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Abstract

Participant motion during functional magnetic resonance image (fMRI) acquisition produces 

spurious signal fluctuations that can confound measures of functional connectivity. Without 

mitigation, motion artefact can bias statistical inferences about relationships between connectivity 

and individual differences. To counteract motion artefact, this protocol describes the 

implementation of a high-performance denoising strategy that combines a set of model features, 

including physiological signals, motion estimates, and mathematical expansions, to target both 

widespread and focal effects of subject movement. This method can reduce motion-related 

variance to near zero in studies of functional connectivity, providing up to a hundredfold 

improvement over minimal processing approaches in large data sets. Image denoising requires 40 

minutes to 4 hours of computing per image, depending on model specifications and data 

dimensionality. The protocol additionally includes instructions for assessing the performance of a 

denoising strategy. Associated software implements all denoising and diagnostic procedures using 

a combination of established image processing libraries (FSL, AFNI, and ANTs) and new pipeline 

software (the XCP system, downloadable from Github: http://github.com/PennBBL/xcpEngine).
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INTRODUCTION

Functional connectivity analysis has yielded important insights into the intrinsic organisation 

of the human brain1,2. Whereas task fMRI examines the functional responses to specific 

cognitive, perceptual, or motor manipulations, functional connectivity MRI can provide 

detailed maps of major functional networks without requiring use of a task3–5. Prior studies 

have shown that important individual differences, including age across the lifespan, 

cognitive performance, and psychiatric diagnoses are associated with differences in 

functional connectivity6–9. However, many measures of interest in neuroimaging studies are 

also correlated with the movement of subjects in the scanner: for instance, children and 

subjects from clinical populations tend to move more when they are scanned than healthy 

adults10. In-scanner motion induces large signal fluctuations in fMRI time series data, which 

can systematically alter observed patterns of functional connectivity10–13.

If data processing fails to account for motion-related signal variance, artefact can easily 

confound inference. For example, initial reports that brain development is associated with 

strengthening of long-range connections and weakening of short-range connections have 

been shown to be dramatically inflated by the presence of motion artefact in younger 

children8,14. Accordingly, investigators have developed numerous denoising strategies to 

mitigate the influence of motion on functional connectivity, and thus disentangle motion 

effects from effects of interest (Box 1). However, not all of these strategies are equally 

efficacious. Furthermore, the rapid proliferation of denoising approaches has introduced 

uncertainty among researchers as to which approach has greatest utility for their data.

While the development of denoising strategies will continue into the foreseeable future, an 

emerging corpus of evidence suggests that the most successful strategies share a number of 

common elements that target particular features of motion artefact (Box 2). Here, we 

describe a validated, high-performance protocol for removal of motion artefact from 

functional MRI data. We also provide a theoretical and historical context for our protocol, its 

development, and its utility. Finally, we introduce a software package that implements 

common denoising protocols and that provides tools for assessing the efficacy of denoising.

Development of the protocol

Although the susceptibility of fMRI to motion has been acknowledged since 1996, it was not 

until 2012 that the influence of motion artefact on functional connectivity was systematically 

investigated15. Three studies published by independent groups not only reported the 

systematic contamination of functional connectivity measures by motion artefact, but also 

introduced measures to control for this artefact10–12. By and large, most approaches to 

denoising functional connectivity data have expanded on a family of strategies that had 

previously been used to denoise functional activation data: confound regression15.

Confound regression aims to separate signal from noise by modelling artefactual processes 

as time series. These time series might include, for instance, frame-to-frame estimates of 

how much the head has moved, or signals from noise-prone tissue compartments such as the 

ventricles. These “artefact” time series are fit to the observed BOLD time series using a 

general linear model (the confound model). The residuals of the fit, corresponding to the 
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variance that the confound model cannot explain, can then be analysed as “cleaned” data, 

while the BOLD variance explained by the confound model can be discarded from further 

analyses.

Confound regression remains the most prevalent method for removing head motion artefact 

in functional connectivity MRI. However, the performance of any confound regression 

strategy will depend on the constituent time series of its confound model. A more effective 
model will explain more artefactual variance in the data (and thus remove more artefact), 

while a more efficient model will minimise false positives (and thus not mistakenly identify 

signal of interest as artefactual in origin). The constitution of the optimal confound model 

has been hotly debated in the field, with numerous studies proposing a new, ostensibly better 

model every year16–21 (summarised in Box 1).

More recently, several studies have attempted to cope with the proliferation of confound 

models by establishing a standard set of benchmarks to evaluate their efficacy and efficiency 

(Tables 1 and 2). These benchmarking studies have yielded remarkably convergent 

results22–25. Taken together, these studies indicate that models that rely exclusively on 

estimates of frame-to-frame head movement fail to correct for motion artefact. In contrast, 

models that remove the time course of the average BOLD signal across the entire brain26,27 

(“global signal regression”, or GSR) and/or time series obtained via signal decomposition 

techniques16,19–21 (principal component analysis [PCA] or independent component analysis 

[ICA]) exhibit markedly improved performance. Such models can be profitably augmented 

with temporal censoring operations (e.g., spike regression, scrubbing)11,17,18 that 

specifically remove the influence of volumes corrupted by artefact. Most top-performing 

strategies combine several techniques in order to mitigate the influence of both local and 

global features of motion artefact28 (Box 2). Here, we provide a protocol for implementation 

of a high-performance denoising strategy, while acknowledging that different strategies have 

specific strengths and weaknesses. Ultimately, the specific choice of confound regression 

strategy should be dictated by the hypothesis of interest.

Comparison with other methods

Despite its ubiquity, confound regression is not the only means of correcting for head motion 

artefact in functional connectivity MRI. Two additional families of motion correction 

approaches that have gained traction are prospective and group-level motion correction 

strategies. Prospective approaches operate during data acquisition, for instance by using 

behavioural interventions to pre-emptively minimise head movement29, by leveraging MR 

sequences designed to facilitate separation of signal from noise30–32, or by ensuring that 

some minimal number of low-noise snapshots of the brain are available for each 

participant33. While minimization of motion during acquisition is critical for all studies, 

novel techniques for aiding prospective motion correction cannot be applied to the vast 

majority of datasets that have already been acquired. Furthermore, even in data sets where 

prospective approaches have been applied, it is likely that data quality can be further 

improved via retrospective denoising approaches. For instance, multi-echo acquisition 

techniques support improved identification and removal of focal motion artefact, but 

denoising can be optimised by combining the advantages offered by this prospective 
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approach with global artefact removal using retrospective denoising strategies such as 

GSR34.

In contrast, group-level retrospective approaches are applied after image processing, during 

group-level analysis. They often take the form of a nuisance covariate that is included in 

explanatory models alongside variables of interest. Importantly, correction at the group level 

is not equivalent to participant-level correction35, nor is it mutually exclusive. On the one 

hand, it can reduce the sensitivity of analyses to any connections that are both related to the 

variable of interest and susceptible to motion artefact36. For example, including both age and 

motion in a regression model as part of a study of brain development will by definition 

remove any shared variance. On the other hand, inclusion of a single motion covariate in a 

group-level linear model is insufficient to address either nonlinear effects or interactive 

effects of motion with variables of interest such as age. In summary, while group-level 

approaches can often supplement participant-level confound regression, they may be 

inadequate as a stand-alone approach. In general, best practices minimize motion during 

acquisition, use a high performance confound regression model during participant-level de-

noising, and evaluate the impact of motion in group-level statistical models.

Applications of the protocol

Functional connectivity analysis is a routine component of many neuroimaging studies, and 

a growing number of large studies are organised around the explicit aim of mapping the 

functional connectome in humans2,37. Any MRI study of the brain’s functional connectivity 

can reasonably be expected to include some form of motion denoising as part of image 

processing. However, denoising is most critical in cases where the scientific hypothesis is 

focused around individual differences, especially age, clinical diagnosis, symptom burden, 

or cognition. The strengths of the protocol we present below have been demonstrated most 

recently in a pair of head-to-head evaluations of motion correction strategies according to 

standardised benchmarks22,23.

Limitations

The implementation of confound regression strategies has not been without controversy. One 

of the most heated controversies in functional neuroimaging has concerned the 

appropriateness of using the global mean signal in confound regression27,38–43. A primary 

concern raised regarding GSR is the possibility that the mean global signal might have 

neural origin, or that it could reflect processes of interest44,45. However, accumulating 

evidence suggests that the global signal is in fact dominated by signals of non-neural origin: 

the content of motion-related and respiratory noise in the global signal is demonstrably high 

across datasets and scanning platforms13. Furthermore, a major limitation of alternative 

approaches based on spatially specific nuisance models (including ICA), is their inability to 

remove widespread, globally distributed artefact that is the primary result of motion (“Type 

2” artefact, in Box 2)24,46.

Although GSR is a highly effective denoising strategy, data processed using GSR 

necessarily include negatively correlated time series27,39. Whereas the distribution of 

connection strengths in data processed without GSR typically has a positive centre and 
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negative skewness, GSR-based processing often results in a distribution that is zero-centred 

and relatively symmetrical39. Without artefact-free data available to provide a ground truth, 

it is unknown whether negative correlations in the connectome reflect a biologically 

meaningful process or an artefact of processing. However, even when data are processed 

without GSR, lower-motion subjects tend to exhibit a greater number of negative edges and 

a distribution of connection strengths that is closer to zero-centred in comparison with 

higher-motion subjects18. Finally, it should be noted that GSR tends to increase the distance-

dependence of motion artefact, especially when it is not supplemented with either temporal 

censoring or spatially specific nuisance regression17 (see Box 2). However, it should be 

emphasized that this relationship is due to differential de-noising efficacy for long-range 

over short-range connections. Many alternative models that do not include GSR have less 

distance-dependence, but this insensitivity is often due to ineffective performance at 

connections of all lengths.

In addition to GSR, another highly effective technique is temporal censoring. However, 

denoising strategies that include temporal censoring can be costly in terms of lost temporal 

degrees of freedom (tDOF); they are effective but not always efficient. As a result, the 

number of frames censored – and thus the cost in tDOF – will vary across subjects, leading 

to the possibility that group differences are introduced because of the resultant sampling 

differences. Furthermore, temporal censoring clearly disrupts the temporal dynamics of the 

timeseries. However, objections to temporal censoring should be tempered by the 

observation that the signal being removed in censoring may be of questionable value in the 

first place. Thus, motion-corrupted data do not have the same as tDOF or temporal dynamics 

as artefact-free time series. Moreover, investigators can randomly censor non-corrupted data 

in order to balance the tDOF between groups, albeit at the cost of losing true observations.

Another open problem in motion mitigation is the quality and nature of frame-to-frame 

motion estimates. Typically, subject movement is estimated post hoc, by aligning each frame 

to a reference and using the alignment matrix to estimate that frame’s translational and 

rotational displacement from the reference. Real-time, optical measures provide an 

alternative option that may better estimate true head motion. Although such measures are 

under active development, they have yet to be adopted broadly, in part because the requisite 

technology is at present unavailable at most MRI centres. Furthermore, although the motion 

estimates obtained via post hoc realignment may be imperfect, prior work indicates 

convergence between these estimates and more direct optical measures47.

Overview of the procedure

In this protocol, we provide a step-by-step guide to implementing a high-performance de-

noising pipeline (Figure 1). In addition to the confound regression protocol itself, an equally 

important dimension of motion artefact correction is transparent reporting of data quality 

indicators (Tables 1 and 2). Such indicators provide a measure of the artefact initially present 

in each image and across the entire sample, and also of the residual artefact after images 

have been de-noised. These measures can be leveraged as proxies for denoising 

performance. Thus, we additionally describe how to quantify and report (A) the presence of 

artefact in a functional brain image and (B) the efficacy and efficiency of the motion 
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correction protocol for an individual subject and for the sample as a whole. Code for all 

stages of the protocol is freely and publicly available online (https://github.com/PennBBL/

xcpEngine).

Each step of the protocol both describes the objective of that step and includes a specific 

implementation in code. A variety of software libraries are available for image processing, 

and in many cases, alternatives are available to the specific implementation that we provide. 

A description of the general objective of each processing step is included so that 

investigators can select the best tool tailored to their own specific needs.

The denoising protocol can be implemented step-by-step by following the procedure 

outlined here, but we also provide a software package that flexibly implements the protocol 

in an automated manner. The eXtensible Connectivity Pipeline (or “XCP”) provides a 

platform for the processing of neuroimaging data that packages common processing steps 

into configurable modules, and then combines modules into processing streams, with each 

stream corresponding to an imaging modality or an analytic objective. Each module uses 

common tools, enforces consistent output directory structures, and utilises identical naming 

conventions. Metadata and provenance of any image derivatives are internally tracked, 

allowing the pipeline to process each derivative in the most appropriate way.

The XCP system is powered by AFNI, ANTs, and FSL48–50, but also introduces multiple 

standalone image processing utilities. XCP supports processing streams for a number of 

sequences and analytic modalities, including structural morphometry, task based fMRI, and 

arterial-spin labelled MRI. However, in this protocol we focus on applications to functional 

connectivity MRI. At present, XCP includes default configurations for three high-

performance confound regression strategies: an anatomical CompCor model based on 

principal component analysis19, an ICA-AROMA model based on independent component 

analysis20, and a high-parameter model based on noisy tissue compartments and motion 

estimates17. All streams include GSR26, and all can optionally incorporate 

censoring11,17,18,51. (A version of each stream that does not incorporate GSR is also 

available to facilitate assessing the robustness of results to alternative processing schemes, 

but we do not recommend these alternatives for most use cases.)

When processing data with XCP Engine, a design file and a cohort file are required. The 

design file parametrises the processing stream, while the cohort file characterises the input 

sample. A configuration script and GitHub repository are available for easy configuration of 

the design file (https://github.com/PennBBL/xcpConfig). A brief overview of cohort file 

specifications is included in Box 3, as is an example. More extensive documentation on the 

design and cohort files, including examples, format specifications, and instructions for 

cohort file setup are available online (https://pipedocs.github.io/config/index.html). XCP can 

be run either from a local installation or using the publicly available Image Processing Portal 

(IPP, https://ipp.cbica.upenn.edu) from the Center for Biomedical Image Computing and 

Analytics (CBICA) at the University of Pennsylvania, which provides the scientific 

community with the resources of a high-performance computing cluster for processing data 

with XCP, and also provides automatic access to future extensions of XCP functionality.
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Functional connectivity processing generally requires that each participant’s anatomical data 

be processed first, and in the protocol detailed here we assume that the user has already 

executed an anatomical pipeline to completion. Outputs of anatomical processing should 

minimally include (1) a high-resolution anatomical image with non-brain tissue stripped and 

with any intensity bias artefact removed; (2) a segmentation of the anatomical image into 

grey matter, white matter, and cerebrospinal fluid; and (3) a set of transforms that map 

between coordinates in the subject’s anatomical image and coordinates in a standard 

reference space that is the same for all subjects, such as the MNI template. The segmentation 

of the structural image is required to isolate nuisance signals from white matter and 

cerebrospinal fluid, and it can additionally be used to improve co-registration quality. 

Transforms to template space (also called “image normalisation” or “registration”) are a 

prerequisite for generating functionally homologous connectomes across subjects; they are 

used to move a standard brain parcellation into each subject’s coordinate space so that 

regional signals can be computed and correlations between them can be estimated. XCP 

requires that normalisations to template space use warps generated by the top-performing 

registration procedures included in Advanced Normalization Tools (ANTs)49,52. ANTs 

transforms are saved as an affine matrix and a NIfTI-formatted vector field. These 

transforms and all other anatomical prerequisites can be easily obtained using the ANTs 

Cortical Thickness pipeline (ANTsCT; https://github.com/ANTsX/ANTs)53. As an 

alternative to the ANTsCT pipeline, XCP supports several different levels of anatomical 

processing to obtain the requisite anatomical derivatives; these options are detailed in the 

online documentation.

Experimental design

The design of a confound model is subject to a number of considerations. Principal among 

these are the research hypothesis under consideration and the nature of the data set being 

processed54. Because motion can confound studies of individual or group differences 

(especially in clinical and developmental samples), a confound model’s efficacy in reducing 

the motion-connectivity relationship is a primary concern in these studies. For basic research 

in connectomics, the integrity of network topology might be of equal importance; in this 

case, the distance-dependence of residual artefact could be a critical indicator.

Although top-performing models can be expected to generalise reasonably well across data 

sets, there will be some variability in their performance. For example, it should be noted that 

these processing streams were developed and benchmarked on fMRI data with standard 

temporal resolution (i.e., TRs of 2–3s), and their performance on multiband fMRI data with 

high temporal resolution has not been fully evaluated. As such, if performance 

benchmarking is a feasible option, then evaluating several motion correction strategies prior 

to processing the data set can inform the decision as to which model to use. Otherwise, the 

set of existing benchmarking studies suggest first that top-performing models include GSR. 

Second, framewise censoring approaches provide a highly effective complement to GSR that 

can mitigate the distance-dependent profile of motion artefact but that can also incur 

considerable costs in the data’s degrees of freedom and autocorrelation structure. Third, 

although they might not be as effective as censoring, signal decomposition strategies such as 

ICA-AROMA and aCompCor provide an alternative mechanism for targeting spatially focal 
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artefact that can be missed when applying GSR alone22–25. Importantly, denoising elements 

are often combined to produce an effective confound model (Boxes 1 and 2).

To evaluate whether denoising is successful, investigators can examine measures computed 

at both subject and sample levels (Tables 1 and 2). At the subject level, we suggest assessing 

the outcome of the denoising procedure by visualising the entire data set with a voxelwise 

carpet plot55 (Figure 2). This plot can qualitatively illuminate frame-to-frame relationships 

between movement and the BOLD signal and can be used to identify BOLD signal 

fluctuations that co-occur with subject movement. At the sample level, the residual 

correlation between motion and functional connectivity across subjects,10,11,17,28 or quality 
control—functional connectivity (QC-FC) correlation, provides a quantitative measure of 

denoising success (Figure 3). Strong QC-FC correlations indicate that functional 

connectivity was substantially impacted by motion. Beyond QC-FC relationships, it is useful 

to measure QC-FC distance dependence, or the extent to which QC-FC correlations are 

dependent on the Euclidean distance between the centres of mass of any pair of 

regions10,11,17. QC-FC distance dependence provides an informative diagnostic of the spatial 

profile of residual artefact (Box 2). In addition to QC-FC and distance dependence, another 

potentially useful standard for the assessment of denoising methods is test-retest reliability. 

The Consortium for Reliability and Reproducibility (CoRR56) hosts a public repository of 

data sets with repeated measures that provide an ideal resource for studies assessing test-

retest reliability. Investigators using this metric are cautioned that motion artefact itself 

exhibits test-retest reliability25,56.

Another consideration is the decision to include or exclude censoring in the confound 

model. Censoring is a denoising approach whereby all variance in a motion-contaminated 

frame is completely removed from the time series, either via deletion of the frame or via 

spike regression17,18,51 (Box 1). Modern censoring approaches are designed to minimise the 

influence of censored frames by incorporating the censoring procedure into any intermediate 

stages of the analysis, such as de-trending and temporal filtering, leaving the autocorrelation 

structure of the data intact for as long as possible18,57,58. Two large-scale benchmarking 

studies have ranked censoring in combination with GSR as one of the most effective families 

of retrospective participant-level motion correction strategies22,23.

However, a frequent argument against the use of censoring is that its application results in a 

large and variable loss of temporal degrees of freedom in the data (see Limitations)18,42. In 

general, we advocate censoring except in cases where (1) the input time series is short 

enough that removal of any additional frames could result in insufficient degrees of freedom, 

or (2) the analytic objective requires the autocorrelation structure of the data to remain 

intact. For instance, sliding window connectivity analysis depends on the autocorrelation of 

adjoining frames, and investigators using this technique in combination with censoring may 

need to account for any disruptions that censoring incurs to the autocorrelation structure. 

Although our research group has historically favoured a model that combines censoring 

(either framewise or spatially adaptive despiking) with GSR, tissue-based regressors, motion 

estimates, and temporal and quadratic expansions, current indications suggest that models 

that combine GSR with either ICA-AROMA20 or anatomical CompCor16,19 are very 

reasonable alternatives22,23.
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Level of expertise needed to implement the protocol

Designing a motion de-noising pipeline de novo is a demanding programing task, requiring 

competence in time series analysis and image processing, and a considerable familiarity with 

the range of software suites available for processing of brain images. In contrast, executing 

the automated processing stream provided via XCP is substantially more accessible. To use 

XCP, users should have attained a minimal level of competence with command line usage, 

and should have access to a computing environment where AFNI, ANTs and FSL can be 

installed. We anticipate that most users of existing fMRI tools will be able to use this 

software successfully. Additionally, familiarity with statistical modelling and an 

understanding of functional connectivity is required to design and interpret QC-FC models.

MATERIALS

EQUIPMENT

Software

• A computer or virtual machine running a terminal emulator with Bash shell v4.0 

or higher.

• Standard software libraries for processing of neuroimaging data:

– FSL50 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation).

– AFNI48 (https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/

background_install/install_instructs/index.html).

– ANTs49 (http://stnava.github.io/ANTs/).

– C3D (http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.C3D)

• The statistical language R, along with image processing packages available from 

CRAN (filter, pracma, RNifti, and optparse) (https://cran.r-project.org/). To 

support graphical renderings of denoising diagnostics, it is recommended that the 

R packages ggplot2, reshape2, svglite, and grid also be installed. To support 

modelling of repeated measures from each subject, the R package lme4 must be 

installed.

• XCP system (https://github.com/PennBBL/xcpEngine).

• (Optional) ICA-AROMA20 software implementation (https://github.com/rhr-

pruim/ICA-AROMA) and Python 2.7, with Python modules os, argparse, 

commands, numpy, and random.

Input data

• BOLD-weighted functional MR images of each subject’s brain. These are the 4-

dimensional time series to be de-noised.

CRITICAL All images should be converted to NIfTI format prior to processing.
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CRITICAL Because the results of fMRI processing are impacted by data 

integrity, both functional and anatomical images should be examined, either 

visually or using quantitative metrics59,60, to evaluate suitability for processing.

CRITICAL The quality of image registration will be improved by correcting for 

magnetic field distortions incurred during functional image acquisition. If the 

acquired sequences support distortion correction of functional images (e.g. via 

FSL’s FUGUE or TOPUP routines), this procedure should be performed before 

motion correction.

Anatomical and atlas input

• A high-resolution anatomical MR image for each subject, with skull and non-

brain tissue stripped from the image.

• Anatomical segmentations of the subject’s brain into grey matter, white matter, 

and cerebrospinal fluid.

• Transforms that map between coordinates in subject-anatomical space and 

coordinates in a template space that can be used as a standard across all subjects. 

This template space could be either the MNI152 template or a sample-specific 

template. For users of XCP Engine, XCP assumes that the transforms are in ITK 

(ANTs) format.

• If anatomical segmentations or ITK-formatted transforms between subject and 

template space are not available, these can be obtained by running the complete 

ANTs Cortical Thickness pipeline53 for each subject. Alternatively, XCP 

implements several options for preparing all necessary anatomical input; refer to 

the online documentation for details.

• An atlas or parcellation that defines regions of interest across the brain.

CRITICAL The atlas should ideally be designed as a functional parcellation that 

is suitable for connectomic analysis. Commonly used parcellations include the 

264-region Power parcellation3, the 333-region Gordon areal parcellation61, the 

Yeo network parcellation4, the multiscale Lausanne parcellations62, data-driven 

functional parcellations63, and the multiscale local-global Schaefer 

parcellations64.

CRITICAL If manually processing the data without XCP, take note of the 

coordinate space in which the parcellation is defined. Many atlases are available 

in the MNI152 coordinate space, for instance. The transforms, above, should be 

able to map, or “warp”, the parcellation into subject-anatomical space using an 

appropriate warping command, such as antsApplyTransforms (with ANTs) or 

applywarp (with FSL). If they are not, then it will be necessary to either (1) 

compute new transforms from subject-anatomical space to the parcellation space 

and use those as the input transforms, or (2) obtain a parcellation in a space that 

is accessible to the existing transforms.
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CRITICAL If processing the data using XCP, the connectome will be computed 

over the Power parcellation by default. To run additional parcellations, download 

them from the brainspaces database on GitHub (https://github.com/brainspaces) 

and then run, from the XCP install directory:

utils/atlasMetadata –a <parcellation name> -d <downloaded 

repository>

Equipment setup—ANTs, AFNI, FSL, R. Instructions for installation and setup of all 

software packages are available at the websites of those packages. R can typically be 

installed using the operating system’s package manager. Required R packages can be 

installed from within R by calling the install.packages() command with the package name as 

argument. To verify successful installation of all dependencies, run the XCP command-line 

utility core/checkDependenciesXCP.

XCP utilities.: To run XCP utilities, define the environmental variable XCPEDIR to point to 

the XCP install directory:

export XCPEDIR=<full path to install directory>

Including this definition statement in the user’s .bash_profile or .bashrc is recommended.

Running XCP Engine.: XCP automates all motion correction and quality assessment steps 

described below through its front end, xcpEngine. This automation is powered by a user-

provided cohort file (subject list) and design file (which toggles the optional steps specified 

below). The design file can be configured by running the script xcpConfig in the XCP install 

directory, after defining XCPEDIR as above, and then selecting Functional connectivity. 

Consult the software manual for detailed documentation (https://pipedocs.github.io).

Running XCP Engine on a computing cluster, without installing 
dependencies.—In lieu of installing all dependencies, it is possible to complete the 

motion correction protocol using the Image Processing Portal (IPP, https://

ipp.cbica.upenn.edu/) at the Center for Biomedical Image Computing and Analytics at 

UPenn, which implements pre-processing in XCP. For input to IPP, prepare a design file as 

described above. Upload functional input data in compressed NIfTI format (.nii.gz), and 

upload any processed anatomical data, first archiving and compressing the directory 

containing all anatomical inputs (e.g., the ANTs Cortical Thickness output directory) 

in .tar.gz format. If anatomical data were processed in XCP, each subject’s struc subdirectory 

should be archived and compressed as .tar.gz.

Alternatives.—Alternative software packages are available for automation of many 

protocol steps. A selection of alternatives is listed here. Consult the relevant manuals for 

detailed documentation and installation instructions.
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• The Python-based software package C-PAC65 implements most subject-level 

motion correction strategies.

• The Python-based software package QAP59, available from the Preprocessed 

Connectomes Project, computes many subject-level diagnostics of motion 

artefact.

• The script afni_proc.py bundled with AFNI provides similar functionality.

• The MATLAB-based software packages CONN66 and Connectome Computation 

System67 implement many motion correction strategies and subject-level 

diagnostics.

• The Python-based software package fmriprep implements robust pre-processing, 

co-registration, and confound modelling (Steps 2–20) with minimal user 

overhead for data sets in the BIDS format68.

• The rs-fMRI repository used in a recent benchmarking study23 (https://

github.com/lindenmp/rs-fMRI) provides a MATLAB-based implementation of 

the complete protocol that requires some manual editing by users to run on new 

data sets.

Input data.—Structural and functional images should be named in a systematic manner. 

The BIDS standard69 presents one recommended way to organise data in a consistent 

manner.

PROCEDURE

Preparing a subject list

TIMING 1—10 minutes

1. When using XCP Engine, a subject list (or “cohort file”) supports iteration and 

uniform processing across the entire sample. An example is provided in Box 3, 

along with basic specifications. Detailed specifications are available in the online 

documentation (https://pipedocs.github.io/config/cohort.html). To prepare a 

subject list, associate each subject’s functional time series with that subject’s 

processed anatomical data (segmentation, transforms, and brain-extracted, bias-

corrected image). For each subject, write a comma- or tab-delimited row of 

values to the subject list file. Each subject’s values can include any information 

that could facilitate processing of the subject’s data, including subject identifiers 

and input paths. However, values should be consistent across subjects – if the 

third column (value) for subject 1 contains the path to subject 1’s functional time 

series, then the third column for all subjects should contain the path to those 

subjects’ functional time series. All processing steps described below under the 

headings ‘Minimal pre-processing’, ‘Co-registration’, ‘Confound modelling’, 

‘Confound regression’, and ‘Performance assessment: subject level’ should be 

performed separately for each subject, while ‘Performance assessment: sample 

level’ should be performed for the analytic sample as a whole by pooling outputs 

from all subjects.
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Minimal pre-processing

TIMING 5—15 minutes per subject—XCP’s prestats module implements minimal pre-

processing.

2. Discard the initial volumes of the functional time series. This can be achieved 

using fslroi, specifying the functional time series as <input>, the number of 

volumes to be discarded as <tmin>, and −1 (indicating retention of all remaining 

volumes) as <tsize>:

fslroi <input> <output> <tmin> <tsize>

CRITICAL STEP The number of volumes to discard will depend on the 

acquisition parameters of the functional data and on the specifications of the 

scanner. This step is unnecessary if initial volumes have already been discarded 

as part of the acquisition protocol.

3. Estimate framewise head motion by computing the realignment parameters (RPs) 

and the overall framewise displacement (FD) of the head. Estimating the 

realignment parameters will require selection of an exemplar volume from the 

4D time series, to serve as a reference for realignment. By default, this will be 

the midpoint of the time series. The realignment parameters can be computed 

using FSL’s mcflirt, specifying the time series as input70:

mcflirt -in <input> -out <output root> -reffile <reference for 

realignment> -plots -rmsrel -rmsabs -spline_final

The rmsrel and rmsabs flags should be toggled in order to compute additional 

summary measures of the head’s framewise and overall displacement. The plots 

flag configures the program to generate a visualisation of motion estimates, 

while spline_final specifies the interpolation approach. The output with suffix 

‘.par’ contains the 6 realignment parameters in 6 columns, while the output 

suffixed ‘rel.rms’ contains the framewise displacement in a single column.

CRITICAL STEP By convention, the displacement of the head in the first 

acquired frame is defined to be 0. By default, however, mcflirt does not write out 

the framewise displacement for the first frame. To ensure that temporal masking 

(Step 8) selects the correct frames for removal, the default output from mcflirt 

should be padded with a leading 0.

4. (Optional) Apply correction for timing of slice acquisition. This can be achieved 

using FSL’s slicetimer. Determine the most appropriate call to slicetimer by 

consulting the acquisition parameters of the data.

CRITICAL STEP Interpolation steps, such as slice-time correction and 

despiking, affect estimates of realignment parameters71. To ensure that 

realignment parameters are computed independently of these procedures, they 
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should not be performed until after motion parameters have been estimated. 

However, proper slice-time correction requires information about the 2D slice in 

which each voxel was acquired. Because motion realignment re-slices the time 

series, slice-time correction should be performed before realignment but after 
estimation of realignment parameters. Accordingly, the input to slice-time 

correction should be the output of Step 2, and not the output of Step 3.

5. Realign all volumes relative to a reference. As in Step 3, mcflirt should be called:

mcflirt -in <input> -out <output root> -reffile <reference for 

realignment> -mats -spline_final

Use a different <output root> from the <output root> in Step 3 to ensure that the 

realignment parameters are not overwritten. Because realignment parameters 

have already been computed, it is also possible to select a reference volume on 

the basis of low framewise head motion or to use the average of all volumes as 

the reference for this iteration of realignment. Without use of slice-time 

correction, Steps 3 and 5 can be combined into a single step.

6. Classify all image voxels as brain or non-brain, and delete non-brain values from 

the image. This step can be completed by passing the exemplar volume to the 

FSL command-line tool bet to generate a binary brain mask, and afterward 

multiplying the processed functional time series by the brain mask in fslmaths to 

produce a skull-stripped time series.

7. Compute standardised DVARS, an index of the frame-to-frame signal change 

across the brain that can be used to flag outliers11,72,73. Use the skull-stripped 

time series from Step 6 as the input to the XCP utility script dvars:

${XCPEDIR}/utils/dvars -i <input> -o <output>

dvars will produce three outputs. The output with suffix std.1D contains 

standardised DVARS.

8. (Optional; skip this step if censoring is not performed.) Compute temporal masks 
and generate spike regressors. A temporal mask is a binary-valued time series 

that is equal in length to the functional time series and that indicates whether 

each frame of the functional time series should be preserved or excised11,18 

(censored). Before proceeding, determine whether temporal censoring is a 

reasonable processing strategy for the dataset and analytic goals (see 

EXPERIMENTAL DESIGN). Next, select criteria and thresholds for censoring 

(for instance, framewise displacement > 0.2mm or standardised DVARS > 2). 

Temporal masks can be generated for each criterion using either 1d_tool.py in 

AFNI or the XCP utility tmask.R:
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${XCPEDIR}/utils/tmask.R -s <time series> -t <threshold> -o 

<output>

To prepare a temporal mask, use the criterion <time series> (rel.rms, the 

framewise motion estimates from Step 2, and optionally the DVARS estimates 

from Step 7) and the censoring <threshold> for each criterion. Define the final 

temporal mask as the union of all single-criterion temporal masks. After 

obtaining the final temporal mask, derive spike regressors17,51 from this mask by 

using the XCP utility tmask2spkreg.R, specifying the temporal mask as 

<tmask>:

${XCPEDIR}/utils/tmask2spkreg.R -t <tmask> >> <output spike 

regressors>

CRITICAL STEP Although censoring has been established as an efficacious 

motion correction strategy, the exact threshold and criteria for determining 

whether a frame should be censored vary from study to study. For example, in 

typical single-band fMRI studies with TRs of 3s, censoring any volumes with FD 

> 0.1 mm is very stringent, while censoring volumes with FD > 0.25 mm is less 

stringent but still effective. Furthermore, thresholds for framewise censoring 

criteria have typically been reported using units per frame (e.g., mm per frame 

for FD). However, it should be emphasized that 0.25 mm FD during a 1 s frame 

does not reflect the same degree of motion as does 0.25 mm FD during a 3 s 

frame.

CRITICAL STEP There are several different but highly correlated ways to 

define FD. Here, we refer to FD as defined by the output of mcflirt (FDJenkinson). 

An alternative formulation of FD, FDPower, can be computed by passing the 

realignment parameters from Step 2 to the XCP utility fd.R; this measure can 

then be used as a criterion for temporal masking. FDPower and FDJenkinson are 

highly correlated, with FDPower equal to approximately twice FDJenkinson.25,54

9. (optional) Despike the time series. Despiking is a spatially adaptive interpolation 

approach that identifies voxelwise signal outliers and imputes new values for 

each of those outliers. Despiking can be performed using AFNI’s 3dDespike 

program:

3dDespike -prefix <output> -nomask -NEW <input>

Note that alternative de-spiking techniques exist, including wavelet-based 

despiking74. Additionally, the relationship between despiking and temporal 

censoring is not characterised; it is likely that both techniques target the same 

types of noise using different identification criteria. As a result, despiking is 
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often used as an alternative to temporal censoring, while combining despiking 

and temporal censoring in the same processing stream is uncommon.

10. Remove the mean and any linear or polynomial trends from the functional time 

series using the XCP utility dmdt.R:

${XCPEDIR}/utils/dmdt.R -i <img> -d <order> -o <output> -m <mask> -

x <mean image> [-t <tmask>]

specifying the skull-stripped time series from Step 6 as <img>, the brain mask 

from Step 6 as <mask>, and (if applicable) the temporal mask from Step 8 as 

<tmask>. De-meaning and de-trending operates by fitting a polynomial basis to 

the input time series using a general linear model and afterward discarding the 

explained variance. Any frames flagged for censoring in the temporal mask are 

not considered in the fit18. The de-trend <order> refers to the highest order 

polynomial term included in the model, which can either be defined a priori or 

estimated using the formula

1 +
TR * n

150

where TR is the sampling time of the functional time series in seconds and n is 

the number of frames sampled48. Toggle the -x option to generate a mean 

functional image, defined as the fit of the constant term of the model, and define 

an appropriate output path.

CRITICAL STEP Save the last output produced during minimal preprocessing, 

as useful diagnostic information can be obtained from it.

Co-registration

TIMING 20—45 minutes per subject—XCP’s coreg module implements co-

registration.

11. Identify the white matter boundary. Use the tissue-class segmentation to obtain a 

binary mask indicating whether each voxel in the anatomical image represents 

white matter (WM) tissue. If necessary, the tissue-specific WM mask can be 

generated with the XCP utility val2mask.R, using the anatomical segmentation 

as the reference image and selecting all values that correspond to WM as the 

values of interest:

${XCPEDIR}/utils/val2mask.R -i <input> -v <WM values> -o <output>

12. Co-register the functional image to a high-resolution anatomical reference 
acquired for the same subject. Use FSL’s flirt to compute the co-registration, 

specifying either the reference volume from Step 4 or the mean image from Step 
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10 as the input (<source>) and the subject’s anatomical image as the 

<reference>:

flirt -in <source> -ref <reference> -dof <degrees of freedom> -out 

<output image> -omat <output matrix> -cost bbr -wmseg <white 

matter segmentation volume>

Set the <degrees of freedom> to 6 (or alternatively 9 if distortion correction has 

not been performed), and ensure that an <output matrix> path is defined. Specify 

bbr (boundary-based registration) as the cost function, and use the binary WM 

mask from Step 11 as the <white matter segmentation volume>75. After the co-

registration is performed, use FSL’s convert_xfm to calculate the inverse of the 

<output matrix> (a .mat file) specifying the <output matrix> from the forward 

transformation as the argument to the inverse flag:

convert_xfm -omat <output inverse> -inverse <matrix>

CRITICAL STEP Because the co-registration computed here will later be 

necessary for computing tissue-based confounds, the quality of the co-

registration should be assessed before proceeding. The most reliable way to 

assess co-registration quality is through expert visual inspection of all registered 

images. However, co-registration quality can also be quantified using spatial 

cross-correlation and coverage metrics. Cross-correlation can be computed using 

fslcc, while coverage can be computed as the percentage of the binarised 

structural image that also lies within the binarised co-registered image or as the 

Dice and Jaccard coefficients between the binarised structural and co-registered 

images. All quality indices can be obtained using the XCP utility 

maskOverlap.R:

${XCPEDIR}/utils/maskOverlap.R -m <co-registered functional image> 

-r <anatomical image>

After computing these values for all subjects, they can be used to flag outliers for 

more thorough visual inspection.

13. (Optional; skip this step if using any program other than ANTs to warp images 

between coordinate spaces.) Create ITK-compatible versions of the forward and 
inverse co-registration matrices. This will enable use of the transforms with 

ANTs. Converting the FSL-based co-registration matrices to ITK format can be 

accomplished using c3d_affine_tool with the fsl2ras and oitk flags, specifying 

each .mat file from Step 12 as the <transform> file, providing source and 

reference images for each transform as for flirt, and specifying the output path 

using the oitk flag:
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c3d_affine_tool -src <source> -ref <reference> <transform> -

fsl2ras -oitk <output>

To verify that the conversion was successful, apply the reformatted transform to 

the <source> image from Step 12 and evaluate whether the output is identical to 

the <output image> from Step 12.

Confound modelling

TIMING 1—5 minutes per subject without ICA-AROMA, 20—30 minutes per 
subject with ICA-AROMA XCP’s confound module implements confound 
modelling.

14. (Optional) Use ICA-AROMA to decompose the pre-processed data into linearly 

independent signal sources, identify motion-related components, and remove 

them from the data20. Additional documentation and detailed instructions for 

implementation are available online along with the ICA-AROMA code (https://

github.com/rhr-pruim/ICA-AROMA/blob/master/Manual.pdf).

15. Compute the mean global signal26. Use the fslmeants function, providing the 

functional image as the <input> and providing the whole-brain mask from Step 6 

as the <mask>:

fslmeants -i <input> -o <output> -m <mask>

16. Compute eroded white matter (WM) and cerebrospinal fluid (CSF) masks. The 

XCP utility script erodespare erodes a mask such that only a user-specified 

percentage of the deepest tissue in the original mask remains:

${XCPEDIR}/utils/erodespare –i <input> -o <output> -r <retention 

criterion> -v <value set>

It is recommended that masks be eroded to retain 5–10 percent of their original 

size (<retention criterion> of 5 – 10) so as to minimise partial volume effects. 

Use the anatomical segmentation as the <input>. For the <value set>, enter the 

values that correspond to the WM or CSF label in the anatomical segmentation. 

Finally, warp the output eroded masks into the same coordinate space as the 

functional time series.

CRITICAL STEP Because the WM and CSF signals mix with the grey matter 

(GM) signal near the GM interface, the WM and CSF masks derived from the 

anatomical segmentation will include influence from adjoining GM voxels18,28. 

This influence should be mitigated by eroding WM and CSF masks to exclude 

boundary voxels; more liberal erosion will result in WM and CSF signal 

estimates that are more independent of the global signal. However, erosion 
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should leave enough voxels in each mask in order to spatially sample the tissue 

class of interest.

17. Compute nuisance signals in WM and CSF. Several standard options are 

available for extracting nuisance signals from the WM and CSF.

A. Compute mean signals within the white matter (WM) and cerebrospinal 
fluid (CSF), and add these to the motion model. These can be computed 

as in Step 15, substituting the eroded tissue-specific masks from Step 

16 for the whole-brain mask.

B. Use anatomical CompCor16,19. CompCor decomposes the signals in the 

eroded WM and CSF masks using principal component analysis (PCA). 

Select the first several component time series from the decomposition 

such that 50 percent of the variance in WM and CSF compartments is 

explained in each case19. PCA can be implemented using AFNI’s 3dpc 

utility, with the cumulative variance explained indexed in the 

<output>_eig.1D output file under the cumulative fraction heading, and 

with the principal component time series saved in an output file called 

either <output>_vec.1D or <output>.1D. After determining the correct 

number of components, re-run 3dpc, this time specifying the number of 

components to be included using the -pcsave option.

3dpc -prefix <output> -mask <eroded mask> [-pcsave <number 

of PCs>] <input>

18. (Optional) Prepare any custom nuisance time series. These can include any 

additional nuisance time series available for the current data set, including 

recordings of artefactual processes such as pulse and respiration or nuisance time 

series defined separately for each voxel (as well as expansions of these where 

appropriate)76. If the data are being processed for a task-constrained functional 

connectivity analysis, the task model can be included in the confound model 

depending on analytic objectives77.

19. (Optional) Compute time series expansions15. For each time series in the motion 

model, compute its temporal derivative, its quadratic term, and the temporal 

derivative of its quadratic term. Note that adding a previous time point to the 

confound model and adding a temporal derivative to the confound model for the 

purposes of confound regression are equivalent, as the temporal derivative of a 

discretely sampled time series can be expressed as the difference between the 

original time series and the backwards shifted time series (a linear combination). 

To ensure that the confound model is not over-specified due to collinearity, a 

single confound model should not include both derivatives and temporal shifts.

20. Build the confound model into a matrix. Concatenate the time series produced in 

Steps 3 and 15–19 into a model matrix, for instance using AFNI’s 1dcat utility.

Ciric et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRITICAL STEP Do not add the spike regressors to the confound model yet, 

as they should not be subjected to any temporal filtering.

CRITICAL STEP To verify that WM and CSF signals are sufficiently 

independent from the global signal, it is helpful to estimate the collinearity of all 

predictor variables. A matrix of correlations among predictor variables can be 

obtained using the XCP utility ts2adjmat.R, specifying the complete motion 

model as the input time series. (This matrix will be written in the form of a 

feature vector, which can be converted to a symmetric square matrix using the 

squareform function in SciPy, Matlab, or the R library pracma.)

Confound regression

TIMING 5—10 minutes per subject without censoring, 60 minutes per subject 
with censoring XCP’s regress module implements confound regression.

14. (Optional; skip this step if censoring is not performed.) Interpolate over epochs 
marked for censoring. Temporal filtering (Step 22) can result in propagation of 

artefactual variance from frames flagged for censoring into adjoining 

frames18,57,58. Interpolation of values in contaminated frames can help make the 

temporal filter robust to noise in censored frames while preserving the overall 

autocorrelation structure of the data. Currently, the recommended approach18 is 

based on the Lomb-Scargle periodogram78; this approach generates surrogate 

data based on the spectral characteristics observed in low-noise (unflagged) 

frames. This approach is, however, computationally intensive. Less rigorous but 

faster interpolation can be achieved using neighbour-based approaches, which 

sacrifice the data’s autocorrelation structure57,58. The periodographic approach is 

currently implemented in the XCP utility interpolate.R.

15. Apply a temporal filter to the data. A commonly used pass-band ranges from a 

high-pass limit of 0.01 Hz to a low-pass limit of 0.08 Hz, above which the power 

spectra of high- and low-motion subjects diverged even when a high-

performance confound model was used17.

CRITICAL STEP Ensure that the same filter is applied to both the time series 

data and the confound model to prevent spectral misspecification, which can 

result in reintroduction of artefactual variance into suppressed frequency bands 

during the model fit stage79 (Step 24).

16. Concatenate the spike regressors computed in Step 8 into the filtered model 

matrix, as in Step 20.

17. Perform confound regression. Use a general linear model to estimate the 

contributions of artefactual signals to the BOLD signal at each voxel. The AFNI 

program 3dTproject computes the model fit and returns the residuals as 

<output>:

Ciric et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3dTproject -input <input> -ort <regressors> [-dsort <voxelwise>] -

prefix <output>

Provide the filtered time series as <input> and the filtered confound model as 

<ort>. Any voxelwise-defined regressors should be provided as <dsort>, and the 

desired output path should be provided as <output>. (It is also possible to 

combine Steps 22, 23, and 24 into a single step using 3dTproject. Refer to the 

documentation for details.)

18. (Optional; skip this step if censoring is not performed.) Censor the data11,18. 

Censoring can be performed using the XCP utility script censor.R, providing the 

temporal mask as <tmask> and the time series residuals as <img>:

${XCPEDIR}/utils/censor.R -i <img> -t <tmask> -o <output>

(Optional) Re-compute the mean framewise displacement after censoring. In 

Step 35, residual motion artefact is estimated as the correlation between mean 

framewise displacement and connectivity. Using the post-censoring framewise 

displacement in this computation links the outcome value more directly to the 

residual motion in the dataset but reduces the variance in levels of motion that is 

present in the pre-censoring data.

CRITICAL STEP Censoring will disrupt the autocorrelation structure of the 

data. Therefore, any processing steps that are sensitive to autocorrelation 

structure (e.g., temporal filtering or dynamic connectivity analysis) should either 

be performed prior to censoring or be performed in a way that accounts for 

disruptions in the autocorrelation structure.

19. (Optional) Re-mean the time series by adding the mean image computed in Step 

10 to the residualised data using fslmaths.:

fslmaths <input> -add <mean image> <output>

20. (Optional) Spatially smooth the image data. Smoothing across tissue boundaries 

can be reduced by using an adaptive filter that combines smoothing and edge 

detection. This can be achieved using the FSL program susan, providing the 

processed time series as input80:

susan <input> <bt> <kernel> 3 1 1 <usan> <bt> <output>

Specify the mean image from Step 10 as the <usan> (the image over which tissue 

boundaries are detected). The <bt> (brightness thresholds) can be estimated as 

75 percent of the median intensity value in the <usan>. To obtain the median 

intensity value, use fslstats to compute the 50th percentile, limiting the 
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computation to voxels inside the brain by using the brain mask with the -k 

parameter:

fslstats <usan> -k <mask> -p 50

Alternatively, to completely restrict smoothing across tissue boundaries, warp the 

anatomical segmentation into the same coordinate space as the processed image 

and then use this as the <usan>, setting the <bt> arbitrarily low.

Performance assessment: subject level

TIMING 5—10 minutes per subject—XCP’s fcon and qcfc modules implement 

performance assessment.

21. Compute the functional connectome within a selected parcellation. To do this, 

first select a parcellation and warp it into the same coordinate space as the 

processed image. We suggest using multi-label interpolation rather than nearest 

neighbour (using antsApplyTransforms). Next, compute the local time series for 

each parcel using the XCP utility roi2ts.R, providing the parcellation as the roi 

and providing a list of regions as labels if one is available. Finally, obtain the 

adjacency matrix for the connectome using the XCP utility ts2adjmat.R, 

providing the local time series as the ts argument.

22. Prepare a depth map for the anatomical segmentation. A depth map is a 

voxelwise map of the brain where the value of each voxel indicates the voxel’s 

depth within its assigned tissue class; this map will be used to create a voxelwise 

summary plot of the data (Figure 2). (In the depth map, the first digits of the 

voxel’s value indicate its tissue class, while the last two digits indicate its depth 

in that tissue class, as a percentile. For instance, if WM is assigned a value of 3 

in the anatomical segmentation, a superficial WM voxel at the 30th percentile of 

depth would be assigned a value of 330, while a deep WM voxel at the 98th 

percentile of depth would be assigned a value of 398.) This depth map can be 

generated using the XCP utility layerLabels, defining the input label set as the 

segmentation:

${XCPEDIR}/utils/layerLabels –i <label set> -o <output>

Next, warp the depth map into the same coordinate space as the minimally 

preprocessed image and as the final processed image using nearest-neighbour 

interpolation.

23. Prepare a subject-level voxelwise summary plot for the minimally preprocessed 

data and for the de-noised data55:
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${XCPEDIR}/utils/voxts.R –i <img1>,<img2> -r <roi> -o <output> -t 

FD:<FD>:<FD threshold>,DV:<DVARS>:<DVARS threshold>

Use the depth map from Step 29 as the <roi>. Provide the minimally 

preprocessed image as <img1> and the final, de-noised image as <img2>. 

Provide the path to the framewise displacement time series as <FD> and the path 

to the DVARS time series as <DVARS>. If the data were censored based on FD 

or DVARS, then provide the censoring thresholds as <FD threshold> and the 

DVARS threshold as <DVARS threshold>. Otherwise, select reasonable 

thresholds for flagging outliers. Label names can be found at ${XCPEDIR}/

atlas/segmentation3 for 3-tissue class segmentations and ${XCPEDIR}/atlas/

segmentation6 for 6-tissue class segmentations. Example output is presented in 

Figure 2.

24. Compute the DVARS of the denoised data set as in Step 7. Indicate that the input 

data are demeaned using the -d 1 argument and provide the skull-stripped mean 

image from Step 10 as the -b argument:

${XCPEDIR}/utils/dvars -i <input> -o <output root> -b <mean image> 

-d 1

25. Compute FD-DVARS correlations19 using the XCP utility featureCorrelation.R:

${XCPEDIR}/utils/featureCorrelation.R -i <path to framewise 

displacement time series>,<path to standardised DVARS time series> 

>> <output correlation>

Perform the calculation both for the minimally pre-processed DVARS from Step 

7 and the denoised DVARS from Step 31.

26. Estimate the loss of temporal degrees of freedom. This loss can be approximated 

as the total number of terms in the confound model (columns in the model matrix 

from Step 23), including spike regressors (if censoring was performed) and 

independent components identified as noise (if ICA-AROMA was run).

Performance assessment: sample level

TIMING 20 minutes—XCP’s fcon and qcfc modules implement performance assessment.

21. Prepare a sample matrix with P + 2 columns, where P is the number of unique 

identifiers (e.g., subject identifier, scan identifier, session identifier) for each 

subject. Place each subject in a separate row, and place each identifier in a 

separate column. Each column containing identifiers should have a header 

beginning with the string id, while the remaining 2 columns should have the 

headers motion and connectivity. In each subject’s motion column, enter the 
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subject’s mean framewise displacement. This can be obtained from a file with 

the suffix rel_mean.rms produced in Step 2. In each subject’s connectivity 

column, enter the path to the subject’s connectivity matrix, the final output 

produced in Step 26. Save the matrix in .csv format. An example sample matrix 

is presented in Box 4.

22. Compute the distribution of residual QC-FC correlations22,28,54. This step can be 

facilitated by using the XCP utility qcfc.R (usage examples in Box 4). The utility 

script computes, for each edge in the connectome, the partial correlation of 

motion with the strength of that edge, after controlling for the effects of any user-

provided covariates. Each row in the sample matrix from Step 34 represents an 

observation for the correlation.

CRITICAL STEP The number of connections significantly related to motion is 

sensitive to the total sample size. Accordingly, it is important to ensure adequate 

statistical power for detection of motion-related variance. When evaluating the 

comparative efficacy of a novel denoising procedure, it is especially critical to 

use a sample that is sufficiently large to detect residual artefact. Refer to previous 

benchmarking studies to guide sample selection22,23.

23. Compute the distance-dependence of QC-FC correlations10,11,17. QC-FC 

distance-dependence can be computed using the XCP utility 

qcfcDistanceDependence. This step entails (a) computing a pairwise matrix of 

distances between each pair of parcels and (b) computing the correlation between 

distance and residual QC-FC. qcfcDistanceDependence performs both of these 

steps using the warped parcellation from Step 28 and the QC-FC values from 

Step 35:

${XCPEDIR}/utils/qcfcDistanceDependence -a <parcellation> -q <QC-

FC values> -d <output distance matrix> -o <output distance-

dependence> -f <output figure>

? TROUBLESHOOTING

Troubleshooting advice can be found in Table 3.

TIMING

Step 1, preparing a subject list: 1–10 minutes.

Steps 2—10, minimal pre-processing: 5–15 minutes per subject, depending on the number 

of samples and spatial resolution of the input time series; potentially significantly longer for 

high-resolution multiband time series of long duration.

Steps 11—13, co-registration: 20—45 minutes per subject.
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Steps 14—20, confound modelling: 1–5 minutes per subject, 20—30 minutes or longer if 

ICA-AROMA is included, scaling with the number of frames and spatial resolution of the 

input time series.

Steps 21—27, confound regression: 5—10 minutes per subject, 60 minutes per subject if 

censoring is included.

Steps 28—33, subject-level performance assessment: 5—10 minutes per subject.

Steps 34—36, sample-level performance assessment: 20 minutes.

ANTICIPATED RESULTS

The expected product of the protocol is a set of denoised functional time series and 

connectomes, one for each input to the processing stream. While some motion artefact is 

likely to be present even in images processed through a high-performance denoising stream, 

the residual artefact will be markedly mitigated in comparison with the artefact present in a 

time series that has been processed minimally or using a less effective stream (see Figure 3 

for an illustration). If GSR is included in the denoising model, then denoised connectomes 

can be expected to feature a considerable fraction of negatively weighted connections, along 

with a relatively symmetric and approximately zero-centred distribution of connection 

weights. The diagnostics produced in the performance assessment stages of the protocol can 

be used to determine whether the final result of denoising is appropriate. Example results 

from subject-level and group-level diagnostic steps are summarised in Figures 2 and 3, 

respectively. While the details are beyond the scope of this protocol, it should be noted that 

XCP uses this de-noised data as part of additional modules for generation of seed-based 

connectivity maps1, network partitions81,82, regional homogeneity maps83, and amplitude of 

low-frequency fluctuation maps84.

Example use cases for denoising of subject data with XCP and for assessment of denoising 

performance are downloadable from FigShare (https://figshare.com/s/

d0161bac47f98eb1830b), together with anticipated results. The provided examples include 

input images, a cohort file, expected outputs from subject-level denoising, and a set of 101 

functional brain networks that can be used to validate the functionality of qcfc.R and 

qcfcDistanceDependence.R.
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BOX 1 | Overview of confound models for motion correction.

Numerous strategies have been used for removing motion-related variance from a 

functional MR time series. The schematic summarises several denoising options, along 

with the step of the protocol at which they can be added to the confound model, and 

discusses potential pitfalls and limitations of each approach. The design of a confound 

model suited to a particular data set and scientific objective is discussed under 

“Experimental Design”.
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BOX 2 | Taxonomy of motion artefacts in BOLD time series.

Motion artefact impacts functional connectivity data in three primary ways. This 

taxonomy, first introduced by Power and colleagues28, is graphically summarised in the 

schematic shown. Type 1 effects occur when a movement drives the signal in proximal 

voxels homogeneously, resulting in spuriously inflated correlations among nearby 

regions. Type 2 effects, by contrast, occur when a movement globally drives the BOLD 

signal in a homogeneous manner, inducing widespread inflation of correlations. Finally, 

Type 3 effects occur when a movement induces heterogeneous signal fluctuations across 

the brain, disrupting correlations, particularly those between distal regions. In general, 

Type 2 artefacts are the most common and Type 3 are the least common. Notably, 

different confound regression strategies are more effective at targeting different features 

of motion artefact. For instance, global signal regression (GSR) models the widespread 

signal fluctuations that characterise Type 2 artefact. By contrast, strategies that model 

spatially localised artefactual variance, such as ICA and PCA, may be better suited for 

cleaning Type 1 artefact. Censoring approaches, which remove entire frames that have 

been contaminated by motion, remove the spatially varied Type 1 and Type 3 artefacts. 

(More aggressive censoring can also be effective against Type 2 artefacts18.)

The contributions of different artefact types can also account for why motion artefact 

exhibits a distance-dependent spatial profile10,11,17: the connectivity among nearby 

regions of the brain is inflated by a combination of Type 1 and Type 2 effects, while the 

connectivity among more distant regions is inflated by Type 2 effects (and, to a lesser 

extent, disrupted by Type 3 effects). Consequently, motion on average inflates short-

distance connections more than it does long-distance connections. Because GSR is highly 

effective at mitigating common Type 2 motion effects, its residual artefact profile is 

dominated by Type 1 effects; this is observed as elevated distance-dependence22,28,54.
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BOX 3 | The XCP cohort file

A pipeline cohort file defines the experimental sample — the set of subjects that the 

pipeline should process. In the XCP system, the cohort file is formatted as .csv and 

contains:

• A column for each identifier variable

• A column for each pipeline input

• A header naming each category of input

• A row corresponding to each subject

An example is provided below:

id0,id1,img,antsct

ACC,001,rawData/ACC_001_rest.nii.gz,processedData/ACC_001_antsct

DSQ,001,rawData/DSQ_001_rest.nii.gz,processedData/DSQ_001_antsct

DSQ,002,rawData/DSQ_001_rest.nii.gz,processedData/DSQ_002_antsct

CAT,001,rawData/CAT_001_rest.nii.gz,processedData/CAT_001_antsct

The header for identifier columns should begin with id and end with a non-negative 

integer. Identifiers should be ordered hierarchically – for instance, id0 could correspond 

to the subject identifier, id1 to the session identifier, and id2 to the scan identifier within 

the session. The primary image to be processed should be listed under the header img, 

and the data directory that directly contains all anatomical inputs (anatomical image, 

transforms, and segmentation) should be listed under the header antsct.

If the data are to be processed using the CBICA IPP, then the paths in the cohort file 

should not include any directories, since those directories will not be uploaded to IPP. For 

the archived and compressed anatomical processing directory, the extension (i.e., .tar.gz) 

should not be included in the path that is specified in the cohort.
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BOX 4 | Example subject list, model specification, and output files for 
qcfc.R

The sample-level performance assessment script qcfc.R has a number of options for 

model, input, and output specification:

${XCPEDIR}/utils/qcfc.R –c <cohort> -o <output root> [-s <multiple 

comparisons correction> -t <significance threshold> -n <confound> -y 

<conformula>]

Optional arguments are denoted in square brackets ([]). The primary input to qcfc.R 

(<cohort>) should be the subject list created in Step 34, an example of which is provided 

here:

id0,id1,motion,connectivity

ACC,001,0.0391,processedData/ACC_001_fc/connectome.txt

ACC,002,0.0455,processedData/ACC_002_fc/connectome.txt

ACC,003,0.0367,processedData/ACC_003_fc/connectome.txt

DSQ,001,0.1532,processedData/DSQ_001_fc/connectome.txt

CAT,001,0.0811,processedData/CAT_001_fc/connectome.txt

The type of correction for multiple comparisons can be specified as fdr (default), 

bonferroni, or none. The maximal p-value threshold for significance can also be specified 

by the user; in the absence of user input, a default value of 0.05 will be used.

The values of any model covariates (such as age and sex) should be included in another 

file containing the same subject identifiers as the sample matrix. The file containing 

model covariates should be provided as the <confound> argument, and the formula for 

the model should be provided as the <conformula> argument, with any categorical 

variables specified as factors (see example below). (If the user wishes to obtain only the 

direct correlation between motion and functional connectivity, then no formula or 

covariates file is necessary.)

For example, to control for the participants’ age and sex when computing motion effects, 

prepare a second file (<confound>) containing the same identifiers as the first, with 

additional columns for each of the covariates to be considered. In the example below, age 

is defined in months and sex is coded as a binary variable:

id0,id1,age,sex

ACC,001,217,0

ACC,002,238,1

ACC,003,238,1

DSQ,001,154,0

CAT,001,176,1
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If this file is saved as sample-covariates.csv, then call qcfc.R as above, with the additional 

arguments <confound> set to sample-covariates.csv and <conformula> set to:

‘age+factor(sex)’

Note that the categorical variable sex is specified as a factor. If the data set contains 

repeated measures (e.g., multiple scans from the same subject), then the subject identifier 

can be included in the model specification conformula as a random intercept:

‘age+factor(sex)+(1|id0)’

When the output path is specified as –o <output root> as in the example call above, the 

outputs of qcfc.R include the following:

Output path Output description

<out>.txt A matrix containing the QC-FC correlation for each edge in the input 
matrix.

<out>_thr.txt The above matrix, thresholded to include only significant edges; can be 
used to plot glass brain visualisations of significant edges, for instance 
using BrainNetViewer.

<out>_absMedCor.txt The absolute median QC-FC correlation over all edges.

<out>_nSigEdges.txt 
<out>_pctSigEdges.txt

The number and percentage of edges with significant QC-FC correlations.

<out>.svg A visualisation of the QC-FC distribution (see Figure 3).
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FIGURE 1 |. Workflow for motion correction of functional connectivity MRI data.
This processing stream estimates subject movement, minimally pre-processes the functional 

data, and aligns the data to a high-resolution anatomical reference (co-registration). Next, it 

builds a confound model using a combination of the global signal, signals from white matter 

and cerebrospinal fluid, motion estimates, time series expansions, and spike regressors. The 

confound model is then fit to the data in the confound regression step. A connectome is 

computed by warping a parcellation into the coordinate space of the time series and 

calculating functional connectivity between pairs of brain regions. Finally, diagnostic 

measures are produced to facilitate assessment of model performance and transparent 

reporting of denoising efficacy. A simplified schematic of key steps is shown at left, while a 

detailed flowchart of all protocol stages is shown at right. FD, framewise displacement; RPs, 

realignment parameters; DV, DVARS; WM, white matter; CSF, cerebrospinal fluid; FC, 

functional connectivity; QC-FC, quality control—functional connectivity correlations.
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FIGURE 2 |. Summary of subject-level performance diagnostics and anticipated results
(Steps 28—33). The illustrated results are from a single subject from the Philadelphia 

Neurodevelopmental Cohort (PNC)85, processed using a 36-parameter stream that combines 

6 realignment parameters, the mean WM and CSF time series, the mean global time series, 

and derivative and quadratic expansions. The table at left summarises quantitative 

diagnostics, while the panels at right display visual aids for performance assessment55. Left, 
quantifications of subject movement indicate that this subject remained relatively still, apart 

from a few brief epochs of high movement. Notably, the GSR-based processing stream 

abolishes the strong FD-DVARS correlation19 initially present in the data. Right, a 

diagnostic visualisation55 produced by voxts.R. Top right, traces of the subject’s framewise 

displacement and DVARS (DV). For this analysis, a frame was flagged as a spike if FD 

exceeded 0.25 or if standardised DVARS exceeded 2. The superthreshold region of the trace 

is demarcated by a darkened rectangle that covers the top fraction of each trace, allowing 

identification of flagged frames. In the traces shown, 3 frames exceed the FD threshold and 

7 exceed the DVARS threshold. Middle right, a voxelwise carpet plot of the subject’s BOLD 

activity, computed over the minimally pre-processed image. Time is plotted on the abscissa 

and is synchronised to the quality traces at the top. Space is plotted on the ordinate, with 

voxels sorted according to their membership in tissue compartments (bottom right). Within 

each tissue compartment, time series are sorted from most superficial (bottom) to deepest 

(top). In this subject, movements are associated with global bands of signal loss (Type 2 

artefact in Box 2), which is reflected in functional connectivity as global coupling. Bottom 
right, after motion correction, the same subject’s BOLD signal no longer exhibits global 

bands, although some loss of signal variance is visible in the most strongly contaminated 

frames.
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FIGURE 3 |. Summary of group-level performance diagnostics and anticipated results
(Steps 34—36). The illustrated results are from 500 low-motion subjects randomly sampled 

from the Philadelphia Neurodevelopmental Cohort (PNC)85. The top row shows 

performance diagnostics when the data are processed using a 36-parameter stream that 

combines the mean global time series, 6 realignment parameters, the mean WM and CSF 

time series, and derivative and quadratic expansions. The bottom row shows analogous 

results when the same data are processed using a 24-parameter stream that uses only the 6 

realignment parameters with derivative and quadratic expansions. The table at left 

summarises quantitative diagnostics, while the panels at right display visual aids for 

performance assessment22. Results are shown for the 264-node Power parcellation3. Top 
left, effective motion correction leaves only a small percentage of edges that are significantly 

related to motion, with a weak absolute median QC-FC correlation of approximately 0.04. 

Bottom left, the 24-parameter model performs poorly by comparison, leaving a marked 

absolute median QC-FC correlation of 0.226, with nearly all edges exhibiting a significant 

relationship with motion. Centre right, qcfc.R plots the distribution of QC-FC correlations 

across the two denoising schemes. In a high-performance processing stream such as the one 

presented at the top, the distribution is narrow and centred at approximately zero. An 

ineffective stream, in contrast, has a QC-FC distribution that is broader and positively 

centred. Far right, a degree of QC-FC distance-dependence is unmasked by the GSR-based 

processing stream, as is evident in this visualisation produced by featureCorrelation.R. In 

comparison with the RP-only stream, motion artefact in the GSR-based stream is more 

strongly related to the Euclidean distance between network nodes. A processing stream that 

augments GSR with either censoring or signal decomposition techniques will typically 

exhibit less distance-dependence (see Box 2).
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TABLE 1 |

Summary of subject-level quality indices.

Subject-level index Description
Standalone 
implementations

Framewise displacement 
(FD)11,12,70

An estimate of the subjecťs head movement from one frame of the time 
series to the next

•FSL: fsl motion outliers 
(FDJenkinson and FDPower

•FSL:
mcflirt (FDjenkinson)
•XCP: fd.R (FDpower)

DVARS11,72,73 The temporal derivative of the root mean square intensity, an index of 
the frame-to-frame change in signal intensity across the brain

•FSL: fsl_motion_outliers
XCP: dvars (standardised)

Outlier count An index of the number of outlier values over all voxelwise time series 
within each frame

AFNI: 3dToutcount

“Quality index” A measure of the dissimilarity of a frame with respect to the median 
value over all frames

AFNI: 3dTqual

FD-DVARS correlation19 The correlation between FD and DVARS; indexes the extent to which 
signal fluctuations relate to subject movement

XCP: featureCorrelation.R

Voxelwise displacement17 An estimate of each voxel’s movement between consecutive frames of 
the time series

Spike count (number of 
superthreshold frames)

The number or percentage of frames in a time series that exceed a 
motion threshold

Loss of temporal degrees of 
freedom (tDOF)25,86

The number of temporal degrees of freedom lost during the de-noising 
process, typically estimated as the sum of the number of nuisance 
regressors and the number of censored frames

Variance explained by nuisance 
time series and motion-BOLD 
contrasts23,25,86

Voxelwise maps or summary values indicating the fraction of variance 
in the data that can be explained by each term in the confound model, or 
the regression coefficients of a linear model fitting nuisance time series 
to BOLD time series

•AFNI: 3dTfitter
• FSL: fsl_glm

Carpet plot / voxel plot55 A time-by-space matrix containing all values in the time series, often 
plotted alongside quality index time series, such as FD or DVARS

•plotdemo.m
•XCP: voxts.R

Network identifiability17,22,54,81,82 The extent to which subnetwork structure can be resolved in the 
connectome; can be estimated as the modularity quality Q

Test-retest reliability23,25 An estimate of the replicability of motion and functional connectivity 
estimates across repeated measures from the same subject
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TABLE 2 |

Summary of sample-level quality indices.

Sample-level index Description Standalone implementations

QC-FC correlations10,11,22,23,28,54 Correlations between mean framewise displacement and the 
functional connectivity between each pair of regions, 
computed across subjects

XCP: qcfc.R

Network-level QC-FC correlations22,42 Correlations between mean framewise displacement and 
network measures (such as modularity), computed across 
subjects

XCP: qcfc.R

QC-FC distance dependence11,17,23,28,54 The second-order correlation between edgewise QC-FC 
correlations and the Euclidean separation between region pairs

XCP: 
qcfcDistanceDependence

High- vs low-motion (HLM) contrasts23,86 Group-level comparisons between matched high- and low-
motion subject bins

Average tDOF loss, variability in tDOF 
loss22,23,86

The mean and variance in the loss of tDOF across subjects

Discriminability23,54 Post-denoising sensitivity to between-group or individual 
differences
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TABLE 3 |

Troubleshooting table.

Step Problem Possible reason Solution

8 Very few frames survive 
censoring

(i) Subject data are highly 
contaminated by noise;
(ii) The censoring criterion is too 
stringent

(i) Exclude the subject from further analysis;
(ii) Use a more lenient censoring threshold

16 Tissue time series are not 
produced

The tissue compartment mask is 
empty

Increase the retention criterion for mask erosion

22 Confound regression fails The confound model is not well-
formulated

Evaluate the confound model for missing values and collinearity; 
reduce or re-evaluate the model as necessary

26 Missing values (NA or 
NaN) in the connectome

(i) Poor registration quality;
(ii) Parcels are of variable size

(i) Ensure that the sequence of transforms applied to the 
parcellation is correct, and then re-run registration steps as 
necessary, potentially using a different cost function;
(ii) Select a different parcellation, or exclude smaller parcels 
from the connectome across the entire sample

33 The QC-FC distribution 
is very broad Insufficient statistical power Increase the sample size, or use subject-level diagnostics only.

33 No edges have a
significant relationship 
with motion

(i) Insufficient statistical power
(ii) Effective denoising model

(i) Increase the sample size, or use a less stringent correction for 
multiple comparisons.
(ii) Ensure that statistical power is sufficient; otherwise, nothing 
to troubleshoot

33 Excessive residual QC-
FC relationship

(i) Confound regression failed;
(ii) High-motion subjects are driving 
the correlations;
(iii) The confound model performs 
poorly in the data set under analysis

(i) See troubleshooting for Step 22;
(ii) Apply subject-level exclusions based on motion;
(iii) Use a different confound model, or benchmark performance 
of alternative models on a subsample of the data to select a model
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