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Abstract

Affective Computing is a rapidly growing field spurred by advancements in artificial intelligence, 

but often, held back by the inability to translate psychological theories of emotion into tractable 

computational models. To address this, we propose a probabilistic programming approach to 

affective computing, which models psychological-grounded theories as generative models of 

emotion, and implements them as stochastic, executable computer programs. We first review 

probabilistic approaches that integrate reasoning about emotions with reasoning about other latent 

mental states (e.g., beliefs, desires) in context. Recently-developed probabilistic programming 

languages offer several key desidarata over previous approaches, such as: (i) flexibility in 

representing emotions and emotional processes; (ii) modularity and compositionality; (iii) 

integration with deep learning libraries that facilitate efficient inference and learning from large, 

naturalistic data; and (iv) ease of adoption. Furthermore, using a probabilistic programming 

framework allows a standardized platform for theory-building and experimentation: Competing 

theories (e.g., of appraisal or other emotional processes) can be easily compared via modular 

substitution of code followed by model comparison. To jumpstart adoption, we illustrate our points 

with executable code that researchers can easily modify for their own models. We end with a 

discussion of applications and future directions of the probabilistic programming approach
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1 INTRODUCTION

ACHIEVING a human-like understanding of emotions is a holy grail of affective computing. 

The ideal affective computer has to correctly identity a user’s emotion based on behavioral 

cues and contextual information, reason about how its actions may affect the user’s 

emotions, and choose its responses accordingly. Affective agents deployed in a variety of 

applications, such as in tutoring [1], social robotics [2], or other human-computer 

interactions [3], are aiming to achieve this next frontier of emotional understanding. 

Research in recent years has made important strides towards this goal, producing hundreds 

of papers on applying machine learning techniques to recognizing emotions (see [4], [5], [6], 

[7] for reviews). The success of these efforts is due in large part to recent developments in 

deep learning algorithms and computational power [8], coupled with the availability of 

larger datasets [9]. However, though these machine learning models may demonstrate 

excellent performance at emotion recognition, they nevertheless fall short of being able to do 

true reasoning [10]. They are unable to carry out counterfactual and hypothetical reasoning, 

provide causal attributions and explanations, or incorporate contextual knowledge into their 

inferences. And they usually do not generalize well outside the dataset they are trained on. 

By merely performing pattern recognition, these machine learning models achieve 

perception, but fall short of cognition about affect.

In contrast to the data-driven, machine learning approach, an alternative approach with a 

much older history in affective computing favors constructing theory-based models, such as 

emotion architectures (see [11], [12] for reviews). These models are inspired by 

psychological theories of emotion (e.g., [13], [14]), and focus in detail on modeling the 

components and the computations that go into emotional processes. For example, many such 

models focus on computationally defining the cognitive evaluations of experienced 

situations—appraisals—that give rise to emotions [15], [16], [17]. Other models also focus 

on modelling how emotions influence cognition and subsequent behavior [18], [19]. 

However, these models tend to be hand-tuned to specific theories and specific contexts—for 

example, the model in [17] contains many rule-based appraisals that give rise to emotions, 

but is not able to learn new appraisals or modify existing appraisal rules for new contexts—

and thus they are unable to scale well to the complexity of larger, naturalistic datasets. 

Another limitation is that these models usually do not specify how one goes from naturalistic 

data, such as a pixel-level representation of a smiling face, to a representation of emotion: 

The exact “transformation” from an emotion to a visually-observable muscular configuration 

may be scientifically uninteresting (except perhaps for the fact that such a reliable and valid 

mapping does or does not exist), yet still important to an engineer wishing to build 

applications that are sensitive to affect.

These theory-driven models differ not only in their theoretical assumptions and content, but 

also in the details of their implementation, such that it is problematic to compare theories 

side-by-side [11], [12]. To add to this difficulty, theory-driven approaches tend to have large 

barriers to adoption, as most of them use specific architectures or systems that may be 

difficult for other researchers to adopt. For example, the EMA model [16] and Marinier and 

colleagues’ [16] model are built on top of SOAR [20], and a researcher who wishes to 

contribute to these lines of work will have to learn an unfamiliar set of syntax and 
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conventions—although some have advocated for the field settling on a unified architecture 

[21]. Other research groups may implement their models in custom-built systems [18], [22], 

which may not be easily available for other researchers to build upon.

By contrast, deep learning and other machine learning approaches have experienced a 

meteoric rise in popularity and adoption over the past few years. This is due in large part to 

readily-available, open-source, deep learning tools written in beginner-friendly programming 

languages like Python and R, along with accessible learning materials (tutorials, online 

courses) and a large and active community (on programming forums and blogs like Stack 

Overflow and Medium respectively). An ideal approach is one that “democratizes” affective 

computing by being easier to adopt, which will increase the speed of research as well as 

infrastructural developments, while still maintaining the scientific rigor and experimentation 

of theory-based approaches.

In this paper, we propose a probabilistic programming approach to affective computing that 

marries the strengths of theory-driven approaches with that of data-driven approach. 

Probabilistic programming is a modelling paradigm by which one can specify theories of 

emotion using probabilistic, generative models [23], [24]. We can explicitly represent 

uncertainty in emotion theory, randomness in emotional phenomena, or even incomplete 

knowledge about an agent’s mental state, as programs that contain some degree of 

randomness. Because probabilistic programs are modular and can be composed to form 

more complex programs, we can focus on modeling at different levels of abstraction [12], 

[21]. Having a hierarchy of abstract representations also allows probabilistic programs to 

learn context-specific knowledge (i.e., to the specific example) as well as knowledge that 

can generalize to other scenarios [25]. One can use a probabilistic programming framework 

to test different emotion theories (e.g., of appraisal) by substituting modular chunks of code 

and testing which theories best fit experimental data. Modularity also allows integration of 

emotion with other high-level theories of psychological phenomena, such as mental states 

and motivation [10], [26].

In probabilistic programming, model specification is orthogonal to learning and inference in 

these models. This separation allows the affective computing modeler to focus on specifying 

the model rather than on inference and optimization methods, much like how so-called 

“high-level” programming languages abstract away the workings of machine code from the 

programmer. Such abstraction lowers the barrier to adoption by making languages easier to 

learn, while simultaneously making them more efficient1. Because inference in probabilistic 

programming is orthogonal to model specification, infrastructural development of inference 

algorithms can proceed in parallel [27]. Indeed, many modern probabilistic programming 

languages leverage existing deep learning, optimization, and inference libraries, which 

allows efficient and scalable learning from large datasets [28]. The modeller can simply 

specify the model, give it data, and press “run”, so to speak, relying on general-purpose 

inference implemented within the probabilistic programming language. Our claim is that 

probabilistic programming combines the strengths of the data-driven and theory-driven 

1.For example, object-oriented programming was a major abstraction that allowed complex data structures (objects) with their own 
functions.
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approaches in affective computing: It allows the building of psychologically-grounded 

models, hypothesis testing and scientific experimentation, within an infrastructure to learn 

efficiently from and do inference over large data. And it provides a common platform with a 

low barrier to entry that will encourage integration among existing approaches in the field.

We begin the paper by introducing the intuitive theory approach to understanding reasoning 

about emotion, and how this approach has been formalized in the computational cognitive 

science literature using probabilistic methods—specifically probabilistic graphical models. 

Next, we introduce probabilistic programming by discussing two recent high-impact 

examples of applying probabilistic programming to model human cognition. With this 

background, we then discuss implementing a computational model of emotion using 

probabilistic programming, by providing worked example code in a re-analysis of a small 

multimodal dataset [29]. We illustrate how one can model components such as appraisal and 

emotion recognition from faces. We also demonstrate reasoning capabilities that this 

probabilistic programming approach has over previous approaches: for example, it can 

generate novel emotional faces given a new situation. Finally, we end by discussing the 

boundaries of this approach, as well as the long-term promise of this approach, such as to 

modelling emotion generation and understanding complex intentional emotional displays.

2 IMPLEMENTING INTUITIVE THEORIES AS PROBABILISTIC MODELS

People have an intuitive understanding of the world around them. The average person may 

not be able to write down Newton’s laws, but, upon witnessing a thrown baseball, is able to 

intuitively predict the ball’s trajectory and where it would land [30], [31]. This intuitive 

understanding also extends to making sense of other people. If we see a roommate walk out 

of their room, pause, and turn back, we intuitively start generating possible hypotheses about 

their behavior—perhaps they forgot something in their room and went back to retrieve it—

even though these inferences are made on sparse and incomplete information. In daily life, 

we effortlessly make such inferences about other people’s thoughts, feelings, and even 

personality and other traits [32], [33], [34]. Such “intuitive physics” and “intuitive 

psychology” are made possible by intuitive theories that consist of a structured ontology of 

concepts—gravity, air resistance, and velocity; goals, personality, and behavior—and the 

causal relationships between these concepts [35], [36]. This knowledge allows us to make 

predictions, complex inferences, and offer explanations about the observed world. If we 

know that Bob wants to eat (goal), we can predict that he will go look for food (behavior). 
Conversely, if we see that Bob has gone to the cupboard and returns with some potato chips, 

we can also infer that he knew that there were snacks in the cupboard (Bob’s beliefs about 

the world), and perhaps that he likes potato chips (preferences) [37]. Much like how 

scientific theories allow scientists to produce a coherent description of natural phenomena, 

these intuitive theories allow humans to reason about and explain both the physical and the 

social world that they live in [36], [38].

In recent work, we [10], [29] and others [26], [39] have proposed that people also possess a 

structured intuitive theory of emotions. This intuitive theory comprises conceptual 

knowledge such as: what are emotions, moods and other affective states; what types of event 

outcomes cause emotions; what mental states influence emotions; and what types of 
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behavior emotions influence. Importantly, this conceptual knowledge goes beyond encoding 

simple pairwise emotion-behavior contingencies, such as recognizing emotional facial 

expressions, which many machine learning models are already adept at [7]. It allows 

reasoning about emotions in more complicated situations, such as with novel events or in a 

new (e.g. cultural) context, and enables explanation generation, counterfactual reasoning, 

and hypothetical reasoning [10]. Laypeople use their rich intuitive theories effortlessly in 

daily life—the challenge for researchers is to distill this implicit knowledge into workable 

computational models.

We note that there are important differences between scientific theories of emotion (e.g. 

[17], [40]) and the intuitive theories that laypeople employ. For one, the lay description of 

emotion is far more coarse-grained. Intuitive theories do not care about the neural bases of 

emotion [41], nor are they concerned with a taxonomy of how many emotions there are, or 

whether there is a hierarchy between “basic” and other emotions [42], [43]. In fact, these 

intuitive theories differ remarkably across cultures—the antecedents and consequents of 

emotions like shame vary by culture [44], [45]—as well as across individuals [46], based on 

mood [47] or mental illness [48]. In other words, while scientific theories seek an 

“objective” truth, lay theories describe the subjective reality that people live in. Thus, it is 

critical to model intuitive theories because they are what laypeople use to make sense of 

others’ emotions.

The intuitive theory approach lends itself well to computational modeling, especially 

probabilistic graphical modeling. A probabilistic graphical model represents random 

variables as well as the probabilistic interdependencies between these variables [49]. For 

example, a widely supported intuitive theory of human behavior holds that (people think that 

other) people have beliefs about the state of the world, have desires (i.e., goals that they want 

to achieve), and subsequently form intentions to act upon their beliefs to maximize their 

desires [50], [51]. This belief-desire psychology, or belief-desire-intention psychology, can 

be formalized as a rational agent acting to maximize its utility given its incomplete 

knowledge about the world, such as using decision networks or partially-observable Markov 

decision processes [52], [53], [54]. Inferring beliefs and desires from actions reduces to 

Bayesian inference over this generative model [37]. These recent “Bayesian Theory of 

Mind” models have been successful at predicting participants’ judgments of agents’ beliefs 

and desires, suggesting that they capture how people reason about goal-directed behavior.

We can also add emotions into these generative models of behavior. People know that 

others’ emotions arise as a reaction to a motivationally salient event in the world, based upon 

their beliefs and desires about the world [55], [56]. Many scientific theories of emotion 

propose that people implicitly evaluate (“appraise”) experienced events along a number of 

self-relevant dimensions based upon their mental state, and feel emotions as a consequence 

of this appraisal [14], [17], [40]. For example, a goal-conducive event like winning a prize 

would produce happiness, while its unexpectedness could also give rise to surprise. Recent 

work has also suggested that laypeople perform a similar, “third-person appraisal” process to 

reason about the emotions of others [29], [39], [56], [57], [58], [59]. When reasoning about 

someone else’s emotions, people implicitly adopt that individual’s perspective and appraise 

the situation on behalf of that individual. This capability develops very early in life: even 
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infants and young children are able to reason about the emotional expressions that 

accompany fulfilled or thwarted goals [60], [61] or mismatched expectations [62], [63]. 

Thus, a simple intuitive theory of emotions might have event outcomes and mental states 

jointly “causing” emotions via an appraisal process, which in turn “cause” facial expressions 

and other behavior [26], [29], [39], [57].

Several recent studies modeled such intuitive reasoning about emotions using probabilistic 

graphical models (Fig. 1). We [29] investigated the third-person appraisal process as people 

evaluated the emotions of others playing gambles. We also had participants reason about 

emotions given both the gamble outcome and another behavioral cue (e.g., facial expression 

or verbal utterance). Such complex inferences from multiple cues—cue integration—can be 

mathematically derived using Bayesian inference [64], and the predictions from a Bayesian 

model track laypeople’s judgments in these complex scenarios. De Melo and colleagues [57] 

studied laypeople’s inferences of appraisals from emotional expressions by modeling the 

generative processes from outcomes to appraisals, emotions, and expressions. Given an 

emotional expression, one can compute an estimate of the latent appraisals by doing reverse 

inference in the model, a process they term “reverse appraisal”. Indeed, they find that 

laypeople’s subsequent behavior towards the agent are mediated by their inferred appraisals 

of the agent’s emotions. Wu and colleagues [39] similarly proposed a model of how mental 

states—beliefs and desires—give rise to actions and emotions; They model inference of 

mental states from emotional expressions via Bayesian inference, and show that these also 

track participants’ judgments. Although these independently-conducted studies contain 

differences in the details of their models (Fig. 1), there was surprising agreement in the 

broader approach of using Bayesian inference on a generative model of emotion, and even in 

the general causal flow of the model. For example, each study highlighted the importance of 

the third-person appraisal process as an antecedent to emotion (for a more in-depth 

discussion, we invite readers to see [10]).

From a computational cognitive science standpoint, inference in these probabilistic models 

of emotions track laypeople’s judgments, showing that such models provide a good 

computational account of laypeople’s psychology, yielding valuable scientific insight. From 

an affective computing standpoint, such approaches afford strong, theory-grounded models 

upon which to build applications that reason like laypeople, and that laypeople reason about. 

For example, if the goal is to build an expressive virtual character [65] or affective tutor [1] 

that interacts with laypeople, then perhaps an intuitive theory-based model may provide a 

way to generate more human-like affective behavior

Implementing intuitive theories as probabilistic graphical models has its limitations. In our 

opinion, the most significant limitation is representation. Variables like emotion are often 

represented using a single real-valued number, or a vector along a number of emotion 

dimensions (see also [66]). These representations cannot easily encode complex information 

like the relational and temporal nature of emotions: John is not just angry, 6 out of 7, he is 

often angry at something or someone; This anger may be fleeting, or may give rise to a life-

long resentment. Such information is crucial for proper reasoning about what behavior John 

might next exhibit or how one might intervene to help regulate John’s emotions, but is 

difficult to represent using graphical models. Other representational challenges arise when 
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considering other affective phenomena, such as moods and appraisal. Consider appraisal: 

Within a constrained scenario such as playing a gamble or a social dilemma game with 

another agent, the appraisal process may reduce to some linear combination of real-valued 

features that define the outcome of the game. More generally, however, the appraisal process 

is a complex evaluative process that is difficult to represent with current graphical 

approaches. Finally, learning probabilistic graphical models from data and doing inference 

in large models is computationally intensive, limiting their real-world applications on larger, 

naturalistic datasets. We propose that a modern “successor” of probabilistic graphical 

modeling—probabilistic programming—may offer a solution to these limitations.

3 IMPLEMENTING INTUITIVE THEORIES USING PROBABILISTIC PROGRAMMING

Probabilistic programming is a relatively new and powerful modeling paradigm that offers 

much promise for affective computing. Like probabilistic graphical modeling, probabilistic 

programming allows one to capture abstract, conceptual knowledge (e.g., in human intuitive 

theories) as generative models. Instead of a graphical representation, probabilistic 

programming represents conceptual knowledge as stochastic programs—chunks of code that 

embed randomness into their execution [24], [67]. We start by introducing two recent 

examples of probabilistic programming applied to model human cognition (Fig. 2), before 

discussing its features and its application to affective computing.

In a recent landmark study, Lake, Salakhutdinov, and Tenenbaum [68] introduced a 

handwriting-recognition model that successfully learns character concepts. After being 

shown just one example of a novel, handwritten character, the model was able to correctly 

identify more examples at a level comparable to humans (one-shot classification); and when 

made to generate new exemplars of a novel character, produced examples that were 

indistinguishable from those produced by human volunteers (human-like generative 

capacity). Underlying these impressive capabilities is a powerful idea: a probabilistic 

generative model that models the actual writing process. The model has, as primitives, 

handwritten strokes such as straight lines or curves. These strokes are composed to form 

more complex parts that in turn are composed to make characters, subject to constraints on 

where and how different strokes may be joined together to form different parts or characters. 

Finally, the model allows for motor variance at different steps in the handwriting process, 

such as in choosing the start point of each stroke, trajectory of each stroke, and how different 

strokes are joined together. Such variance in the generation process introduces “noise” into 

the visual appearance of the character, but do not change the underlying concept that is to be 

conveyed—a badly-written “g” is still a “g”, despite its potential visual similarity to “q” 

(Fig. 2a). When presented with novel characters, the model infers the steps needed to 

generate the input characters: it inductively learns a program for producing the character. 

This allows it to learn abstract conceptual knowledge from visual features, and to flexibly 

apply this knowledge in a more human-like manner [69].

Probabilistic programming can also be applied to social reasoning, such as language 

understanding [71]. In conversation, people naturally assume, by convention, that others are 

being informative when speaking, and this allows people to make pragmatic inferences over 

what was not explicitly said [72]. A statement like “Some of the students passed the exam” 
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invites the interpretation “Not all of the students passed the exam”, even though the 

semantics of the latter statement is stricter than and not necessarily implied by the former 

[73]. We and our colleagues have formalized this reasoning in terms of a Rational Speech 

Act (RSA) framework for language understanding [70]. First, we define the literal listener 

(Lit) as a probabilistic program that maps a heard utterance to its possible literal meanings 

(e.g., “some” denotes a non-zero quantity, which could be one, or two, etc.). Next, the 

speaker (S) is a probabilistic program that models a cooperative human communicator: It 

aims to achieve the goal of Lit correctly inferring the state of the world, and chooses an 

utterance to achieve that goal. Finally, the pragmatic listener (L) hears an utterance and 

reasons about the goals of the speaker S who produced it. Thus, we implement the pragmatic 

listener L as a probabilistic program that has within it a nested program S, which has in turn 

another nested program Lit (Fig. 2b). This allows nested social reasoning: the listener 

reasoning about the speaker reasoning about the listener. For example, upon hearing “Some 

of the students passed the exam”, L reasons that, if it were indeed the case that “all the 

students passed the exam”, then S would have said so; since S could have but did not, it is 

more likely that “Some, but not all of the students” achieved a passing grade. Note that S 
and Lit are not actual agents, but they exist within listener L’s intuitive theory of 

communication, which makes assumptions that speakers choose their behavior rationally 

and following Gricean maxims. The RSA framework has been applied to model 

understanding of generic language [74]; nonliteral language like hyperbole [75]; humor in 

wordplay [76]; and politeness in indirect speech [77]. More generally, using probabilistic 

programs in a compositional—in this case, nested—manner provides a computational 

framework for modeling social reasoning.

The two examples above illustrate some of the features of probabilistic programming as a 

modeling paradigm that make it appealing to affective computing. The core idea is 

representing theory—laypeople’s intuitive theories about handwriting, communication, or 

emotions—in terms of probabilistic programs. Unlike deterministic programs that always 

produce the same output when given the same input, probabilistic programs instead produce 

samples from a distribution of possible outputs. This allows explicit modeling of uncertainty, 

whether such uncertainty arises from (i) incomplete knowledge about the world and others’ 

unobservable mental states, (ii) incomplete theory, or (iii) inherent randomness in the 

generative process. For example, Lake and colleagues [68] introduce one form of uncertainty 

via motor variance at various steps in the character generation process, while in the RSA 

framework [70], the model explicitly represents uncertainty in semantic meaning and 

speaker goals. Affective computing applications face many sources of uncertainty. Third-

person appraisal requires an uncertain inference about others’ latent beliefs and desires 

(incomplete knowledge). There are individual differences, such as in personality or cultural 

background, in how people with the same expectations and goals appraise the same 

outcomes, and how they will behave after: Many of these individual differences have not 

been explored by scientists (incomplete theory). Finally, the same person facing the same 

situation in the same context might not always behave in the same way (inherent 

randomness). Explicitly modelling these sources of uncertainty is important for learning 

from data and generalizing to new agents and contexts.
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A second crucial feature is modularity. In a probabilistic programming paradigm, small, 

modular probabilistic programs are composed together in a hierarchical and/or sequential 

fashion to produce more complex phenomena—or to capture reasoning about such 

phenomena. In the handwriting recognition example, there is a hierarchy where strokes 

compose to form sub-parts, parts, and characters, while in the language understanding 

example, social reasoning proceeds via inference in nested programs. Modularity and 

compositionality are particularly important in modeling emotions and the processes that give 

rise to and arise from emotion [12], [21]. This is because modeling emotion necessitates 

modeling a wide range of processes from emotion elicitation (via appraisal) to the 

behavioral effects of emotion. Modularity is essential for defining small, reusable processes, 

and compositionality allows one to structure complex reasoning over these processes. For 

example, an agent experiencing a negative emotion (after appraisal) may want to down-

regulate their negative emotion. One way that it can do that is to choose an action that will 

likely result in positive appraisals; Thus, the agent has to re-use its concept of appraisal to 

best select an action to achieve its goals. In fact, this action selection is an example of an 

inference that is handled naturally in a probabilistic program. With a generative model of 

actions to outcomes to appraisals to emotions, one can condition on a desired emotion, infer 

desired appraisals and outcomes, and infer the actions that one has to take to achieve the 

desired goal.

Probabilistic programming is also becoming easier to implement. There has been a surge of 

development in probabilistic programming infrastructure in the past decade, due in part to a 

large funding initiative from DARPA [78]. There now exists many probabilistic 

programming languages under active development, and many of these exist as modules or 

libraries written in existing programming languages like Python (e.g., Pyro and Tensorflow 

Probability) and Javascript (e.g., WebPPL [79]). These languages are Turing-complete, and 

can represent any computable probability distribution. Moreover, some of these language 

leverage existing optimized deep-learning libraries: As its name suggests, Google’s 

Tensorflow Probability is built on top of Tensorflow, while Uber-developed Pyro is built on 

top of PyTorch. This allows one to leverage efficient optimization (e.g., gradient descent 

algorithms), approximate inference techniques (e.g., MCMC, variational inference), as well 

as hardware acceleration (e.g., GPU computation). Thus, these modern probabilistic 

programming languages combine both the modeling flexibility of a universal programming 

language with the power of modern deep learning.

4 MODELING EMOTIONS USING PROBABILISTIC PROGRAMS

At an abstract level, probabilistic programming is an approach to modeling: It is not bound 

to any particular language or even a particular architecture, unlike work in cognitive and 

emotion architectures [16], [19]. That said, to illustrate our points more concretely and to 

jumpstart the community’s adoption of a probabilistic programming approach to affective 

computing, in this section we provide accompanying code written in the open-source 

probabilistic programming language Pyro, itself written in Python. A repository for the code 

in this paper, accompanying documentation, and links to tutorials, are available at: https://

github.com/desmond-ong/pplAffComp
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4.1 Description of Dataset

As an illustrative example throughout this section, we use a previously-collected dataset [29] 

(Experiment 3; available at github.com/desmond-ong/affCog). In this experiment, 

participants were shown characters playing gambles for money. On some trials, participants 

saw the outcome of the gamble, or a facial expression ostensibly made by the character after 

seeing the gamble, or both the outcome and the facial expression. They then rated how the 

character felt on 8 emotions (e.g., happy, sad, anger), each using 9 point Likert scales. The 

facial expressions were all generated using FaceGen, with standardized gender, race, and 

other features, and varying only in emotional expressions. Previously [29], we used a 

probabilistic graphical modelling approach to show that participants’ judgments of emotions 

given multiple cues—what we term emotional cue integration—can be modeled as the joint 

Bayesian inference of P(emotion|outcome, face), using the individual likelihoods P(emotion|

outcome) and P(face|emotion).

In this paper, we use probabilistic programming to remodel this dataset. The purpose of this 

re-modeling is pedagogical. We use a real dataset (rather than a simulated, toy dataset) of 

managable size and with actual hypotheses. Our aim is not to outperform our prior analysis, 

but to provide readable, illustrative examples for high-level takeaways. However, we show 

later that the probabilistic programming re-modeling offers more capabilities than our prior 

analysis, such as the ability to generate novel faces.

4.2 Modeling Appraisal

First, let us consider the “causes” of emotion—the appraisal process. Appraisal can be 

represented by a function that takes in a representation of the event and performs some 

computation to yield emotions. The model could also define an intermediate representational 

space of appraisal dimensions, such as goal-conduciveness, novelty, and controllability (e.g., 

[15], [17]), map events onto those dimensions, and subsequently map from the appraisal 

dimensions to emotions.

Following our previous work [29], we consider a simple linear model (Fig. 3). People 

observe an agent experiencing the outcome of a gamble, and provide emotion ratings of how 

that character is feeling. We assume that to do so, observers compute an appraisal of the 

outcome via a linear function of the features of the gamble. We can, based on theory, 

identify a set of features of the gamble that may factor into such an appraisal, such as the 

amount won relative to the expected value of the gamble. Let us abstract out that 

computation into a compute_appraisal() function that returns a set of appraisal variables. 

Hence, we have a model that learns a linear mapping from these appraisal features to the 

emotion—really, a linear regression.

This linear model provides a simple starting point that already contains many rich features. 

We abstracted away the appraisal calculation into a separate compute_appraisal() function, 

which we can modify without impacting the logic of the generative model. Here, we 

modeled the mapping from appraisal variables to emotion ratings using a linear regression; 

we could substitute that with a non-linear function, like a feed-forward neural network that 
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we fit to the data. This choice of fitting and learning is conceptually distinct from the choice 

about appraisal dimensions.

Another way of modeling uncertainty, as taken in Bayesian regression, is to model the prior 

distributions over the model parameters. This is useful in modeling individual or group 

differences in appraisal. For example, people reason very differently about the emotions of 

someone close to them than a stranger, and we showed that we could capture this via 

differences in model parameters [46]. In Bayesian regression, one can hypothesize that there 

are several populations of people, each with their own distribution of model parameters—

perhaps males tend to reason differently from females. One posits prior distributions over 

parameters, then sample regression models from those distributions, conditioned on the data. 

From the data, one can infer the population distribution of model parameters, which could 

provide insight into group or individual differences in emotion reasoning (We have an 

example in our repository).

Representing appraisal as a probabilistic program allows many exciting extensions. For 

example, the appraisal function can take as input an estimate of the agent’s beliefs and 

desires. Depending on the model specification, one could first infer beliefs and desires, and 

then pass them into an appraisal function to reason about latent emotions [57], or one could 

jointly infer beliefs, desires and appraisals conditioned on the data [39]. We can also define 

richer representations for emotions, and richer computation on these representations. In the 

example above, the return value of the compute_appraisal() function is a real-valued vector 

(or tensor) representing emotion intensity: Such a function could instead return an emotion 

“object” that contains attributes like the target of the emotion. To achieve this, we would 

have to define a space of possible targets (which could be constrained to the specific context) 

so that we can sample from this space during inference, and we would have to embed the 

target information within the appraisal representation. Although implementing this would 

still require effort, it seems to us that probabilistic programming offers the most plausible 

route to success among existing approaches.

4.3 Learning Emotion Recognition from Faces

Next, we consider how to easily integrate learning from high-dimensional data. For most 

affective computing applications, we are interested in the mapping from emotions to 

observable behavior like facial expressions. While there are theories mapping emotions to 

facial expression (e.g., the Emotion-Facial Action Coding System or EM-FACS; modified 

from [80]), they may not be exhaustive, and implementation brings its own set of 

engineering challenges [81]. Most researchers prefer to learn the mapping from high-

dimensional facial expression images to emotions, rather than hand-specifying this 

transformation.

We can extend the code above to specify a generative model from emotions to facial 
expressions, Pθ(face|emotion), and to learn the parameters θ of such a model from data. For 

example, we can use a convolutional neural network to model Pθ(face|emotion, z), where z 
is a latent vector that captures aspects of the face that are not determined by the emotion 

(e.g., face shape, gender). The parameters θ can be learnt via stochastic variational inference 

(SVI) [82]. Modern probabilistic programming languages are able to perform SVI 
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automatically with a small amount of input from the modeler. SVI historically required the 

derivation of a quantity called the evidence lower bound (ELBO)—the ELBO is maximized 

during training, much like how a loss function is minimized during many machine learning 

approaches. In practice, the ELBO contains the posterior distribution (e.g. P(z|face)), which 

is often intractable, but can be approximated with variational distributions (in our case, q(z|

face)) that can also be parameterized by neural networks. Trained in this manner, the model 

is a semi-supervised variant of the variational autoencoder (VAE) [83], a popular generative 

model that has received significant attention in the deep learning community.

Building this model in Pyro is relatively straightforward (Fig. 4), and again highlights how 

the complexities of inference and optimization are orthogonal to model specification. In the 

model, using a logic similar to Fig. 3, we sample the z’s from some priors (that could also be 

learnt). We then specify a Decoder() function as a neural network that takes the z’s and 

emotions and generates a corresponding face. Within PyTorch, a fairly complicated neural 

network can be specified in a few lines of code (see our repository).

This model can be further improved by letting the model learn the latent emotion space. 

Thus far, we have treated emotion as an observable variable, as we operationalized emotions 

using ratings that people provided, either after an agent experienced an outcome, or after an 

agent shows an emotional facial expression. This is usually standard practice in many 

supervised learning paradigms (see reviews of [7]), where we train a model to predict an 

observed y given variables x and provide the model with fully-observed pairs of (x,y). 

However, in operationalizing emotion as a set of Likert scale ratings (as we have done), or a 

categorical label (as many classification tasks do), we limit the model to learn only the 

emotions that we, the modelers, chose, and only in the manner we specify. Concretely, some 

emotion theories have argued that there is a latent affect space that characterizes affective 

phenomena, and that most of the variance in emotion ratings or emotion concepts can be 

captured by a low-dimensional representation, such as two-dimensional space containing 

Valence and Arousal [84], or three dimensions or Valence, Arousal, and Dominance [85].

To build this model, we adapt the structure of a recently-proposed Multimodal Variational 

Autoencoder [86]. In this variant of the VAE (Fig. 5), we posit a latent affect space. 

Outcomes, via appraisal, give rise to changes in the agent’s affect, which in turn give rise to 

the agent’s facial expressions. When participants report on the agent’s affect by providing 

emotion ratings, they are mapping their estimate of the agent’s affect onto lay emotion 

concepts via some mapping P(rating | affect). Note that the rating space has dimensions of 

discrete emotions like happiness, sadness (i.e., the dimensions of the Likert scales that we 

asked participants to report), but the affect space is one that we allow the model to learn 

from the data. The model might also learn latent features about the faces, outcomes, or 

ratings that are unrelated to emotions, such as gender, face shape, much like the latent 

variable z that we added into the model in Fig. 4.

The multimodal VAE model provides some flexibility in performing inference. Because of 

the causal dependencies in the graphical model (Fig. 5, right), each of the modalities are 

mutually independent given the latent affect. Thus, the model can deal effectively with any 

subset of the modalities. Specifically, it can do inference over emotion ratings given 
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examples with only facial expressions, only outcomes, or examples with both facial 

expressions and outcomes. This is a big advantage over many existing multimodal emotion 

recognition systems that cannot flexibly deal with incomplete data (i.e., observations with 

missing modalities).

4.4 Using probabilistic programs as generative models

All the models discussed here are generative models that allow us to sample new examples 

from the model: Indeed, sampling and conditioning is part of the inference process. In 

particular, if we consider the multimodal VAE model from Fig. 5, we can randomly sample a 

value of affect in the latent space (i.e., we can sample from the prior, often a Gaussian 

sphere), and generate the outcomes, faces, and emotion ratings that are associated with that 

value of “affect”. We can also perform conditional sampling: we can condition the model on 

a particular set of emotion ratings (e.g. high on happiness, high on surprise), and have the 

model generate the outcomes and faces that are most likely associated with those ratings. In 

Fig. 6, we show some conditional samples from the model. Given that we only showed it a 

small set of faces, the model is able to reproduce the faces fairly well, and in fact can 

generate new faces that correspond to a novel outcome or an uncommon set of ratings.

In these examples, we have avoided discussing inference in these models for a number of 

reasons. First, we chose to focus on motivating the model specification from emotion theory. 

Second, Pyro—and PyTorch—abstracts away the optimization and inference algorithms 

from the affective computing modeler using high-level functions. Indeed, there exist 

powerful routines like stochastic variational inference [82] that solve or approximately solve 

the types of problems that arise in affective computing. Third, we show that the modeler can 

leverage state-of-the-art research done in artificial intelligence and deep learning, such as 

easily adapting the semi-supervised and multimodal [86] variants of the variational 

autoencoder [83]. This can be done without necessarily getting bogged down by the details 

of how and why they work. For readers interested in the details of the implementation, we 

provide more details about inference, and links to literature and tutorials, in our code 

repository.

5 GENERAL DISCUSSION

In this paper, we propose that probabilistic programming offers a principled and theory-

driven, yet flexible and computationally efficient manner of specifying affective computing 

models. We draw inspiration from recent lay theories of mind and lay theories of emotion 

implemented using probabilistic graphical approaches, as well as two recent examples of 

non-affective models implemented in probabilistic programming, to propose a basic 

framework for modeling emotions using probabilistic programs. We provided illustrative 

code, written for conceptual clarity rather than predictive performance, about how one might 

model appraisal (reasoning about emotions from outcomes that occurred), emotion 

recognition from images, and inference about emotion from multiple channels.

We hope that, by providing open-source code in a modern probabilistic programming 

language, we lower the barrier to entry for two groups of researchers. The first includes 

emotion theorists who want a standardized approach to specifying computational models of 
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emotion, which is both easy to learn yet flexible enough to represent complex theory. For 

this first group, being able to leverage optimization and deep learning libraries to learn 

efficiently from large data is also an added bonus. The second group includes machine 

learning researchers and computer scientists familiar with deep learning who want to build 

more psychologically-grounded models, by offering a modeling paradigm that elegantly 

specifies scientific theory. This will hopefully provide a bridge to synergize efforts in 

affective computing from both data-driven and theory-driven approaches.

5.1 Boundaries of the approach

The probabilistic programming approach is suitable to implement a wide class of models. 

One way to characterize this is by borrowing David Marr’s [87] classic proposal that 

researchers can understand computation (and cognition) at three complementary “levels of 

analyses”. The highest-level, the “computational level”, focuses on understanding the goal of 

the computation: what are the inputs needed to produce the output of a computation. For 

emotion recognition: what are the contextual cues and behaviour needed for inferring 

someone’s emotions? Probabilistic approaches, as they focus on building causal models of 

the world, are well-suited to models at this level of analysis: Indeed, all of the models 

discussed in this paper are framed at this level.

By contrast, probabilistic approaches tend to be more agnostic about Marr’s second, 

“algorithmic” level of analysis. Models at this level are concerned with the process of 

transforming the inputs of the computation into the output. Questions at this level include: 

how do people scan facial expressions for emotional information—eyes, then mouth? How 

fast do people make these judgments? How long do emotion episodes last? At the present 

moment, most probabilistic approaches, including probabilistic programming, do not make 

strong commitments to process-level models, or resultant behaviour like eye-tracking and 

reaction times. It remains to be seen whether future probabilistic approaches can make 

stronger claims at this level of analysis. This is in contrast with, for example, cognitive and 

emotion architectures [16], [19], [22], which usually take a strong theoretical stance on the 

dynamics of emotion processes, such as defining fixed-interval cognitive processing cycles 

and similar constraints on emotional dynamics. (To finish the discussion, probabilistic 

approaches have even less to say about Marr’s third, “implementation” level, which is 

concerned with how computation is implemented in the brain or other physical systems. No 

one of these “levels” is superior to the others: They answer different questions, and are all 

complementary to understanding computation.)

5.2 Connection to other approaches

In Sections 2 and 3, we discussed how the probabilistic programming approach naturally 

implements intuitive theories (or probabilistic graphical approaches). It is also compatible 

with many non-probabilistic models. For example, Ortony, Clore and Collins’ [17] model of 

appraisal (logical rules) can be easily modified and implemented in a probabilistic program. 

Probabilistic programs can also implement dimensional [84], [85] or other [66] 

representations of emotions and affect, and be used to compare competing theories.
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As mentioned in Section 5.1, probabilistic programming approaches focus on a different 

“level of analysis” as process-level models and architectures that describe emotion dynamics 

[16], [19], [22]. Indeed, we think that in the future, models built using the probabilistic 

programming approach will have to interface with architectural models when it comes down 

to defining dynamics. This should be possible given the modularity of both architectures and 

probabilistic programming. This might also allow us to model more task-general aspects of 

cognition and emotion using probabilistic programming in the future.

Probabilistic programming can also leverage deep neural network architectures. For 

example, Figs. 4 and 5 illustrate variants of a deep generative model. The compositionality 

of probabilistic programming allows different “components” of the model to be represented 

using deep networks [4], [5], [6], [7], but embedded within a larger theoretical model.

5.3 Future Potential

Probabilistic programming may help offer integration across the field of affective 

computing. Having a common modeling paradigm—and ideally, a common programming 

language—makes it easy to scientifically test competing theories. Because theories are 

represented as modular programs, one can easily substitute different theories (via 

substituting different chunks of code) within the same framework. For example, one can test 

different formulations of appraisal, or different representations, within this common 

framework. Many researchers [12], [21] have repeatedly echoed the need for a common 

platform to synergize research efforts across the field. While previous cognitive architectures 

like SOAR had seemed to promise such a common platform on which to build and test 

cognitive and emotion theories, the (lack of) uptake of these architectures outside the groups 

that developed them—relative to the uptake of machine learning and deep learning 

approaches to emotion—suggests that there may be numerous barriers to adoption for other 

scientists. Perhaps the solution lies in having accessible software packages written in 

popular languages supported by a vibrant development community.

Probabilistic programming may also inform greater insights into human psychology. If we 

train a probabilistic program to model how people recognize emotions from facial 

expressions, we can learn not only what facial features people tend to use in emotion 

judgments, but also people’s relative weighting of those features, which may vary by context 

or individual differences. But beyond learning people’s “model parameters”, probabilistic 

programming also allows us to refine theories. For example, researchers can specify an 

appraisal theory as the model’s prior “knowledge”. The model can update these appraisal 

mappings to match empirical data, or to learn new appraisals (e.g., using tools from 

Bayesian non-parametrics). Researchers can then query the programs to further refine their 

theory. This is especially necessary today when there is too much data for researchers to 

specify everything necessary for modelling: We need models that can not only implement 

psychological theory, but also learn to add to and refine existing theories.

As probabilistic programs are generative models, they hold promise for applications that 

require emotion generation, such as in virtual characters [65]. We showed simple code that 

could learn to generate an emotional face conditioned on receiving a particular outcome. 

Obviously, this model needs a lot more data to generate realistic emotional expressions, but 
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it could already generate emotion-appropriate faces without a programmer telling it what a 

smile is. This approach of learning parameters of a generative model from rater data can 

augment existing emotion-generation models that rely on hand-tuned expressions.

We can take the idea of emotion generation one step further, to model goal-directed emotion 
generation. Earlier in the paper, we discussed the Rational Speech Act framework [70] 

whereby effective communication can be modeled as nested probabilistic programs. This 

offers a natural extension to model communicative theories of emotion. Emotions serve a 

communicative role [56], [88], and people often have goals to convey their emotions to 

others, for example expressing appropriate negative emotion to an employee who produced 

sub-par work, or strategically choosing emotions to display in a negotiation [89]. We can 

apply this principle to cases where an affective computing agent has to solve the goal of 

correctly communicating an emotion to a human user. The agent (e.g., a virtual character) 

builds a model U of how the user would infer the agent’s emotions given the agent’s 

emotion displays. The agent can then nest that model U into its own decision-making model. 

Based upon the agent’s inferences of the user’s inference of the agent’s emotions, the agent 

can then choose its behavior to maximize the probability that the user arrives at the correct 

conclusion. Thus, by leveraging the compositional nature of probabilistic programs, we can 

embed communicative theories and goals as nested models of agents reasoning about human 

users reasoning about agents.

Further extensions may also allow the modelling of complex phenomena like behavioural 

regulation and deception. For example, people learn to regulate their emotions depending on 

the social context. An individual insulted at a party may not immediately act upon their 

anger (to confront their aggressor), and may instead choose to suppress their anger, going 

against the action tendencies of their current emotional state. They might even go further and 

fake a smile or a laugh—behaviour contrary to their current emotional state. Current models 

cannot handle such complex cases, but the combination of probabilistic programming 

models of emotion understanding discussed here with decision-making models (e.g., 

POMDPs) may offer a solution. This necessitates several nested layers of reasoning made 

possible by compositionality: The affective computing agent reasons about how the 

individual feels in context, but that individual may in turn be thinking about others in their 

social context and their inferences about said individual.

In summary, affective computing research has made much headway over the past two 

decades, buoyed by the emergence of many theory-based computational models of emotion, 

as well as many data-driven machine learning approaches. There remains, however, much 

room for integration across many of these research groups and research approaches. It is our 

hope that the probabilistic programming paradigm, by combining the strengths of both 

theory-driven and data-driven approaches, may be a candidate for standardizing and unifying 

efforts in computational modelling of emotion and other affective phenomena.
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Fig. 1. 
Summary of previous work using probabilistic graphical approaches to model lay human 

reasoning about emotions. Figures are adapted from (a) [29], (b) [57], (c) [39]. Shaded 

nodes represent observable variables, while unshaded nodes represent latent variables. 

Variables that were “implicitly” modelled (i.e., not directly specified) are rendered using 

translucent nodes. In (d), adapted from [10] and [26], we illustrate the more general model 

that encompasses the models in (a-c).
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Fig. 2. 
Simplified illustration of probabilistic programming applied to human cognition, with 

pseudocode. (a) Our adaptation of the key ideas in [68]. Characters (e.g., “g” and “q”) are 

composed of a sequence of parts and subparts and their spatial relations (i.e., where the parts 

are joined). There is motor variance in the “writing” process, which may lead to visually 

similar, but conceptually different, character concepts. (b) Language understanding in the 

Rational Speech Acts framework [70] proceeds via nested reasoning: the pragmatic listener 

reasons about a nested speaker, which in turn reasons about a nested literal listener.
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Fig. 3. 
Excerpt of Pyro code that learns a linear regression mapping appraisals to emotion ratings, 

with graphical representation on the right. We use plate notation: There are N independent 

observations of outcomes and emotion ratings, and the parameters β are constant and shared 

across the observations. The compute_appraisal() function takes in a representation of an 

outcome and returns an apptaisal (l. 3). We then sample regression coefficients βi for each 

dimension i from a Normal distribution, given parameters μi, σi (l. 4). We compute the 

estimated emotion rating (l. 5), and then condition on having observed the emotion rating in 

the data (l. 6), in order to infer the values of μi, σi.
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Fig. 4. 
Excerpt of Pyro code that implements a semi-supervised variant of a variational 

autoencoder, with graphical representation on the right. The latent variable z captures 

aspects of the face (e.g., shape) that are emotion-irrelevant, while θ parameterizes the 

distribution Pθ(face|emotion, z). Here, θ are weights in a neural network within the Decoder 

() function (l. 7). This code builds off Fig. 3 by generating an emotion conditioned on the 

observed outcome and emotion ratings (l. 3-4), sampling z from its priors (l. 5), and 

generating a face conditioned on the observed data (l. 6-8).
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Fig. 5. 
Excerpt of Pyro code that implements a multimodal variational autoencoder. For simplicitly, 

we removed the plate notation and omit the variational parameters (θ) that parameterize the 

distributions.

Ong et al. Page 27

IEEE Trans Affect Comput. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Samples from a multimodal VAE. Top: sampled faces conditional on very low and high 

reward outcomes. Bottom: sampled faces and gamble outcomes, conditioned on emotion 

ratings. The black triangle on each wheel indicates the outcome of that gamble.
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