 
developed restricted models including only the covariates available in each of the two external 
cohorts (Figure 1). All of the restricted models were trained on the Ontario datasets and deployed 
in the external cohorts.  
  
 
Reviewer: 
Statistical methods  
Statement: In the Ontario cohort, all screen-positive results were excluded from analysis, 
which had the effect of removing a large proportion of extreme outliers and atypical 
metabolic profiles.  
  
Q: What is the meaning of screen positive? Does this mean that all children who had a 
metabolic disorder which might have abnormal values for some metabolites were removed? 
If so, was it done in the other two datasets and will the model then be not applicable to 
children who show abnormal values for the metabolites.  
  
Response:  
Screen positive refers to infants who tested positive for a disorder in the screening panel. We have 
clarified this statement in the methods. These infants were excluded from the Ontario population 
as they tend to have extreme outlying values for some analytes which impact negatively on model 
development. Additionally, we employed a strategy of winsorizing extreme values that lay more 
than three IQRs above the third quartile or three IQRs below the first 
quartile. Winsorizing replaces these extreme outliers with the upper and lower boundary value 
for the analyte, which preserves the extremeness, but reduces the impact of the original 
value. The same winsorization algorithm was applied in the external cohorts. Screen positive data 
points were not explicitly removed from the Philippines and China datasets. The reviewer is 
correct that the model may not be as accurate for children with abnormal values, however in the 
external settings where this algorithm is being deployed, it would not be known whether infants 
had a disorder at birth, so the model would need to be as robust as possible in estimating GA 
under these conditions. Because of the approach we took, the impact of abnormal/extreme 
values would be attenuated by our data normalization strategy which included both log 
transformation and Winsorization of extreme outliers. The occurrence of extreme outliers for 
either screen positive infants or for other reasons was extremely low, so would only affect a 
small number infants, but our strategy allowed us to produce a GA estimate in these infants 
that was robust to extreme values and less likely to produce a wildly inaccurate estimate. We have 
clarified these details in the Methods.  
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