Skip to main content
. 2021 May 28;27(20):2531–2544. doi: 10.3748/wjg.v27.i20.2531

Table 1.

Summary of studies using deep learning for detection of esophageal precancerous lesions

Ref.
Year
Imaging
Study design
Study aim
DL model
Dataset
Outcomes
Cai et al[30] 2019 WLE Retrospective Detection of precancerous lesions and early ESCC -- 2615 images Sensitivity: 97.8%. Specificity: 85.4%. Accuracy: 91.4%
Guo et al[31] 2020 NBI, M-NBI Retrospective Detection of precancerous lesions and early ESCC SegNet 13144 images and 168865 video frames Sensitivity: 96.10% for M-NBI videos, 60.80% for non-M-NBI videos, 98.04% for images. Specificity: 99.90% for non-M-NBI/M-NBI videos, 95.30% for images
de Groof et al[32] 2020 WLE Retrospective Detection of Barrett’s neoplasia ResNet/U-Ne 1544 images Sensitivity: 91%. Specificity: 89%. Accuracy: 90%
de Groof et al[33] 2020 WLE Retrospective Detection of Barrett’s neoplasia ResNet/U-Ne 494364 unlabeled images and 1704 labeled images Sensitivity: 90%. Specificity: 88%. Accuracy: 89%
Struyvenberg et al[34] 2021 NBI Retrospective Detection of Barrett’s neoplasia ResNet/U-Ne 2677 images Sensitivity: 88%. Specificity: 78%. Accuracy: 84%
Hashimoto et al[35] 2020 WLE, NBI Retrospective Recognition of early neoplasia in BE Inception-ResNet-v2, YOLO-v2 2290 images Sensitivity: 96.4%. Specificity: 94.2%. Accuracy: 95.4%
Hussein et al[36] 2020 WLE Retrospective Diagnosis of early neoplasia in BE Resnet101 266930 video frames Sensitivity: 88.26%. Specificity: 80.13%
Ebigbo et al[37] 2020 WLE Retrospective Diagnosis of early EAC in BE DeepLab V.3+, Resnet101 191 images Sensitivity: 83.7%. Specificity: 100%. Accuracy: 89.9%
Liu et al[38] 2020 WLE Retrospective Detection of esophageal cancer from precancerous lesions Inception-ResNet 1272 images Sensitivity: 94.23%. Specificity: 94.67%. Accuracy: 85.83%
Wu et al[39] 2021 WLE Retrospective Automatic classification and segmentation for esophageal lesions ELNet 1051 images Classification sensitivity: 90.34%. Classification specificity: 97.18%. Classification accuracy: 96.28%. Segmentation sensitivity: 80.18%. Segmentation Specificity: 96.55%, Segmentation accuracy: 94.62%
Ghatwary et al[40] 2021 WLE Retrospective Detection of esophageal abnormalities from endoscopic videos DenseConvLstm, Faster R-CNN 42425 video frames Sensitivity: 93.7%. F-measure: 93.2%

BE: Barrett’s esophagus; DL: Deep learning; EAC: Esophageal adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; M-NBI: Magnifying narrow band imaging; NBI: Narrow band imaging; WLE: White light endoscopy.