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Abstract

Background: In the Greater Mekong Subregion (GMS), current malaria surveillance strategies rely on a network of
village health volunteers (VHVs) reporting the results of rapid diagnostic tests (RDTs), known to miss many
asymptomatic infections. Integration of more sensitive diagnostic molecular and serological measures into the VHV
network may improve surveillance of residual malaria transmission in hard-to-reach areas in the region and inform
targeted interventions and elimination responses. However, data on residual malaria transmission that would be
captured by these measures in the VHV-led testing and treatment surveillance network in the GMS is unknown.

Methods: A total of 114 VHVs were trained to collect dried blood spots from villagers undergoing routine RDTs as
part of VHV-led active and passive case detection from April 2015 to June 2016. Samples were subjected to
molecular testing (quantitative polymerase chain reaction [qPCR]) to determine Plasmodium falciparum and P. vivax
infection and serological testing (against P. falciparum and P. vivax antigens) to determine exposure to P. falciparum
and P. vivax.

Results: Over 15 months, 114 VHVs performed 32,194 RDTs and collected samples for molecular (n = 13,157) and
serological (n = 14,128) testing. The prevalence of molecular-detectable P. falciparum and P. vivax infection was
3.2% compared to the 0.16% prevalence of Plasmodium spp. by RDT, highlighting the large burden of infections
undetected by standard surveillance. Peaks in anti-P. falciparum, but not P. vivax, merozoite IgG seroprevalence
coincided with seasonal P. falciparum transmission peaks, even in those with no molecularly detectable parasites. At
the individual level, antibody seropositivity was associated with reduced odds of contemporaneous P. falciparum
(OR for PfCSP 0.51 [95%CI 0.35, 0.76], p = 0.001, PfAMA1 0.70 [95%CI 0.52, 0.93], p = 0.01, and PfMSP2 0.81 [95%CI
0.61, 1.08], p = 0.15), but not P. vivax infection (OR PvAMA1 1.02 [95%CI 0.73, 1.43], p = 0.89) indicating a potential
role of immunity in protection against molecular-detectable P. falciparum parasitaemia.
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Conclusions: We demonstrated that integration and implementation of sample collection for molecular and
serological surveillance into networks of VHV servicing hard-to-reach populations in the GMS is feasible, can capture
significant levels of ongoing undetected seasonal malaria transmission and has the potential to supplement current
routine RDT testing. Improving malaria surveillance by advancing the integration of molecular and serological
techniques, through centralised testing approaches or novel point-of-contact tests, will advance progress, and
tracking, towards malaria elimination goals in the GMS.
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Background
The emergence of artemisinin-resistant Plasmodium fal-
ciparum within the Greater Mekong Subregion (GMS)
has led to the region setting elimination targets for all
human malaria by 2030 [1]. In working towards this
goal, the incidence of malaria cases and deaths in the
GMS fell substantially by 75% and 93%, respectively, be-
tween 2012 and 2017 [2]. Monitoring and surveillance
are critical to the elimination of malaria ensuring that
progress towards malaria elimination targets can be ac-
curately tracked and ultimately accelerated. However, as
the region transitions towards malaria elimination, sur-
veillance becomes increasingly difficult because malaria
becomes concentrated in discrete geographical foci, such
as border and hard-to-reach areas, and in high-risk pop-
ulations such as migrant workers and residents of highly
forested areas [3–5]. To capture these infections, in
many remote areas, surveillance and malaria control
strategies are dependent on passive case detection (PCD)
and active case detection (ACD) provided by a village
health volunteer (VHV) network who administer malaria
testing by rapid diagnostic test (RDT) as well as treat-
ment. However, subclinical Plasmodium spp. infections
often go undetected because asymptomatic individuals
are less likely to seek testing and treatment and, import-
antly, are generally below the detection limit of conven-
tional RDT diagnostics used in the field. Undetected,
and therefore untreated, Plasmodium spp. infections
may be an important source of residual malaria trans-
mission [6–10], and failure to detect and eliminate all in-
fections may hinder malaria elimination targets.
Integration of more sensitive diagnostic measures into

the VHV network may improve surveillance of residual
malaria transmission in hard-to-reach areas in the region.
Molecular and serological assays can determine residual
malaria transmission not detected by routine diagnostics
in the field such as RDT and microscopy. Microscopy is
estimated to miss approximately 50% of infections when
compared to molecular methods such as polymerase chain
reaction (PCR), and the proportion of missed infections
may be greater than 80% in areas of low transmission (de-
fined at PCR prevalence <10%) [11]. However, the applica-
tion of sensitive molecular methods such as PCR to detect

malaria is mostly utilised as a research tool in many
malaria-endemic settings and is yet to be approved and in-
corporated into routine surveillance in the GMS. Similarly,
measuring antibodies specific for malarial antigens is not
approved for routine use and may also be a useful surveil-
lance tool to monitoring ongoing malaria transmission in
regions approaching malaria elimination as it has the po-
tential to measure both current and recent malaria expos-
ure [12]. Until point-of-contact molecular and serological
surveillance tools for malaria become more widely avail-
able and approved for use in national malaria control pro-
grammes, centralised use of these approaches will be
necessary. However, sample collection for surveillance ac-
tivities may be implemented at the village level by VHV.
To date, few studies have been performed in Southeast
Asia to investigate the utility of molecular and serological
surveillance, and none has been incorporated into the
VHV network. Serial cross-sectional research surveys have
demonstrated higher blood-stage antimalarial IgG levels
and seropositivity amongst those with PCR-detectable
subclinical P. falciparum and P. vivax infection compared
to uninfected individuals [13–16], and geospatial analysis
has shown that antimalarial antibodies are predictive of
ongoing malaria transmission [17]. While these studies
suggest the use of serological surveillance may be appro-
priate for the detection of residual malaria transmission,
the feasibility of integrating the approach and the data on
residual malaria transmission that would be captured into
the PCD/ACD VHV-led testing and treatment surveil-
lance network in the GMS is unknown. To address this
knowledge gap, we integrated the collection of participant
samples for molecular and serological surveillance into
VHV-delivered community-based malaria programmes in
Southeast Myanmar to understand the surveillance data
that can be captured at this level to inform surveillance of
malaria and targeted interventions in elimination settings
in the GMS.

Methods
Study design and sample collection
Details of the study design and sample collection have
previously been reported [18, 19] and are detailed in the
Supplementary Methodology (Additional File 1). Briefly,
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from April 2015 to June 2016, residents of 114 villages
across three south-eastern states/regions (Kayin, Kayah
and Bago East) in Myanmar were invited to take part in
an open stepped-wedge cluster-randomised control trial
designed to estimate the effectiveness of topical insect
repellent distributed by VHV on Plasmodium spp. infec-
tion (ACTRN12616001434482). This trial was an imple-
mentation trial, and the only changes to the malaria
programme implementation were the distribution of
repellent at a designated month and the addition of
dried blood spot sample collection. Like many areas of
the GMS, the incidence of malaria cases in Myanmar
has reduced substantially in recent years (by 82% be-
tween 2012 and 2017 and by 23% between 2016 and
2017 alone) [20]. Additionally, large proportions of in-
fections in Myanmar are subclinical and not detected
using routine RDT [4, 21–23]. Consistent with routine
services provision, VHVs performed RDTs (SD bioline
Pf/Pv combo RDT), treated malaria cases if RDT was
positive and collected basic demographic information for
the duration of the trial. VHVs aimed to perform a mini-
mum of 20 tests per month, collected by either PCD or
ACD, where PCD refers to villagers presenting to the
VHV for testing and ACD refers to VHV seeking vil-
lagers for testing (e.g. during health education sessions
or household visits). VHV also received 1-day training to
perform additional finger prick sample collection. In
consenting participants, VHVs collected two drops of
blood on Whatman 3-mm filter paper for molecular
Plasmodium spp. detection by quantitative PCR (qPCR)
and IgG analysis. Filter papers were air-dried, placed in
air-tight plastic bags and then stored in specimen collec-
tion boxes. At the end of each month, specimen boxes
were collected from VHVs by local dioceses malaria offi-
cers and stored in refrigerated conditions. Every 2–3
months, samples were transported to Yangon, where
they were stored in the refrigerator before shipment to
Melbourne, Australia. All participants or parents/guard-
ians provided informed consent, and ethical approval
was obtained from the Ethics Review Committee on
Medical Research involving Human Subjects, Myanmar
Department of Medical Research (21/Ethics/2015), and
the Alfred Hospital, Melbourne, Australia (95/15).

Outcome measures
P. falciparum and P. vivax infection
P. falciparum or P. vivax (or both) infection was deter-
mined by SD bioline Pf/Pv combo RDT according to the
manufacturer’s instructions and by quantitative PCR
(qPCR) as previously described [19] and detailed in Add-
itional File 1 and 2. A positive P. falciparum result in-
cluded any qPCR-detectable infection where P.
falciparum was detected, including mixed infections,
and likewise for P. vivax.

P. falciparum and P. vivax antigen-specific IgG
Total IgG in response to P. falciparum apical membrane
antigen 1 (PfAMA1 [3D7]), merozoite surface protein 2
(PfMSP2 [3D7]) and circumsporozoite (PfCSP [3D7])
and P. vivax AMA1 (PvAMA1 [Palo Alto]) was mea-
sured by enzyme-linked immunosorbent assay (ELISA)
using a robotic liquid handling system (JANUS auto-
mated work station, Perkin Elmer), as previously de-
scribed [24]. Detailed protein expression and ELISA
methodology are provided in the Supplementary Meth-
odology (Additional File 1).

Statistical analysis
Logistic mixed effects modelling was used to estimate
the change in IgG seropositivity (seropositive/seronega-
tive) with time (months) and linear mixed effects model-
ling was used to estimate the change in Log2 IgG level
(OD 450nm) with time on individual-level observations.
The association between P. falciparum or P. vivax infec-
tion detected by qPCR and the following factors were
examined using logistic mixed effects modelling: (i) par-
ticipant IgG level/seropositivity at the time of detection
of malaria infection (contemporaneous IgG level/sero-
positivity) as separate exposures and (ii) participant IgG
level/seropositivity at the preceding presentation (lagged
IgG level/seropositivity) as independent exposures. Due
to a smaller number of P. vivax events in the sample
with repeated measurements, only contemporaneous
IgG level/seropositivity exposures were investigated.
Likelihood ratio tests were used to assess whether (i)
time as a discrete factor was associated with odds of IgG
seropositivity and Log2 IgG levels and (ii) an interaction
existed between P. falciparum or P. vivax infection de-
tected by qPCR and time. All mixed effects models in-
cluded a random effect (intercept) to account for
participant repeated measurement, and covariates for
time (discrete month), age (years), distribution of topical
insect repellent (time-varying monotonic variable as vil-
lages transitioned from control to intervention), residen-
tial status (village resident/migrant/forest-dwelling
resident), sex (male/female) and the operating diocesan
areas (Hpa-An and Taungoo Areas in Kayin State, Loi-
kaw Area in Kayah State, Yangon Area in Bago East Re-
gion). Models estimating lagged IgG level/seropositivity
excluded fixed effects for discrete time (due to model
overfit) but included a fixed effect for the time between
visits (number of days) for each individual. All data were
analysed using Stata14 (StataCorp, Stata Statistical Soft-
ware: College Station, TX).

Results
Characteristics of the study population
One hundred and fourteen VHVs (48% male, median
age 26 years (25th and 75th percentiles 21–33) in 102/
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114 VHV respondents) were trained to undertake mal-
aria diagnosis by RDT and collection of dried blood spot
samples in their villages. From April 2015 until June
2016, trained VHVs performed 32,194 RDTs in 114 vil-
lages of Southeast Myanmar, as previously described
[19]. In a sub-population of consenting participants,
VHVs collected 14,938 dried blood spot samples, 810 of
which were missing key demographic data (n = 692) or
were compromised due to improper storage (n = 118)
and were excluded from all further molecular and sero-
logical analyses. The final sub-sample included 14,128
samples from 10,857 individuals (Table 1). In this popu-
lation, the median age of participants was 20 years (25th
and 75th percentiles 10–35, min and max <1–91), and
49.8% were male (5402/10,857). Of all participant sam-
ples, 13.1 % were collected from migrants (1423/10,857),
39.9 % were collected from village residents (4329/10,
857) and 47 % were collected from forest dwellers
(5105/10,857) (Table 1). The sub-population that con-
sented to sample collection was broadly reflective of the
larger cohort with RDT diagnosis only (Table 1). The
majority of participants (81.3%, n = 8825/10,857) pro-
vided only one sample throughout the study period
(Table S3). There were 2032 participants that contrib-
uted multiple samples (total samples = 5303) with a
median of two samples per person (25th and 75th

percentiles 2–3, min and max 2–10 samples per person)
with a median time between sampling of 118 days (25th
and 75th percentile 50–168 days, min and max 4–442
days).

Testing rates and detection of P. falciparum and P. vivax
infection by RDT and qPCR over time
P. falciparum and P. vivax infection status was deter-
mined in all participants by RDT (n = 32,194), and 14,
128 samples were collected for molecular and serological
analysis. From this sub-sample, 13,157 samples were
suitable for molecular diagnosis by qPCR, and 971 were
excluded due to insufficient sample (Table 1). As re-
ported previously [19], the prevalence of Plasmodium
spp. infections detected by RDT was 0.16% (50/32,194;
13 P. falciparum mono-infection [0.04%], 34 P. vivax
mono-infection [0.11%] and 3 mixed species infections
[0.01%], 29 symptomatic), and in the sub-sample of par-
ticipants consenting to additional sampling, RDT-
positive Plasmodium spp. infection was similarly low at
0.14% (20/14,128; 7 P. falciparum mono-infection
[0.05%], 12 P. vivax mono-infection [0.08%] and 1 mixed
species infections [0.01%]) (Table 1). In this sub-sample
of participants, 13,157 underwent diagnosis by qPCR,
and the prevalence of P. falciparum and P. vivax infec-
tion was 3.2% (419/13,157; 207 P. falciparum mono-

Table 1 Characteristics of VHV performed RDTs and DBS

Total population Population with RDT only Population with RDT and DBS

Number of participants –a –a 10,857

Number of RDTs 32,194 18,066 14,128

Age (years), median (25th, 75th percentile; min, max) 18 (9, 33; 0.1, 100) 16 (8–31, 0.1–100) 20 (10–35, 0.1–91)

Sex, % male (n/N) 50.06 (16,116/32,194) 50.49 (9122/18,066) 49.76 (5402/10,857)

Residential statusb, % (n/N)

Migrant 13.71 (4415/32,191) 15.74 (2844/18,063) 13.11 (1423/10,857)

Village resident 45.92 (14,783/32,191) 48.85 (8826/18,063) 39.87 (4329/10,857)

Forest dweller 40.36 (12,993/32,191) 35.39 (6393/18,063) 47.02 (5105/10,857)

RDT, % (n/N)

Negative 99.84 (32,144/32,194) 99.83 (18,036/18,066) 99.86 (14,108/14,128)

Pf+ 0.04 (13/32,194) 0.03 (6/18,066) 0.05 (7/14,128)

Pv+ 0.11 (34/32,194) 0.12 (22/18,066) 0.08 (12/14,128)

Mixed 0.01 (3/32,194) 0.01 (2/18,066) 0.01 (1/14,128)

qPCRc, % (n/N)

Negative N/A N/A 96.82 (12,738/13,157)

Pf+ N/A N/A 1.57 (207/13,157)

Pv+ N/A N/A 0.93 (123/13,157)

Mixed N/A N/A 0.68 (89/13,157)

DBS dried blood spot, IQR interquartile range, Pf Plasmodium falciparum, Pv Plasmodium vivax, qPCR quantitative polymerase chain reaction, R range, RDT rapid
diagnostic test, VHV village health volunteer
aIndividual participant identifiers were only given to consenting participants upon DBS sampling
bResidency data missing for 3 participants
cqPCR detection only performed in participants consenting to DBS collection and N/A for 971 due to insufficient sample
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infection [1.57%], 123 P. vivax mono-infection [0.93%]
and 89 mixed species infections [0.68%]), approximately
22-fold higher than by RDT (Table 1).
The average testing rate was 2146 (standard deviation

[SD] 554) RDTs per month for the entire VHV network
over the course of the study (20 [SD 14] RDTs per vil-
lage/VHV per month); however, this varied by month,
with 2628 RDTs/month in the first month of the study
decreasing to 1721 RDTs/month in the last month of
the study (Fig. 1a). The average number of dried blood
spots collected was 942 (SD 201) samples per month (12
[SD 8] samples per village/VHV per month), with more
samples collected per month occurring in the latter part
of the study (Fig. 1b). Both qPCR-detectable P. falcip-
arum and P. vivax prevalence varied over time (discrete
month, likelihood ratio [LR] both p<0.001) (Fig. 1). P.
falciparum and P. vivax infection was observed to peak
in June and July corresponding to the high transmission
season in Myanmar (9.67% and 8.23% in June and July,
respectively) with a second, smaller peak observed in
December for P. falciparum (5.93%, Fig. 1b).

Seroprevalence and levels of antimalarial IgG over time
To determine the change in the acquired IgG levels and
seroprevalence over the study period, IgG responses to
P. falciparum merozoite and sporozoite antigens
PfAMA1, PfMSP2 and PfCSP, and P. vivax merozoite
antigen PvAMA1 were determined. Because elution of
antibody required less sample than DNA extraction, IgG
levels and seroprevalence were determined in all samples
collected that had not been compromised and had
matched data (n = 14,128). The overall seroprevalences
for PfAMA1, PfMSP2, PfCSP and PvAMA1 were 38.6
(95% CI 37.8–39.4), 37.3 (95% CI 36.5–38.1), 18.7
(95% CI 18–19.3) and 28.4% (95% CI 27.6–29.1), re-
spectively. Both anti-P. falciparum and P. vivax IgG level
and seroprevalence were associated with time (discrete
month, LR all p <0.001, Table S4 – S11). Like patterns
of qPCR-detectable P. falciparum infection, the median
levels and overall seroprevalence of anti-PfAMA1 IgG in
all observations peaked in June and July of 2015 coincid-
ing with the high transmission season, with an additional
peak observed in December of 2015 coinciding with a
peak in qPCR detectable P. falciparum cases. Peaks in
PfMSP2 and PfCSP IgG were only observed to coincide
with the second peak in P. falciparum infections in De-
cember of 2015 (Fig. 2a, b). Interestingly, these seasonal
trends in P. falciparum specific IgG seroprevalence were
also reflected in a broader qPCR-negative population
(Additional File 2 Figure S4). The median levels and
seroprevalence of anti-PvAMA1 IgG fluctuated and in-
creased slightly throughout the study period; however,
these changes were largely unreflective of changes in
qPCR detected P. vivax prevalence (Fig. 2c, d).

Association between IgG and P. falciparum and P. vivax
infection
To determine the association between IgG seropositivity
on P. falciparum and P. vivax qPCR-detectable infection
at the individual level, we performed logistic mixed ef-
fects modelling, including all data and fixed effects for
age, sex, region, residential status, time and repellent dis-
tribution, and random effects for repeated participant
sampling. Seropositivity for anti-PfAMA1, PfMSP2 and
PfCSP IgG was associated with a reduction in the odds
of contemporaneous qPCR-detectable P. falciparum in-
fection by between 19 and 49%;, however, a wide confi-
dence interval was observed in the PfMSP2 estimate
(anti-PfAMA1 OR 0.70 (95%CI 0.52, 0.93), p = 0.01,
anti-PfMSP2 OR 0.81 (95%CI 0.61, 1.08), p = 0.15, anti-
PfCSP OR 0.51 (95%CI 0.35, 0.76), p = 0.001; Table 2).
Similarly, a twofold increase in the levels of anti-PfMSP2
and PfCSP were associated with a 12 and 10% reduction,
respectively, in the odds of P. falciparum infection
(PfMSP2 OR 0.88 (95%CI 0.80, 0.96), p = 0.005, anti-
PfCSP OR 0.90 (95%CI 0.83, 0.98), p = 0.02, Table 2).
Increased anti-PfAMA1 IgG level was not associated
with the odds of qPCR-detectable P. falciparum infec-
tion (OR 0.94 (95%CI 0.84, 1.06), p = 0.34, Table 2).
When lagged, IgG level/seroprevalence was examined as
the exposure (i.e. using the preceding IgG measure-
ment), in participants with repeated measurements after
including a fixed effect for the time between sampling
(days) anti-P. falciparum IgG level/seropositivity was not
associated with qPCR-detectable P. falciparum (Table 2).
Anti-PvAMA1 IgG level and seropositivity were not as-
sociated with contemporaneous qPCR-detectable P.
vivax infection (OR 1.02 (95%CI 0.73, 1.43), p = 0.89
and OR 0.98 (95%CI 0.86, 1.12), p = 0.75, Table 2, re-
spectively). Due to a smaller number of P. vivax-positive
participants with repeated measurements (n=68), lagged
effects of IgG were not estimated.

Discussion
VHVs are the cornerstone of malaria control and sur-
veillance activities in many malaria-endemic settings. By
training VHV delivering routine malaria services to inte-
grate sample collection for molecular and serological
surveillance in their village, we demonstrated that sur-
veillance using highly sensitive molecular methods in
samples collected by VHV is feasible and can detect a
significant subclinical reservoir of infection undetected
by standard surveillance using RDTs. Furthermore, sero-
logical data reflected monthly trends in P. falciparum
and P. vivax infection, even in those with no detectable
parasites, indicating that this surveillance approach can
capture significant levels of ongoing undetected seasonal
malaria transmission. Integration of molecular and sero-
logical surveillance into the extensive VHV network may
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be an effective tool for monitoring residual malaria
transmission in hard-to-reach pre-elimination settings
by supplementing an established VHV surveillance
network currently dependant on RDTs. Further, the
addition of this kind of supplemented surveillance could
support centralised malaria control strategies such as re-
source allocation until more suitable field-deployable
tests are available to provide VHV with real-time treat-
ment decision-making tools. Improving malaria surveil-
lance will advance progress, and tracking, towards
malaria elimination goals in the GMS.
RDT diagnosis and reporting of malaria cases by

VHVs is the key indicator for progressing towards mal-
aria elimination goals in the GMS. Like in much of the

region, a large proportion of Plasmodium spp. infections
found in participating villages were missed by RDT diag-
nosis with ~22-fold greater prevalence of qPCR-
detectable infections over the entire study period. There
was significant variation in qPCR-detectable infection
over time with peaks of Plasmodium spp. infection in
the rainy season, where malaria transmission increases,
which were not detected by RDT, nor subsequently
treated. There is increasing evidence that these un-
treated molecular-detected infections have the potential
to contribute to ongoing malaria transmission, and des-
pite not being transmitted as effectively to mosquitoes as
microscopically detected infections, the greater preva-
lence of subclinical compared to clinical infections in

A

B

Fig. 1 Number of RDTs collected by VHV (grey) and prevalence of Plasmodium spp. infection by RDT (95% CI [red]) (a) and number of DBS
collected by VHV (grey) and prevalence of Plasmodium spp. infection (95% CI) by qPCR (P. falciparum [red] and P. vivax [blue]) (b) by month over
the study period. The high transmission season is shown in grey and months marked with an asterisk. Lines connecting data points are intended
only to highlight patterns and not to suggest a continuum between data points
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Fig. 2 Prevalence of P. falciparum and P. vivax infection and levels and seroprevalence of anti-P. falciparum and P. vivax IgG by month over the
study period. Prevalence of P. falciparum (a, b) and P. vivax (c, d) infection and median IgG level (a, c) and seroprevalence (95%CI) (b, d) IgG by
month over the study period. The high transmission season is shown in grey and months marked with an asterisk

Table 2 Association between qPCR-detectable P. falciparum or P. vivax infection and antibody response

Contemporaneous infection Infection at next presentation

aORa (95%CI) p value aORb (95%CI) p value

PfAMA1 IgG

Seropositive 0.70 (0.52, 0.93) 0.01 0.98 (0.53, 1.80) 0.95

Level (log2OD 450nm) 0.94 (0.84, 1.06) 0.34 0.91 (0.73, 1.10) 0.33

PfMSP2 IgG

Seropositive 0.81 (0.61, 1.08) 0.15 1.27 (0.70, 2.29) 0.43

Level (log2OD 450nm) 0.88 (0.80, 0.96) 0.005 0.92 (0.77, 1.11) 0.40

PfCSP IgG

Seropositive 0.51 (0.35, 0.76) 0.001 0.29 (0.07, 1.21) 0.09

Level (log2OD 450nm) 0.90 (0.83, 0.98) 0.02 1.02 (0.85, 1.24) 0.81

PvAMA1 IgGc

Seropositive 1.02 (0.73, 1.43) 0.89 –

Level (log2OD 450nm) 0.98 (0.86, 1.12) 0.75 –

Adjusted for aage (years), sex, region, residential status, time (discrete month) and repellent distribution or bage (years), sex, region, residential status, time since
the last measurement (days) and repellent distribution; conly contemporaneous IgG level/seropositivity exposures were estimated for P. vivax infections due to a
small number of events for individuals with measurements performed on at least two occasions. Estimates for antigen- specific IgG seropositivity or level are
derived from separate equations, (Additional File 2 Tables S3-S10)
aOR adjusted odds ratio, 95%CI 95% confidence interval
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low-transmission settings is cause for concern [25].
Detection of these infections is becoming increasingly
difficult because in the elimination phase, malaria is con-
centrated in hard-to-reach areas and high-risk popula-
tions. Therefore, additional surveillance tools deployed
at the VHV level may help target interventions aimed at
reducing the subclinical burden of malaria and advance
the malaria elimination agenda in this region.
Serosurveillance does not provide a diagnosis of a

current Plasmodium spp. infection. Rather, at a popula-
tion level, antimalarial antibodies may indicate recent
Plasmodium spp. transmission and exposure and there-
fore represent a useful tool for malaria microstratifica-
tion to inform resource allocation and targeted
implementation of malaria control and elimination inter-
ventions by NMCPs if integrated into national
surveillance. The observed peaks in anti-P. falciparum
merozoite IgG seroprevalence coinciding approximately
with peaks of PCR-detectable P. falciparum infection,
even in parasite negative individuals, indicate that malar-
ial serology captured ongoing malaria transmission in
the population not detected by routine RDTs. However,
the magnitude of antibody seroprevalence was signifi-
cantly greater than the prevalence of PCR detectable in-
fections. Caution must be exercised in estimating the
prevalence of circulating infections based on serology,
which may be overestimated particularly in regions
where the malaria burden is transitioning from malaria
control to elimination phases, as antibodies can persist
for extended periods [26, 27]. This study was conducted
amid Myanmar’s transition from malaria control to elim-
ination and following large-scale reductions in Plasmo-
dium spp. transmission in the study region [28]. The
higher seroprevalence compared to PCR prevalence of P.
falciparum and P. vivax infections may reflect cumula-
tive incidence in the region over this time period [28,
29]. Between 2005 and 2014, immediately prior to the
commencement of this study in 2015, the prevalence of
malaria detected by RDT declined in Kayah, Kayin and
Bago states by more than 74% (from 3.2 to 1.7%, 0.86 to
0.52%, and 0.44 to 0.07%, respectively) [29]. The histor-
ical prevalence in the 10 years prior to this study are
considerably higher than the 0.16% RDT positivity re-
ported here and may result in the cumulative incidence
of antimalarial antibody responses observed because the
mean antimalarial antibody half-lives of the antigens in-
cluded in this study (selected because their immunogen-
icity and half-lives are relatively well-characterised in the
GMS) may range between 6 months and 7 years IgG
[27, 30, 31]. As such, serosurveillance may be a more in-
formative tool as antibodies wane in the broader popula-
tion and is limited to only exposed populations in
elimination phases or alternatively different sets of anti-
gens could be defined which can quantitatively capture

very recent molecular infection events [14]. This study
was not designed to identify serological biomarkers of
recent exposure to molecularly detectable infections as
this would require detailed longitudinal follow-up and
accurate participant exposure history. Several recent
studies have demonstrated the utility in combining novel
combinations of antigens to predict recent Plasmodium
spp. infection exposure detected by microscopy, clinical
incidence and relapse with P. vivax, across diverse
malaria-endemic populations [14, 32–34]. However, the
efforts to identify reliable, quantitative antibody signa-
tures of recent exposure to malaria parasites are ongoing
[35, 36], and there is currently a lack of consensus on
antigen-specific antibody responses which discriminate
against recent and historical exposures, in particular, of
molecularly detectable infections. We investigated P. fal-
ciparum antigens based on the 3D7 allelic variant. There
is limited data on antigen allelic diversity in Myanmar,
but previous studies have shown that the majority of cir-
culating MSP alleles are of the 3D7 type [37] and that
variation in IgG response to the different allelic variants
of PfMSP2 across multiple sites in Myanmar and the
Greater Mekong Subregion is minimal [38]. Further-
more, antibody responses specific for epitopes within
conserved domains of merozoite antigens have been
shown to illicit strain transcending antibody responses
[39], so inclusion of additional antigenic variants may
not have impacted our study conclusions. However, fur-
ther refinement of choice and number of antigens and
allelic types across different areas of Myanmar and the
GMS is warranted to inform the utility of serological
findings in the region. Regardless of ultimate antigen se-
lection or malaria burden phase, any new tools need to
be validated with respect to the health system platform,
such as the VHV-led delivery of malaria services, which
will ultimately be integrated into.
In individual-level analyses, we observed a reduction

in the odds of concurrent qPCR detectable P. falciparum
infection in participants seropositive for P. falciparum-
specific IgG. Recent longitudinal data from the GMS has
shown that within infected individuals, parasite density
oscillates frequently and that spontaneous clearance of
PCR-detectable P. falciparum infection (i.e. in the ab-
sence of treatment) occurs regularly with the median
time to resolution of infection of around 2 months for P.
falciparum and 6 months for P. vivax [40]. We hypothe-
sise that boosting of antibodies upon exposure to para-
sites may then contribute to clearance of subclinical
parasitaemia which may explain the observed reduction
in the odds of a contemporaneous qPCR-detectable P.
falciparum infection in seropositive individuals when
sampled in the VHV network. This study provides evi-
dence of potential protective immunity against
molecular-detectable infections, which to date has only
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been established to reduce clinical malaria and high
parasitaemia in numerous high-transmission populations
[41]. We were unable to show protection against pro-
spective infection; however, there were fewer repeated
measures (returning participants were less than 20% of
all samples) with large variation in the time between
tests. Further studies investigating the response to and
role of anti-malarial antibodies in the persistence of
molecular-detectable subclinical infections would be
valuable to inform the utility and sampling framework of
serological surveillance in areas where the majority of
the malaria burden remains undetected by conventional
surveillance.
The aim of this study was to investigate malaria inci-

dence and serological data within an existing national
malaria surveillance strategy, in this case, the VHV net-
work. In the national VHV testing strategy, some indi-
viduals will be sampled multiple times and others only
once, that is, malaria incidence is representative of the
population that is sampled by VHV which may not be
truly representative of the general population per se. Re-
peated sampling of a subset of individuals within the
same population risks overestimating malaria incidence
when the same individuals present multiple times with a
single infection. In this study, which accounted for re-
peated measures in statistical analyses, only one partici-
pant contributing multiple samples was qPCR positive
more than once, in samples collected 10 months apart.
Given the estimated clearance time of sub-clinical P. fal-
ciparum infection in the region is estimated to be under
3 months [40], these likely represent two separate infec-
tion events. Therefore, in the present study, multiple
samples from individual participants would not have
biassed estimates of malaria incidence in samples col-
lected by VHV. Nonetheless, accurate estimates of mal-
aria incidence due to repeated sampling of a subset of
individuals should be considered in the broader national
malaria surveillance strategy, given that the sampling
strategy is the same as current RDT testing implemented
nationally at the VHV level.
Sampling at the VHV level may facilitate increased

surveillance in rural and hard-to-reach areas. In this
study, VHVs aimed to collect a minimum of 20 RDTs
each month in accordance with programme implemen-
tation through PCD/ACD; however, data could not be
stratified based on the VHV case detection method as
this data was not collected. As such, we are unable to
determine whether PCD alone would be sufficient to ac-
curately capture the subclinical malaria burden or
changes in serological markers reported here. The total
number of RDTs declined across the study period, and
this is most likely due to the declining motivation of the
VHV to undertake RDTs which has been described in
the region in areas approaching elimination where

positive RDT results are infrequent [42]. This was not
reflected in sample collection, the total number of which
fluctuated across the study. Participation in sample col-
lection, however, occurred in less than half of partici-
pants receiving testing by RDT which, from anecdotal
reports, may have been due to reluctance to commit fur-
ther time to complete the additional informed consent
and testing procedures (in Myanmar, dried blood spot
sampling is not part of routine VHV services and con-
sidered research; therefore, additional consent is re-
quired). However, participants contributing samples
were broadly similar to those contributing RDTs.
Until dried blood spot sampling is considered part of
routine sample collection, routinely collected RDTs
could be utilised as an alternative source of sample
for molecular and serological surveillance of malaria
to overcome participation issues [43–45], but their
utility for molecular assays, given low parasite dens-
ities, needs to be investigated in the Myanmar con-
text. Importantly, capacity building for local
laboratories needs to be prioritised as well as under-
standing how this data will operationally be integrated
into the national surveillance electronic system in
order to inform programmatic decisions.

Conclusions
Current malaria surveillance strategies in the GMS rely
on VHV reporting the results of insensitive RDTs that
do not detect low-density infections. These undetected,
untreated infections may contribute to ongoing malaria
transmission and have the potential to hinder progress
towards malaria elimination. We have shown that
sample collection for molecular and serological surveil-
lance can be integrated and implemented in community-
delivered VHV health programmes in hard-to-reach
populations and has the potential to capture ongoing
malaria transmission at the individual and population
levels. While molecular and serological testing in this
study was undertaken after fieldwork was completed,
away from the villages, data captured by sampling at the
VHV level has the potential to inform programmatic de-
cisions such as resource deployment by national malaria
control programmes. With the increasing development
and availability of easy-to-use, portable point-of-contact
molecular and serological tests, there is future potential
for VHV to undertake molecular and serological malaria
surveillance and report detected cases in near real time.
This will not only advance current routine VHV-led
malaria surveillance, particularly in hard-to-reach areas,
but will also reinforce ownership of malaria surveillance
and the malaria elimination agenda to the community
who will ultimately play a key role in reaching malaria
elimination goals in the GMS.
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