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Abstract

The function of neural circuits and networks can be controlled, in part, by modulating the 

synchrony of their components’ activities. Network hypersynchrony and altered oscillatory 

rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this 

condition, network activities that support cognition are altered decades before clinical disease 

onset, and these alterations predict future pathology and brain atrophy. Although the precise 

causes and pathophysiological consequences of these network alterations remain to be defined, 

interneuron dysfunction and network abnormalities have emerged as potential mechanisms of 

cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating 

these mechanisms may help improve brain function in these conditions.

Certain activities of neurons and neuronal networks are associated with the successful 

encoding of memories and retention of new information, and thus may be necessary for 

learning and memory. In Alzheimer disease (AD), schizophrenia, epilepsy and other 

neurological and psychiatric diseases that cause cognitive impairment, network activities 

supporting cognition are altered, even during preclinical stages1–5, that is, before symptoms 

are noticed by the patient or can be detected by neurocognitive exams. These network 

alterations include activation and deactivation deficits, abnormal oscillatory rhythmic 

activity and network hypersynchrony. In people at high risk of developing AD, for example, 

abnormal activation and deactivation of specific networks during memory encoding can be 

detected decades before the predicted onset of clinical disease6–9. As these functional 

network alterations widely overlap with the brain regions that ultimately develop 

pathological hallmarks and atrophy in AD, they may be a harbinger and possibly even a 

cause of clinical disease manifestations.

Robust network alterations are associated with diverse cognitive disorders, but the 

mechanisms and pathophysiological consequences of the alterations are poorly understood. 

Do alterations in network activity contribute to cognitive impairment or are they incidental 
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by-products of disease-induced cellular dysfunction? Do alterations in network synchrony 

cause the dysfunction of microcircuits, larger distributed networks, or both? Most 

importantly, could cognitive alterations be prevented and even reversed by improving the 

function of cells that promote specific network activities?

Recent findings suggest that altered network activity can indeed contribute to cognitive 

impairment in AD and that network activities can be experimentally or behaviorally 

manipulated to improve cognitive functions in patients at risk of AD and related mouse 

models. In this Review, we explore two main concepts — that network abnormalities and 

interneuron dysfunction contribute to cognitive deficits in AD and related conditions, and 

that blocking or counteracting these mechanisms could be of both symptomatic and disease-

modifying therapeutic value.

Neuronal synchrony and brain function

Cognitive functions depend on brain states that range from maximal focus and concentration 

to inattentiveness, drowsiness and sleep. These states probably do not reflect a continuous 

functional gradient of neuronal activities but rather represent distinct operating modes of 

brain activity that are closely linked to — and possibly determined by — changes in 

neuronal synchrony, the degree to which neuronal activities are correlated. Such synchrony 

fluctuates considerably with behavioural and brain states10. The degree of synchrony among 

neuronal populations (network synchrony) can be determined by measuring and correlating 

neuronal activities at multiple sites, for example, through electroencephalography (EEG) or 

the recording of local field potentials (LFPs) with multielectrode arrays. During non-active 

states, such as slow-wave sleep or quiet wakefulness, cortical neuronal activities at different 

sites tend to be synchronized and slowly fluctuate at high amplitudes (FIG. 1a). During 

active behaviours, such as paying attention or learning, this highly synchronized pattern of 

brain activity abruptly ceases, and neuronal activities at different sites become 

desynchronized and fluctuate at higher frequencies and smaller amplitudes11 (FIG. 1a).

The fundamental relationship between the synchrony of neuronal activities and functional 

states is also evident at the circuit level (FIG. 1b). When mice are resting, adjacent layer 2 

pyramidal cells in the somatosensory cortex show synchronous high-amplitude fluctuations 

in membrane potentials, which result in relatively low signal-to-noise ratios for evoking 

action potentials relative to ongoing fluctuations; however, with active whisker use, this 

high-amplitude synchrony of membrane potentials ceases abruptly, and signal-to-noise ratios 

increase12,13. Thus, increasing synchrony among neurons and recruiting them into slow-

frequency and high-amplitude fluctuations seem to be basic mechanisms for ‘switching off’ 

specific brain regions. By contrast, the suppression of high-amplitude fluctuations and 

desynchronization of neuronal activities increases the ability of neurons to respond to 

external information-rich inputs12. Synchrony and functional states are closely related in 

many neocortical and hippocampal regions, suggesting that synchrony reflects a 

fundamental principle of nervous system design. Here, we propose that deficits in synchrony 

are an important pathogenic mechanism of AD-related cognitive dysfunction.
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Amyloid-β and AD pathogenesis

The hypothesis that amyloid-β has a causal role in AD pathogenesis is supported by diverse 

lines of evidence, including the early accumulation of amyloid-β in the brain in people who 

go on to develop AD and the ability of mutations in the genes encoding the amyloid 

precursor protein (APP) or presenilins (PSENs), which alter amyloid-β production, to cause 

autosomal dominant, early-onset familial AD (FAD)14. Amyloid-β peptides are 

proteolytically released from APP by β-site APP-cleaving enzyme 1 (BACE1; also known as 

β-secretase) and γ-secretase, and exist in diverse assembly states, including monomers, 

oligomers, fibrils and amyloid plaques15. FAD is caused by APP duplications, mutations in 

APP located around the BACE 1 and γ-secretase cleavage sites or within the amyloid-β 
coding sequence, or by mutations in the genes that encode PSEN1 and PSEN2 (alternative 

catalytic subunits of the γ-secretase complex). Over 250 genetic alterations have been linked 

to FAD. Those alterations that have been tested for effects on APP metabolism increase the 

overall production of amyloid-β or the amyloid-β1–42/amyloid-β1–40 ratio16–19, or promote 

the accumulation of pathogenic amyloid-β assemblies20–22. Conversely, an APP mutation 

(A673T) that reduces the β-secretase-mediated cleavage of APP and, consequently, amyloid-

β levels decreases the risk of late-onset sporadic AD23,24.

Amyloid-β oligomers elicit abnormalities in synaptic and cognitive functions in vivo and in 
vitro15,25–30. Neuronal expression of FAD-mutant human or humanized APP (with or 

without co-expression of FAD-mutant PSEN1 or PSEN2) in transgenic mice simulates key 

aspects of AD, including elevated levels of human amyloid-β, amyloid plaques, neuritic 

dystrophy, synaptodendritic impairments, astrocytosis, microgliosis, vasculopathy, network 

dysfunction, cognitive deficits and behavioural alterations31. We refer to these models 

collectively as FAD mice (Supplementary information S1 (table)). An example of such 

models is highlighted in Supplementary information S2 (table), which lists the AD-like 

alterations observed in the hAPP-J20 mouse model, which was generated in our laboratory. 

In combination, the above findings strongly support the amyloid-β hypothesis, which 

includes the notion that amyloid-β is a critical cause of cognitive decline in AD. Notably, 

several other factors, including tau accumulation, apolipoprotein E4 (APOE4) and 

inflammatory mediators, contribute to the complex pathogenesis of AD and can be 

introduced into FAD models through additional genetic modifications32–35.

A major unresolved question in the field is which forms of amyloid-β, tau and APOE4 are 

the most neurotoxic. Lead suspects include soluble amyloid-β1–42 oligomers15,30, abnormal 

assemblies or post-translational modifications of non-fibrillar tau35–38 and APOE4 

fragments39. The importance of answering this question is illustrated by the following 

observations. Approximately 20% of healthy aged individuals, 60% of patients with mild 

cognitive impairment (MCI) and almost all patients with AD exhibit evidence of amyloid 

deposition in the cortex, as shown by positron emission tomography (PET) involving 

radiopharmaceutical ligands that bind to amyloid plaques such as Pittsburgh compound B 

(PiB)40. In healthy aged individuals and patients with MCI, cortical amyloid load correlated 

inversely with episodic memory performance40; this correlation weakened with amyloid 

accumulation and age and does not exist in AD40,41. Discrepancies between amyloid 

deposition and cognitive dysfunction may be explained, at least in part, by the early plateau 
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of amyloid burden during disease progression42 and by dissociations between amyloid 

burden and the accumulation of soluble amyloid-β oligomers43. The latter may be more 

bioactive than amyloid-β monomers, fibrils and amyloid plaques, and readily elicit neuronal 

and network dysfunction26,28,30,43–50. Notably, patients with FAD who carry a mutation in 

the amyloid-β sequence that increases amyloid-β oligomerization49 have prominent 

cognitive impairments without PiB-positive (PiB+) amyloid deposition22, suggesting that 

AD can be caused by pathogenic assemblies of amyloid-β (probably amyloid-β oligomers) 

that cannot be detected by PiB imaging.

Notably, amyloid-β oligomers cannot yet be accurately measured in the brain parenchyma of 

live patients, which has greatly hampered clinical testing of the amyloid-β hypothesis. For 

example, it is not clear whether amyloid-β oligomer levels were significantly lowered in any 

of the failed clinical trials of anti-amyloid-β compounds for the treatment of AD. Nor is it 

clear how much, or by which mechanism, they would have to be lowered to reduce amyloid-

β-dependent synaptic and network dysfunction. Anti-amyloid-β treatments that failed to 

lower amyloid-β oligomer levels in brain also failed to reduce cognitive deficits in hAPP-J20 

mice51,52.

In conclusion, testing the amyloid-β hypothesis in humans will probably require therapeutics 

that effectively lower or counteract the most pathogenic amyloid-β assemblies as well as 

better methods to confirm their target engagement in the brain. The above evidence strongly 

supports the hypothesis that amyloid-β causally contributes to cognitive decline in AD. 

However, the mechanisms remain to be fully elucidated, and alternative interpretations have 

been offered53–56.

Network dysfunction and preclinical AD

Brain activity can be monitored by functional MRI (fMRI), PET, single-photon emission 

computed tomography (SPECT), EEG or LFP recordings. The corresponding signals emerge 

from the complex relationships among electrical activity, cerebrovascular hemodynamics, 

oxygen consumption and the metabolism of neurons and glia57. Attention-demanding tasks, 

such as sensory processing and memory encoding, require the coordinated regulation of 

many neuronal ensembles. In healthy people, attention-demanding cognitive tasks increase 

fMRI signals in specific brain regions (for example, the hippocampus during learning) but 

also cause a profound large-scale deactivation in brain regions that are collectively referred 

to as the default mode network (DMN)58,59 (FIG. 2a). This network is most active during 

inwardly oriented mental activity, such as introspection, daydreaming, mind wandering, 

wakeful rest, imagination and recalling, and it becomes deactivated during outwardly 

directed mental tasks such as acquisition and encoding of new information.

The DMN includes the precuneus, posterior cingulate cortex, lateral and inferior parietal 

cortex, and regions of the temporal and medial prefrontal cortex59. A widely overlapping, 

but not identical, DMN that includes the hippocampus has been revealed by resting-state 

functional connectivity MRI60. Task-induced activation and deactivation of networks 

correlate well with cognitive performance in young healthy people61. Notably, task-induced 

deactivation of regions of the DMN (for example, the precuneus) can be a better predictor of 
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good cognitive performance than the activation of regions that have been more extensively 

studied with regard to their involvement in cognitive functions (for example, the 

hippocampus)61. In fact, task-induced hippocampal activation without adequate DMN 

deactivation is associated with poor memory formation in healthy people (FIG. 2b), which 

highlights that proper execution of these complex functions requires well-coordinated 

regulation of widely distributed networks.

In AD, schizophrenia and other cognitive disorders, deactivation of DMN components is 

impaired during learning1–5. Because synchrony regulates the functional states of networks 

(FIG. 1), the abnormal activation or deactivation of brain regions during specific tasks raises 

the possibility that cognitive dysfunction in these disorders results from synchrony deficits. 

Although AD is increasingly viewed as a heterogeneous, multicausal syndrome, its fMRI 

signature seems to be remarkably consistent, particularly during the early stages of the 

disease. Hippocampal hyperactivation and reduced deactivation of DMN components during 

memory-encoding tasks have been observed in cognitively normal individuals with cerebral 

amyloid deposits4 (a potential harbinger of AD), cognitively normal carriers of the APOE ε4 

allele6,62–64 (the major genetic risk factor for AD), presymptomatic carriers of FAD-causing 

mutations65,66 and patients with MCI67–69, which often develops into AD. In later stages of 

AD, the hippocampal formation is hypoactive during memory encoding, whereas the 

reduced deactivation of the DMN persists4,9,69,70.

Early hippocampal hyperactivation has been interpreted as a mechanism that may 

compensate for emerging cognitive decline in early AD71 and APOE ε4 carriers64. However, 

accumulating evidence suggests that this hyperactivation is primarily pathogenic and may 

impair learning and memory67,72,73. In cognitively normal APOE ε4 carriers, increased 

hippocampal activation was associated with reduced grid cell-like representations in the 

entorhinal cortex during a virtual spatial-memory task64, suggesting a potential link between 

entorhinal grid cell dysfunction and hippocampal hyperactivation.

In patients with MCI, hippocampal hyperactivation occurred during a pattern-separation 

task, which strongly depends on hippocampal functions; treatment with low doses of the 

antiepileptic drug levetiracetam for 2 weeks reversed the hyperactivation and improved 

performance on the task67,73 (FIG. 2c). In FAD mice (lines hAPP-J20 and 3xTg-AD 

(Supplementary information S1 (table)), levetiracetam suppressed network hyperexcitability, 

improved cognitive functions74,75 and reversed excessive neuronal DNA double-strand 

breaks76, which may contribute to neurodegeneration77,78. Thus, this drug may have both 

symptomatic and disease-modifying therapeutic potential. Collectively, these studies suggest 

that network hyperactivity is an early and detrimental alteration in the pathogenesis of AD-

related cognitive dysfunction and that preventing or reversing this hyperactivity may be of 

therapeutic benefit.

Remarkably, there is strong evidence that functional brain alterations begin decades before 

the clinical onset of AD. The Dominantly Inherited Alzheimer Network (DIAN) consortium 

revealed that pathophysiological changes in the brain in people carrying autosomal dominant 

FAD mutations begin at least two decades before the predicted onset of clinical symptoms, 

including changes in cerebrospinal fluid (CSF) biomarkers, cerebral amyloid deposition, and 
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brain metabolism8. Increased brain activity precedes the diagnosis of AD by 30 years in 

PSEN1 mutation carriers7,9. Finally, 20–35-year-old asymptomatic carriers of APOE ε4 

show task-related hippocampal hyperactivation and altered DMN activity on fMRI6. Thus, 

FAD-causing mutations and APOE4 modulate brain function several decades before any 

clinical manifestations of the disease.

Network activity and amyloid deposits

Impaired deactivation of the DMN in older people with or without AD is closely linked to 

amyloid deposition in brain regions that make up this network4,9,70 (FIG. 2d, 3a). Whether 

the dysfunction of the DMN is a cause or a consequence of amyloid deposition is not 

known. When studying clinicopathological associations in humans, it is often impossible to 

conclusively discriminate between detrimental, beneficial and bystander alterations. 

Transgenic mouse or rat models expressing proteins that are suspected of contributing to the 

pathogenesis of AD can help to test related hypotheses in vivo31–33,79,80.

In humans and mice, soluble amyloid-β levels in the interstitial fluid of different brain 

regions fluctuate with the brain state. Amyloid-β levels are higher during wakefulness than 

sleep81–83. In mice, sleep promotes amyloid-β clearance83, whereas sleep deprivation 

increases amyloid-β levels and amyloid deposition82, suggesting that brain states can 

modulate amyloid deposition. In young FAD mice (line Tg2576) (Supplementary 

information S1 (table)), interstitial levels of soluble amyloid-β vary markedly in different 

regions and relate closely to regional differences in metabolic activity84. Higher levels of 

metabolic activity are associated with higher levels of soluble amyloid-β and predict the 

regional amyloid burden in older mice. Thus, networks with higher metabolic rates may be 

more prone to amyloid deposition. In addition, experimental increases in neuronal activity 

by chronic optogenetic activation promote amyloid deposition and trigger epileptiform 

activity in FAD mice (line APP-A7)85 (FIG. 3b; see Supplementary information S1 (table)). 

Thus, the vulnerability of the DMN to amyloid deposition may be related to its relatively 

high baseline activity and to deactivation deficits that are associated with early stages of AD.

Synaptic functions and amyloid-β

Amyloid-β production and the amyloid-β1–42/amyloid-β1–40 ratio, which influence the 

formation of pathogenic oligomers as well as amyloid deposition, are regulated by neuronal 

action potential firing and calcium-dependent conformational changes in PSEN1 at 

presynaptic terminals86. Increasing the rates of regular or burst firing enhances amyloid-

β1–40 and amyloid-β1–42 production in an activity-dependent manner (see also REFS 87,88)

(FIG. 3c). Regular firing proportionally increases both amyloid-β1–40 and amyloid-β1–42 

levels, whereas burst firing, which raises presynaptic calcium concentrations, selectively 

increases the level of amyloid-β1–40, reducing the amyloid-β1–42/amyloid-β1–40 ratio (FIG. 

3c).

Synaptic plasticity is controlled by neurotransmitter release probability and calcium 

concentrations at presynaptic terminals. Excitatory synapses with a low initial probability of 

neurotransmitter release typically display greater facilitation during high-frequency 
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stimulation (potentiation) and act as high-pass filters. Thus, they tend to be unresponsive to 

infrequent or disorganized action potentials but potentiate their responses to coordinated 

firing (FIG. 3d). By contrast, excitatory synapses with a high initial release probability 

respond preferentially to single-spike firing patterns and act as low-pass filters89,90. They 

tend to exhibit depression or reduced potentiation during sequential stimulation (FIG. 3d). In 

one study, the authors concluded that high-pass-filter synapses with higher calcium loading 

produce a lower amyloid-β1–42/amyloid-β1–40 ratio, whereas low-pass-filter synapses with 

lower calcium loading produce a higher amyloid-β1–42/amyloid-β1–40 ratio86.

Amyloid-β and other APP metabolites seem to participate in pre- and postsynaptic 

homeostatic mechanisms that regulate synaptic activity86,88,91–95. Amyloid-β may enhance 

presynaptic facilitation at low concentrations93 and promote postsynaptic depression at high 

concentrations88. Application of synthetic or recombinant amyloid-β1–42 oligomers or 

overexpression of FAD-mutant human APP reduces paired-pulse facilitation — a measure of 

increased release probability — and impairs long-term potentiation (LTP) at some, but not 

other, synapses in the mouse hippocampus91,93,96. These alterations may shift the filtering 

properties of the affected synapses from high-pass to low-pass. This shift could enhance the 

transfer of single action potentials, increase synaptic depression and elevate the amyloid-

β1–42/amyloid-β1–40 ratio (FIG. 3d), promoting both hyperactivity in vulnerable networks 

and amyloid deposition. Reducing presynaptic release might counteract these processes. 

Indeed, levetiracetam, which has beneficial effects on network activity in FAD mice74,75 and 

humans with MCI67,73, reduces presynaptic neurotransmitter release in a use-dependent 

manner90,97,98. Thus, it may counteract amyloid-β-induced alterations in release probability.

In general, it is difficult to extrapolate from the effect that factors exert on specific synapses 

or neurons to the overall effect they have on microcircuits and complex networks. Indeed, 

this has been true for APP and amyloid-β. Although early studies suggested that increased 

neuronal amyloid-β production may be part of a homeostatic feedback loop that primarily 

reduces neuronal activity88, we now know that amyloid-β accumulation can also cause 

neuronal hyperexcitability in vitro and in vivo32,96,99–111. Acute amyloid-β application 

initially and transiently (10–20 minutes) increases the levels of surface AMPA-type 

glutamate receptors and GluN2B-containing NMDA-type glutamate receptors 

(NMDARs)100,103 and the frequency of spontaneous excitatory postsynaptic currents in 

primary neuronal cultures100,103. In brain slices, amyloid-β application also acutely 

increases the rate of action potential firing by hippocampal pyramidal cells99. FAD mice 

(lines hAPP-J20, hAPP-J9, APP23xPS45 and APP/PSEN1dE9) (Supplementary information 

S1 (table)) contain both hyperactive and hypoactive neurons — reflected in abnormally high 

or low rates of action potential-dependent calcium transients or levels of transcripts for the 

immediate early genes Arc and Fos — both before96,112,113 and after109,114,115 amyloid 

deposition becomes detectable.

Neurons exposed to pathologically elevated levels of amyloid-β in vitro or in vivo show 

signs of atrophy, including lower dendritic spine density and shorter dendrites116,117, 

alterations that can increase intrinsic cellular excitability118 and may explain the 

hyperactivity of some excitatory neurons. These morphological and functional effects of 

amyloid-β may be mediated, at least in part, by neuronal depletion of the DNA repair factor 
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BRCA1 and the resulting accumulation of activity-induced DNA double-strand breaks77. 

Compensatory increases in inhibitory interneuron activity may account for the hypoactivity 

of other excitatory neurons101,109. Notably, hippocampal neuronal hyperactivity preceded 

amyloid plaque deposition and neuronal hypoactivity in APP23xPS45 mice and could be 

induced by local application of amyloid-β in wild-type mice101, suggesting that it is a very 

early step in the pathogenic cascade that is triggered by amyloid-β accumulation.

Hypersynchrony in AD and animal models

Besides network activation and deactivation deficits detectable by fMRI (FIG. 2), AD also 

results in network hypersynchrony (Table 1: see Supplementary information S3 (table)). 

Unlike normal fluctuations in network synchrony that are associated with physiological 

changes in behaviour and brain states (FIG. 1), network hypersynchrony is a pathological 

phenomenon in which aberrant synchronization of neuronal networks results in epileptiform 

discharges and seizures.

Neuronal expression or overexpression of proteins that accumulate in AD brains or are 

genetically linked to the disease, such as APP, amyloid-β, tau, APOE4 or α-synuclein, 

causes network hypersynchrony in transgenic mice96,119–121. Spontaneous epileptiform 

activity has been documented in many FAD models, including hAPP-J20 (REF. 96), APP/

PSEN1dE9 (REFS 102,103), Tg2576 (REF. 104), 5xFAD122, 3xTg-AD75, APP/TTA-EC105, 

APP/TTA-CaMKIIα106, APP23 (REF. 107) and hAPPJ9/FYN108 transgenic mice (FIG. 3e; 

see Supplementary information S1 (table)). Behavioural seizures and lower thresholds for 

chemically induced seizures have also been described in some of these 

models96,103,108,111,123,124. Interestingly, network hypersynchrony in mouse models of AD 

and of epilepsy depends on the presence of endogenous, soluble wild-type tau, which seems 

to enable or promote aberrant synchronization32,35,110,111,125,126.

In humans, epidemiological studies have consistently shown that AD is a risk factor for 

epileptic seizures127,128. However, the reported incidence of seizures in patients with AD 

that were detected by observation has ranged from 0.5% to 64%129,130. A recent review of 

17 clinical studies that assessed epileptic activity in AD reported an average incidence of 

15.1% (median: 9.0%)131. The incidence of seizures is roughly 7–8-fold higher in 

individuals with AD than in people without dementia132,133. In a recent nationwide study of 

data from over 140 million hospitalizations, patients with AD were fourfold more likely to 

be hospitalized for a seizure than for non-seizure-related condition134. Moreover, people 

with early-onset AD (50–65 years old) were more likely to be hospitalized for seizures or 

epilepsy than those with a later onset of AD (>81 years old)134. These new findings are 

consistent with earlier reports indicating that early-onset AD (<65 years old) is a major risk 

factor for seizures129,133,135. Conversely, patients with amnestic MCI or AD who had 

seizures or subclinical epileptic activity typically had an earlier onset and faster progression 

of cognitive decline than those without detectable epilepsy129,136,258.

Although seizures in AD are widely thought to result from end-stage neurodegeneration, 

several reports indicate that they can occur early in the disease course and before a 

neurodegenerative disease diagnosis is made136,137. Indeed, in patients who had MCI or 
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early AD with epilepsy, seizure onset clustered near the onset of cognitive decline136 or 

preceded the MCI diagnosis by 4 to 7 years138. At the time MCI was diagnosed, the latter 

group of patients had mild hippocampal atrophy138. Seizures in MCI or early AD with 

epilepsy responded best to the antiepileptic drugs levetiracetam or lamotrigine and least well 

to phenytoin136. The lower relative risk of seizures in patients with late-onset AD may 

reflect the fact that strokes and other ageing-related comorbidities increase seizure risk in 

people without dementia. It is also possible that old brains are less susceptible to amyloid-β-

induced network hypersynchrony than younger brains and that amyloid-β has a less 

important role in the pathogenesis of late-onset AD, which may be more multifactorial than 

early-onset AD.

Epileptic activity is even more prominent in pedigrees of early-onset autosomal dominant 

FAD91,139,140. Seizures have been observed in patients with FAD who carry any of 66 

different PSEN1 mutations141,142 (Supplementary information S3 (table)), in 31% of 

patients with AD carrying PSEN2 mutations143, and in 58% of patients with APP 
duplications144,145. More recently, a multicenter study including 132 patients with FAD 

showed that 48% of patients harboring an FAD mutation had seizures, including 43% of 

PSEN1 mutation carriers (n = 94), 43% of PSEN2 mutation carriers (n = 7), 47% of APP 
mutation carriers (n = 15), and 81% of APP duplication carriers (n = 16)146. Seizure 

frequency in patients with FAD seems to be even higher than that observed in most FAD 

mice (Supplementary information S1 (table)).

In addition, 84% of patients with Down’s syndrome who progress to dementia also develop 

seizures147. Interestingly, very early onset of AD (<40 years old) further increases the 

proportion of FAD pedigrees with epileptic phenotypes (>80%)148. Some FAD mutations 

(for example, PSEN1 L166P) and APP duplications even cause epileptic activity in 

childhood or adolescence, preceding cognitive decline by many years145,149. Thus, network 

hypersynchrony can be a very early and prominent clinical feature of FAD. Indeed, many 

FAD-PSEN1 pedigrees qualify as epileptic syndromes or disorders140,141. This intriguing 

association between AD and epilepsy probably holds important clues about the mechanisms 

by which amyloid-β, tau, and APOE4 promote the development of AD and about potential 

entry points for therapeutic intervention.

The power of gamma oscillations

Whereas abnormal neuronal synchrony can result in epileptic activity, normal neuronal 

synchrony underlies the generation of oscillatory rhythmic activities, or brain rhythms, that 

promote cognitive functions. Neuronal ensembles coordinate their firing within a range of 

oscillatory frequencies (0–300 Hz). Within each frequency band, neuronal ensembles can 

increase or decrease their firing rate and synchrony and thus generate higher or lower 

oscillatory amplitudes (FIG. 4a), although it should be noted that only a small fraction of the 

cells contributes to each oscillatory cycle. The amplitude, phase and frequency in each 

oscillatory band modulate each other and neuronal firing rates in precise ways150. For 

example, the firing of hippocampal pyramidal cells shows phase-coupling with low-

frequency oscillations, such as theta (4–8 Hz). Thus, during periods of high theta, the action 

potential firing rate of pyramidal cells is increased and its timing is synchronized with this 
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rhythm151. By contrast, the firing of several types of interneurons shows phase-coupling 

with high-frequency oscillations, such as gamma (30–150 Hz)150–152. Thus, during periods 

of high gamma power, action potential firing of interneurons is more prominent and 

synchronized with the phase of gamma151 (FIG. 4b,c).

The amplitude (or power) of gamma oscillatory activity increases during sensory processing 

or memory encoding, and such increases in gamma power predict successful memory 

formation in humans and mice153–158. Encoding during sensory, motor or memory tasks is 

associated not only with increased power of high-frequency oscillations (gamma) but also 

with reduced power of lower-frequency oscillations (alpha, beta and theta) in task-related 

brain regions57,154,159,160 (FIG. 4d). However, the relationship between gamma power and 

attention can differ across cortical areas and tasks161. Increases in gamma power tend to be 

localized to networks that are directly involved in the task (task-related networks), whereas 

reductions in the power of lower-frequency oscillations typically involve multiple cortical 

regions162,163. During sensory encoding, individuals with schizophrenia have reduced 

increases in gamma power in task-related networks and reduced decreases in the power of 

lower-frequency oscillations across multiple components of the DMN164. It is tempting to 

speculate that these large-scale deficits of oscillatory activity may be related to the activation 

and deactivation deficits of fMRI signals in patients with schizophrenia or AD5 (FIG. 2). 

Patients with AD also have reductions in gamma power165; however, the relationship 

between task-related deficits in fMRI signals, oscillatory frequencies and the observed 

prominent memory-encoding problems does not seem to have been directly studied in this 

disease.

In healthy individuals, the strength of fMRI blood-oxygen-level–dependent (BOLD) signals 

correlates positively with the power of gamma oscillations166,167 and negatively with the 

power of alpha oscillations168–170. By contrast, decreases in DMN fMRI BOLD signals are 

associated with reductions in gamma power171. During visual stimulation in monkeys, an 

increase in oxygen level, which was associated with a rise in fMRI signals, coincided with 

increases in LFP gamma power in task-related networks (for example, visual area V3), 

whereas a decrease in oxygen level coincided with prominent decreases in LFP power in all 

oscillatory frequencies in DMN regions (for example, the posterior cingulate cortex)57 (FIG. 

4d). These findings suggest that fMRI signals may directly reflect changes in oscillatory 

activity. It should be informative to further explore the relationship between fMRI signals 

and oscillatory alterations in AD and other cognitive disorders.

Longitudinal video-EEG recordings revealed abnormal behaviour-dependent fluctuations in 

the power of gamma oscillations in hAPP-J20 mice (FIG. 5a). Notably, spontaneous 

epileptiform discharges emerged primarily during resting periods in these animals, when the 

intensity of gamma oscillations was low172. In two mouse models of absence epilepsy, 

pharmacologically induced increases or decreases of gamma power were associated with 

decreases or increases in epileptic activity, respectively173. Thus, network hypersynchrony 

and reduced gamma power may be mechanistically linked across different conditions, and 

behaviour-induced increases in gamma oscillatory power may counteract AD-related 

epileptiform activity by activating task-related brain regions and reducing network 

synchrony.
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These ideas are supported by findings in humans with epilepsy154 (FIG. 5b). During EEG 

recordings, individuals were shown a set of images (encoding trials), and their memory of 

the images was probed 24 hours later (recognition trials). Encoding trials were deemed 

‘correct’ or ‘incorrect’, depending on whether or not the old images were recognized during 

the recognition trial. Remarkably, gamma power increased and epileptiform activity reduced 

only during correct memory encoding.

Overall, these LFP, EEG and fMRI findings suggest that effective memory formation 

requires, or induces, a pattern of brain activity that increases the power of gamma 

oscillations and reduces the power of low-frequency oscillations, and that this ‘brain state’ 

reduces aberrant network hypersynchrony in humans and mice (FIG. 5c). Social interactions 

and mental activity may benefit some patients with AD174, perhaps, at least in part, by 

promoting this state. Pharmacological interventions that more persistently improve brain 

rhythms could be of greater therapeutic benefit.

Interneuron impairments in AD

Network synchrony and oscillatory brain rhythms are promoted and controlled by the 

activity of inhibitory GABAergic interneurons175. These cells are highly diverse, and 

different subtypes form electrically coupled functional networks176. Their combined 

inhibitory synaptic input onto excitatory principal neurons and other interneurons generates 

precise oscillatory rhythms that in turn coordinate the timing of pyramidal cell firing (see 

above). Some types of inhibitory interneurons, such as somatostatin-positive (SOM+) or 

neuropeptide Y-positive (NPY+) cells, tend to fire tonically and independently of brain and 

behavioural states177,178. Others, such as parvalbumin-positive (PV+) or vasoactive intestinal 

polypeptide-positive (VIP+ ) cells, fire predominantly during brain states that promote 

encoding177,178. Interneurons and the oscillatory network activities that they regulate are 

altered in AD, epilepsy, schizophrenia and autism91,165,172,179–182. Indeed, interneuron 

impairment is emerging as a potential common mechanism of brain dysrhythmias and 

cognitive dysfunction in many neurological and psychiatric disorders172,179,180,183,184. What 

is more, recent findings support the hypothesis that modulating interneuron function may 

improve brain rhythms and cognitive functions in AD and related disorders172,182,185,186.

Proper functioning of inhibitory interneurons is required for the generation of high-

frequency gamma oscillatory activity, coordination among different oscillatory frequencies 

(cross-frequency interactions) and regulation of neuronal firing by brain rhythms (frequency-

action potential interactions). Several lines of evidence suggest that fast-spiking PV+ cells 

are impaired in disorders associated with hypersynchronous network activity such as 

schizophrenia and epilepsy187, and that other types of interneurons — for example, those 

containing cholecystokinin or NPY — are impaired in mood disorders and anxiety187–189.

PV+ cells constitute ~40% of inhibitory interneurons and are the major source of perisomatic 

inhibition onto excitatory pyramidal cells. Because PV+ cells are electrically coupled by 

dendritic gap junctions and form an electrically coordinated interneuron network, they are 

particularly well suited to synchronously modulate the activity of many pyramidal cells176. 

In optogenetic stimulation studies in wild-type mice, increasing the firing rate of PV+ cells 
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increased the power of gamma oscillations but not of other oscillations, whereas increasing 

the firing rate of pyramidal cells specifically increased the power of low-frequency 

oscillations179,190 (FIG. 4c), indicating a causal link between gamma and PV+ cell function. 

Increasing gamma power improved the signal-to-noise ratio of pyramidal cell firing, an 

effect that is likely to enhance neuronal processing179,190.

In FAD mice (lines hAPP-J20, Tg2576, APP23, APOE4-KI, and APP/PSEN1dE9) 

(Supplementary information S1 (table)), gamma oscillatory activity is altered107,172,191–193, 

suggesting that these animals have deficits in interneuron function. hAPP-J20 mice have 

brief peaks of increased gamma power and long periods of decreased gamma power172,192. 

Similar abnormal fluctuations in gamma power occur in Tg2576 mice191. Increased gamma 

power is associated with behaviour-dependent brain activation, increased firing rate of PV+ 

cells177,194 and the suppression of epileptiform discharges in hAPP-J20 mice172 and humans 

with epilepsy154. By contrast, gamma power is decreased during resting activity and is 

associated with reduced firing rate of PV+ cells177,194 and increased epileptiform discharges 

in hAPP-J20 mice172. These behaviour-related modulations of gamma oscillations probably 

differ mechanistically from aberrant increases in gamma power during seizures or hyper-

synchronized network activity and from the overall increases in oscillatory power across 

multiple frequency bands in APP23 and APP/PSEN1dE9 mice107,193. In APP23xPS45 mice, 

hyperactivity of cortical neurons was associated with decreased GABAergic inhibition rather 

than increased glutamatergic transmission, suggesting impaired inhibitory function109. More 

recently, reduced inhibitory function has been linked to amyloid-β-induced deficits in slow-

wave propagation195,196. Aberrant increases in gamma power in the auditory cortex during 

evoked auditory stimulation in patients with AD have also been related to decreased 

inhibition197,198. Overall, however, humans with AD typically show decreases in the power 

of higher-frequency oscillations and increases in the power of lower-frequency 

oscillations199.

APOE4-KI mice (Supplementary information S1 (table)), in which the Apoe gene is 

replaced by knocking in the human ε4 allele, also have prominent GABAergic dysfunction 

and show reduced hippocampal power of slow gamma oscillations during sharp-wave ripple 

activity200. Amyloid-β application99,201 and APP overexpression202–204 markedly suppress 

the power of kainate-induced gamma oscillations in neuronal cultures. The mechanisms of 

gamma degradation by amyloid-β in brain slices are unclear but may involve changes in 

inhibition–excitation balance and cellular excitability99. Amyloid-β treatment increased 

excitatory and decreased inhibitory postsynaptic currents in pyramidal cells and increased 

the firing rate of these excitatory neurons99. Interestingly, although the mean phase of action 

potential firing did not change, the temporal firing window of excitatory neurons became 

wider, suggesting desynchronization of action potential firing99. Perhaps, spike-theta phase 

dysregulation204 also contributes to the reduced gamma power and the epileptiform activity 

that are observed in FAD mice. Hippocampal injections of amyloid-β reduced firing rates in 

rhythmically bursting interneurons (probably PV+ cells) but not in tonically firing 

interneurons (probably cholinergic interneurons) in the septum203.

Across brain regions and behavioural tasks, effective encoding also seems to depend on 

cross-frequency interactions, particularly the coupling between the phase of theta 
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oscillations and the power of gamma oscillations (phase–amplitude coupling)205–209, which 

is regulated by the synaptic activity of PV+ cells210,211. Recordings from acute brain slices 

of young FAD mice and in vivo recordings from adult FAD mice (lines TgCRND8 and APP/

PSEN1dE9, respectively) (Supplementary information S1 (table)) revealed deficits in theta-

gamma coupling193,212, which were associated with cognitive deficits212 and could result 

from the kind of PV+ cell dysfunction that we identified in hAPP-J20 mice. Indeed, by 

impairing PV+ cell functions, APP and amyloid-β could disrupt multiple aspects of neuronal 

coordination.

Single-unit recordings of inhibitory cells in behaving rodents have revealed that behavioural 

and brain states affect interneuron subtypes differentially177,178,189,213. For example, PV+ 

and VIP+ cells drastically increase their action potential firing rate during specific 

behavioural states (for example, locomotor exploration), whereas NPY+ and SOM+ cells 

show persistent or tonic firing across multiple behavioural states (for example, locomotion, 

sleep and quiet wakefulness). These findings imply that certain behavioural states may be 

able to overcome, at least partly and for short periods, PV+ cell impairments that cause low 

gamma power, hypersynchronous network activity and cognitive deficits in FAD mice and 

humans with AD (FIG. 5c). Optogenetically suppressing the activity of interneurons that 

express the homeobox protein DLX1 in the dentate gyrus impaired learning and acutely 

suppressed memory retrieval in mice, further highlighting the crucial role of interneurons in 

cognitive tasks214. It is tempting to speculate that fluctuations in interneuron activity may 

help to explain the fluctuations in cognitive performance of patients with AD that are 

frequently reported by care takers but have been difficult to document by clinical 

measurements.

The mechanisms by which interneuron deficits contribute to network and cognitive 

dysfunction in AD and related conditions remain to be fully elucidated, although much 

progress has recently been made on this front. Decreased synaptic inhibition and excitation–

inhibition imbalances might explain deactivation deficits in the DMN of individuals with 

MCI or AD4,67,72, but these hypotheses have not yet been tested experimentally. Impaired 

inhibition is another potential mechanism for plaque-related neuronal hyperactivity in 

APP23xPS45 mice109. In hAPP-J20 mice, we found that PV+ cell impairments are caused 

by the depletion of the voltage-gated sodium channel subunit Nav1.1 and crucially 

contribute to network and cognitive dysfunctions172 (FIG. 6a). Voltage-gated sodium 

channels control intrinsic cellular excitability by modulating action potential firing in 

specific neuronal subtypes. Nav1.1 is expressed predominantly in interneurons, including 

PV+ cells, in both mice172 and humans215, and its levels in the parietal cortex are reduced in 

hAPP-J20 mice and patients with AD172. Hypofunction of Nav1.1 has been also described 

in Tg2576 mice216 and in transgenic mice overexpressing BACE1 (REF. 217). As indicated 

earlier, the activity of BACE1, which is expressed at high levels in the brains of patients with 

AD218, is required for the release of amyloid-β from APP. Because this enzyme also cleaves 

the β-subunit of voltage-gated sodium channels, increased BACE1 levels lead to aberrant β-

subunit cleavage and reduced transport of Nav1.1 to the membrane, resulting in Nav1.1 

hypofunction216,217. Neuroblastoma cells expressing the FAD-linked PSEN1 E280A 

mutation also had reduced levels of Nav1.1 mRNA and protein levels219.
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APOE4-KI mice also develop spontaneous epileptic activity and seizures120. In humans 

without dementia, hyperventilation induces network hypersynchronization (for example, 

sharp waves) more frequently in APOE ε4 carriers than non-carriers220. Although network 

hypersynchrony has not been directly linked to interneuron dysfunction in APOE4-KI mice, 

these mice lose around 30% of SOM+ cells in the hilus of the dentate gyrus, and this 

reduction is associated with learning and memory deficits221. Interestingly, chronic 

treatment with pentobarbital reversed the latter deficits but not the loss of hilar 

interneurons221, suggesting that this positive allosteric modulator of GABA type A receptors 

can compensate for the partial loss of inhibitory input (FIG. 6b).

Synaptic depression and hypersynchrony

Synaptic loss is a pathological hallmark of AD and correlates well with cognitive decline 
222,223. In experimental models, high levels of amyloid-β cause synaptic loss, reduce 

glutamatergic synaptic transmission and LTP, and increase long-term 

depression25,88,94,224–228. Intriguingly, several proposed mechanisms of amyloid-β-induced 

synaptic depression might also contribute to network hypersynchrony229. For example, 

amyloid-β blocks neuronal glutamate uptake at synapses, which could result in glutamate 

spillover around the synaptic cleft25. The rise in glutamate may desensitize synaptic 

NMDARs and aberrantly activate extra- or perisynaptic GluN2B-containing NMDARs and 

metabotropic glutamate receptors (mGluRs), and both GluN2B-containing NMDARs and 

mGluRs can promote long-term synaptic depression and spine retraction25,228,230. Amyloid-

β-induced NMDAR- and mGluR-dependent long-term depression can be prevented by 

lowering extracellular glutamate25 and can be mimicked by application of the glutamate 

reuptake inhibitor thero-β-benzyloxyaspartate (TBOA), which can also trigger epileptiform 

discharges in wild-type brain slices 231. Thus, amyloid-β-induced network hypersynchrony 

may be directly linked to synaptic depression.

Future therapies

The effective therapy of AD will probably require combining treatments targeting the root 

causes of the disease with therapeutic strategies that can block or counteract the pathogenic 

processes that these causes trigger33. From the evidence reviewed above, we think that brain 

dysrhythmias caused by aberrant interneuron activity and other mechanisms probably 

contribute to cognitive deficits and behavioural alterations in AD and related conditions. We 

further hypothesize that enhancing the function of interneurons in these conditions, 

particularly of PV+ and SOM+ cells, will improve network activities and cognitive 

performance.

In hAPP-J20 mice, restoring Nav1.1 levels enhanced PV+ cell-dependent gamma oscillatory 

power, reduced network hypersynchrony and improved cognitive performance (FIG. 6a), 

pinpointing Nav1.1- and PV+ cell-dependent oscillatory rhythms as potential therapeutic 

targets. Although it is never certain that therapeutic findings obtained in experimental 

models (or in early clinical trials in humans, for that matter) will hold up in large 

heterogeneous human populations, Nav1.1 depletion and various other molecular alterations 

identified in hAPP-J20 mice have been found in people with AD (Supplementary 
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information S2 (table)). These include depletions of calbindin in the dentate gyrus and of 

reelin in the entorhinal cortex, increased neuronal production of collagen VI, higher 

hippocampal levels of activated group IVA phospholipase A2 and increased expression of 

the adenosine A2A receptor by hippocampal astrocytes100,172,232–236. In addition, the anti-

epileptic drug levetiracetam, which reduces synaptic, network and cognitive deficits in 

hAPP-J20 mice74, also exerts beneficial effects in patients with amnestic MCI67,73, which is 

widely viewed as an early stage of AD237–239.

Manipulating interneuron function to improve brain rhythms is a promising therapeutic 

strategy for disorders involving interneuron and network dysfunctions, including AD, 

epilepsy, schizophrenia and autism. But how might these dysfunctions be approached 

therapeutically? Interneurons have highly specialized functions, electrophysiological 

properties and molecular profiles. Targeting molecules such as ion channels or receptors that 

are predominantly expressed in specific types of interneurons might make it possible to 

improve and harness the function of these cells without impairing other cell types. Indeed, 

Nav1.1 enhancers that preferentially activate Nav1.1-containing interneurons have been 

proposed for the treatment of epilepsy, schizophrenia and AD240. Because the firing rate of 

PV+ cells and gamma power strongly depend on behavioural activity154,177, behavioural or 

sensorial interventions that promote brain states associated with increased power ratios in 

high- to low-frequency oscillations might also be of benefit.

Finally, embryonic interneuron precursors transplanted into adult brains can migrate and 

integrate into appropriate circuits and mature into fully functional interneurons182. Although 

cell therapy for cognitive disorders may seem to be rather daring and must be approached 

with appropriate caution, it has already been explored in a small clinical trial in patients with 

AD241. In AD-related mouse models with prominent loss of hilar interneurons, including 

pilocarpine-treated wild-type mice185 and untreated APOE4-KI mice186, hippocampal 

transplants of wild-type interneuron precursors improved behavioural functions. However, it 

is not known how well such transplants would survive and function in the proteopathic, toxic 

microenvironment in AD brains172,203. Genetic modifications may be required to render 

interneuron precursors resistant to such conditions. Potentially beneficial modifications 

include overexpression of proteins that protect against the disease, such as Nav1.1 (REF. 

172) in PV+ cells, or reduction of proteins that promote or enable AD-related pathogenesis, 

such as tau110 and APOE4 fragments242. These therapeutic opportunities also call for the 

development of reprogramming strategies to convert skin or blood cells into precursors of 

specific interneuron subtypes.

Conclusions

Network activities that support cognition are altered decades before the expected onset of 

clinical signs and symptoms in AD, and the affected networks predict future pathology and 

brain atrophy. Because neuronal synchrony regulates the functional state of brain circuits 

and networks, deficits in synchrony, including network hypersynchrony and altered 

oscillatory rhythmic activity, could contribute to AD-related cognitive dysfunction. 

Although the precise causes of these synchrony deficits remain to be defined, diverse lines 

of evidence suggest that interneuron dysfunction and network imbalance may be crucially 
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involved. Therapeutic strategies that improve the function of interneurons and counteract 

such abnormalities might improve cognitive functions in AD and related disorders. By 

preventing excitotoxic overstimulation of neurons and maladaptive compensatory processes, 

they may also help to prevent or stall disease progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Synchrony and functional states of networks.
The degree of correlated neuronal activity (synchrony) reflects the functional state of 

networks and circuits. a | To illustrate this relationship at the network level, the top panels 

show local field potentials (LFPs) recorded from four electrodes (1–4) inserted 1 mm apart 

into the cat parietal cortex (suprasylvian gyrus) during sleep (left) and wakefulness (right). 

Network activity during resting and non-active states is predominantly characterized by 

synchronized slow-frequency and high-amplitude fluctuations (red shading). By contrast, 

network activity during active states is characterized by desynchronized fast-frequency and 

low-amplitude fluctuations (blue shading). The bottom panels show hypothetical 

representations of the amplitude (red line) and frequency (blue line) of LFP fluctuations and 

of the associated network synchrony (pink line). b | Membrane potential recordings of two 

layer 2/3 (L2/3) pyramidal neurons from mouse parietal cortex (whisker barrel cortex) 

during resting and active (whisker use) periods illustrate that neurons desynchronize during 

active periods. Part a is republished with permission of Society for Neuroscience, from 

Palop and Mucke Page 29

Nat Rev Neurosci. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex 

during natural wake and sleep states, Destexhe, A., Contreras, D. & Steriade, M., 19, 11, 

1999; permission conveyed through Copyright Clearance Center Inc. Part b is from REF.12, 

Nature Publishing Group.
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Figure 2 |. Encoding reveals network dysfunction in people with mild cognitive impairment.
Memory encoding causes specific changes in brain activity-related functional MRI (fMRI) 

signals across different networks. People at increased risk for Alzheimer disease (AD) show 

early changes in the activation and deactivation of specific networks. a | Lateral (left panel) 

and medial (right panel) views of a healthy left hemibrain. During encoding in healthy 

people, network activity increases in task-related networks (blue) and decreases in non-task-

related networks (yellow/orange). Anti-correlated activity (blue versus yellow/orange) in 

these two widely distributed and non-overlapping networks is also evident when 

spontaneous fluctuations of fMRI signals during resting states are examined (not shown). 

The default mode network (yellow and orange regions) includes brain regions that show 

decreased fMRI activity during attention-demanding tasks but become active during 

inwardly oriented mental activity. b | In healthy individuals whose brain activity was 

monitored by fMRI during a cognitive task, a relatively smaller extent of hippocampal 

activation and a relatively greater extent of precuneal deactivation were associated with 

better cognitive performance. c | Pattern separation and completion are cognitive functions 

that heavily rely on the hippocampal formation and allow us to discriminate (pattern 

separation) or merge (pattern completion) similar representations or episodes. In a pattern-
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separation task, in which individuals were asked to discriminate between slightly different 

trowels (left panel), patients with amnestic mild cognitive impairment (MCI) made more 

pattern-completion errors (that is, they failed to discriminate slightly different trowels) and 

had aberrant hyperactivation of the dentate gyrus (DG) and CA3 regions of the hippocampus 

on fMRI (right panel). Treatment with the antiepileptic drug levetiracetam reversed the 

hippocampal hyperactivation and improved the patients’ ability to discriminate between 

images that were similar but not identical. d | During a face–name association task, patients 

with MCI and amyloid deposits in the brain (as revealed by a Pittsburg compound B-positive 

(PiB+) signal on positron emission tomography) and patients with AD showed deactivation 

deficits in the precuneus. Part a is adapted from REF. 58. Part b is adapted with permission 

from REF. 61, Springer. Part c is adapted with permission from REF. 67, Cell Press/Elsevier. 

Part d is adapted with permission from REF. 4, Cell Press/Elsevier.

Palop and Mucke Page 32

Nat Rev Neurosci. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 |. Neuronal activity regulates amyloid-β production and deposition.
a | Most patients with Alzheimer disease (AD) and some people without dementia have 

increased Pittsburg compound B-positive amyloid deposits in the brain243 (red). Amyloid 

deposits predominate in brain regions of the default mode network (blue), which shows 

deactivation deficits in AD (FIG. 2), suggesting a potential link between aberrant neuronal 

activity and amyloid deposition. b | In APP-A7 mice, chronic, optogenetic stimulation of 

pyramidal cells in the entorhinal cortex triggered epileptiform activity and increased amyloid 

deposition in the molecular layer of the dentate gyrus, directly supporting the notion that 

aberrant neuronal activity can promote amyloid deposition in vivo. c | At the synaptic level, 

an increase in the frequency of action potentials (APs) proportionally enhances amyloid-

β1–42 (Aβ1–42) and amyloid-β1–40 (Aβ1–40) production. Compared with regular firing, burst 

firing reduces the Aβ1–42/Aβ1–40 ratio. d | Basal neurotransmitter release determines the 

‘filter’ mode of synapses and regulates synaptic plasticity. The top panel indicates that 

excitatory synapses with lower release probability (high-pass-filter synapses) have greater 

presynaptic Ca2+ build-up, produce lower Aβ1–42/Aβ1–40 ratios, exhibit synaptic facilitation 

and primarily transfer potentiated responses. The bottom panel depicts synapses with higher 

release probability (low-pass-filter synapses), which have less presynaptic Ca2+ build-up, 

produce higher Aβ1–42/Aβ1–40 ratios and show synaptic depression as well as enhanced 
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spike transfer. In AD, synapses may shift from high- to low-pass synaptic filtering. e | 

Electroencephalograhy recordings capture the combined electrical output of neuronal 

ensembles. In such recordings, most familial AD (FAD) mice, including hAPP-J20 (REF. 

96), APP/PSEN1dE9 (REFS 102,103), Tg2576 (REF. 104), 5xFAD122, 3xTg-AD75, APP/

TTA-EC105, APP/TTA-CaMKIIα106, and APP23 (REF. 107) mice (Supplementary 

information S1 (table)), show intermittent large-amplitude epileptiform discharges (denoted 

by the asterisk in hAPP-J20 mice; bottom panel), which provide evidence of network 

hypersynchrony. fMRI, functional MRI; PET, positron emission tomography. Part a is 

republished with permission of Society for Neuroscience, from Molecular, structural, and 

functional characterization of Alzheimer’s disease: evidence for a relationship between 

default activity, amyloid, and memory, Buckner, R. L. et al., 25, 34, 2005; permission 

conveyed through Copyright Clearance Center, Inc. Part e is adapted with permission from 

REF. 172, Cell Press/Elsevier.
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Figure 4 |. Neuronal ensembles generate oscillatory activity patterns.
a | Oscillatory rhythms (grey boxes) emerge from, and control, the activity of neuronal 

ensembles that are formed by excitatory neurons (blue) and inhibitory interneurons (red). 

The amplitude, or power, of low-frequency oscillations increases during rest, whereas the 

amplitude of high-frequency oscillations increases during activity. Action potentials (APs) of 

excitatory neurons are phase-locked to high-power, lower-frequency oscillations (top grey 

box), whereas APs of inhibitory cells are phase-locked to high-power, high-frequency 

oscillations (bottom grey box). b | The left panel shows local field potential (LFP) gamma 

oscillations (blue) and APs (red) for a parvalbumin-positive (PV+) cell in area CA3, 

revealing a close association between APs and the phase of gamma oscillations. In the right 

panel, the AP firing rate (colour coded) is shown as a function of gamma phase for the same 

PV+ cell, which prominently fires during the ascending phase of gamma oscillations. c | 
Optogenetic stimulation of PV+ and pyramidal cells at different frequencies resulted in a cell 

type- and frequency-specific generation of oscillatory activity. 40-Hz stimulation of PV+, but 

not pyramidal, cells increased gamma power, whereas 8-Hz stimulation of pyramidal, but 

not PV+, cells increased theta power. d | In macaques, visual stimulation (15s of dim 1 Hz 

illumination) increased the power of LFP gamma (30–150 Hz) oscillations in a task-related 

network (visual area V3; left panel) and decreased LFP power across multiple oscillatory 

frequencies in a default mode network region (posterior cingulate cortex; right panel). SEM, 

standard error of the mean. Part b is from REF.151, Nature Publishing Group. Part c is from 
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REF. 190, Nature Publishing Group. Part d is adapted from Bentley, W. J., Li, J.M., Snyder, 

A. Z., Raichle, M.E. & Snyder, L.H., Oxygen level and LFP in task-positive and task-

negative areas: bridging BOLD fMRI and electrophysiology, Cerebral Cortex, 2014, 26, 1, 

346–357, by permission of Oxford Journals.
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Figure 5 |. Close association between behavioural state, gamma oscillations and epileptiform 
activity in mice and humans.
a,b | Behavioural activity, full-frequency range spectrograms, gamma oscillatory power, and 

distribution of epileptic discharges in cortical networks of an hAPP-J20 mouse (part a) and a 

human with epilepsy (part b). In mice, exploration (active) of a novel environment robustly 

increased gamma oscillatory power and reduced epileptiform discharges, suggesting that the 

brain state modulates brain rhythms and network hypersynchrony. In humans, successful, 

but not unsuccessful, memory encoding also increased gamma oscillatory power and 

reduced epileptiform discharges. c | In our hypothetical model, memory encoding requires 

frequency-specific modulation of oscillatory frequencies, which reduces network 

hypersynchrony. Part a is adapted with permission from REF. 172, Cell Press/Elsevier. Part 

b is adapted from Matsumoto, J.Y. et al., Network oscillations modulate interictal 

epileptiform spike rate during human memory, Brain, 2013, 136, 8, 2444–2456, by 

permission of Oxford Journals.
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Figure 6 |. Targeting interneurons to improve Alzheimer disease-related network dysfunction.
a | In hAPP-J20 mice (middle panel), reduced levels of the voltage-gated sodium chanel 

subunit Nav1.1 in parvalbumin-positive (PV+) cells were associated with reduced gamma 

power, epileptiform activity and cognitive impairment (the level of cognitive performance is 

denoted by the plus symbols). Restoring Nav1.1 levels in PV+ cells with an Nav1.1-BAC 

(bacterial artificial chromosome) transgene (right panel) reduced all of these deficits. b | 

APOE4-KI mice have increased neuronal levels of phosphorylated tau, age-dependent loss 

of somatostatin-positive interneurons in the hilus of the dentate gyrus, and seizures. Memory 

deficits in these mice were reduced by pentobarbital treatment221, tau removal221 and 

transplantation of interneuron precursor cells160. Part a is adapted with permission from 

REF. 172, Cell Press/Elsevier.
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Table 1 |

Network hypersynchrony in humans with FAD caused by mutations used in mouse models.

Affected genes FAD mutations Number of patients with 
seizures (study population 
percentage)

Age at onset of cognitive deficits, 
years (mean)

Refs

APP KM670/671NL 10 (50%) 44–61 (53) 244

APP V717L, V717G or V717I 11 (40%) 40–67 (51) 245–248

APP T714I or 714A 6 (85%) 33–55 (NA) 249,250

APP Duplication 27 (45%) 39–62 (NA) 144,145,251–253

APP; PSEN1 KM670/671NL (APP); H163Y 
(PSEN1)

8 (89%) 44–65 (54) 254

PSEN1 M146L 7 (70%) 33–46 (39) 255

PSEN1 M146V 1 (100%) 39 (NA) 256

PSEN1 L286V 7 (64%) 39–56 (48) 257

APP, amyloid precursor protein; FAD, familial Alzheimer’s disease; NA, not available; PSEN1, presenilin-1.
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