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Random effects models for complex
designs
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Abstract

Plaid designs are characterised by having one set of treatments applied to rows and another set of treatments applied to

columns. In a 2003 publication, Farewell and Herzberg presented an analysis of variance structure for such designs. They

presented an example of a study in which medical practitioners, trained in different ways, evaluated a series of videos of

patients obtained under a variety of conditions. However, their analysis did not take full account of all error terms. In this

paper, a more comprehensive analysis of this study is presented, informed by the recognition that the study can also be

regarded as a two-phase design. The development of random effects models is outlined and the potential importance of

block-treatment interactions is highlighted. The use of a variety of techniques is shown to lead to a better understanding

of the study. Examination of the variance components involved in the expected mean squares is demonstrated to have

particular value in identifying appropriate error terms for F-tests derived from an analysis of variance table. A package

such as ASReml can also be used provided an appropriate error structure is specified. The methods presented can be

applied to the design and analysis of other complex studies in which participants supply multiple measurements under a

variety of conditions.
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1 Introduction

At the simplest level, many studies involve randomly allocating people to treatment groups, making measure-
ments and then undertaking an analysis to examine the size and significance of treatment effects. Solomon et al.1

describe such a study in which medical practitioners, trained in different ways, evaluate a series of videos of
patients obtained under a variety of conditions. The key questions in the study centre around the impact of
training and how that impact might relate to the variety of conditions under which the videos are produced.

Examples similar to the Solomon et al.1 study occur, for example, in agriculture, where a field experiment
involving a number of crop varieties may be evaluated through a taste-testing experiment involving a large
number of tasters each evaluating a relatively small number of varieties. Such studies, referred to as two-phase
studies when introduced by McIntyre,2 occur when material from a primary experiment is evaluated within a
second experiment. These studies present significant challenges both at the design and the analysis stages and,
particularly, in the determination of appropriate error terms for specific treatment effects. A recent informative
description and review of such studies is provided by Brien3 who also notes that many studies involving human
subjects, such as that reported in Solomon et al.,1 have been multi-phase experiments but have not been recog-
nised as such.
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Plaid designs, originally introduced by Yates,4 typically have one set of treatments applied to rows and another

set of treatments applied to columns. Farewell and Herzberg5 characterised the Solomon et al.1 study as having a

plaid design, and presented an analysis of variance (ANOVA) structure to examine treatment effects and error

terms for such designs. However, with the aim of highlighting the basic structure of these designs, the significance

tests from the ANOVA given in Farewell and Herzberg5 did not take full account of all error terms. The further

level of nesting below the primary plaid design introduced additional complexity, similar to a split-plot structure

for this component of the design, but this was not fully addressed by Farewell and Herzberg.5

This paper aims to further develop the analysis presented by Farewell and Herzberg5 and to examine how the

logic and techniques of two-phase studies may help to elucidate appropriate error terms for each of the factors

involved at the various stages of that study. In particular, it will identify that block-treatment interactions between

the two phases, if they occur, can lead to more complex error structures that need to be taken into account.

Examination of variance component terms in expected mean squares (EMSs) aids both in identifying these

interactions and determining appropriate error terms to examine treatment effects. The hope is that this will

lead to better understanding of, and potentially improvements in, both the design and analysis of similar studies.

2 The example

The experiment reported by Solomon et al.1 consisted of medical practitioners using the Facial Action Coding

System to rate the expression of pain when viewing videos of individuals, for convenience denoted as patients

here, undergoing two types of painful movements. For the purposes of this paper, the data used by Farewell and

Herzberg5 will be assumed to comprise the study. In this scenario, 74 medical practitioners were randomly

assigned, 37 to each of two groups. The first group of medical practitioners received training in facial pain

recognition and the other no training. If each of these practitioners provided a single reading, the analysis of

such an experiment would be straightforward. However, each practitioner rated each of 16 videos, which were

obtained as follows. Eight patients were selected from a previous study of a more detailed coding system, with

four of those patients judged to express high levels of pain facially and by self-report (Expressive) and four to

express low levels of pain (Not Expressive). Each patient was recorded in two videos, one of which involved the

patient undertaking active movements without assistance (Active) and the other involving passive movements

with the assistance of a therapist (Passive). Patients provided their own assessment of the pain level, and the scores

used in the analysis were the absolute value of the difference between the patient’s score and the rater’s score.

Table 1 is a reproduction from Farewell and Herzberg,5 with rows representing the 74 raters and columns

representing the 16 videos.
As outlined in Farewell and Herzberg,5 the primary interest is in the factor T, which represents whether the

practitioners are trained or not. However, there is also interest in whether the effect due to the factor T depends on

the levels of the factor E, namely whether patients are in the expressive or non-expressive group, or the levels of

the factor M, namely whether the patients are undergoing active or passive movement while the videos are being

recorded. Thus, the interactions between the three factors are also of interest.
There are in fact seven “treatment” terms here that might be considered: the three main effects for the factors T,

E and M; the three two-factor interactions TE, TM and EM; and the three-factor interaction TEM. Each of these

terms can be calculated quite readily from the table of eight means corresponding to the two levels of each of the

three factors. However, determining an appropriate error term for each of the main effects and interactions (and

hence appropriate test statistics and confidence intervals) is not so straightforward. The purpose of this paper is to

highlight that this experiment has the structure of a two-phase design and to model and understand the sources of

variability and then to demonstrate how suitable error terms might be determined in this and other similar studies.

Given the large number of raters, this study could have additionally examined other characteristics of the raters in

addition to treatment, e.g. gender, and the analyses outlined subsequently could be extended to deal with this.
In particular, one motivation for the current paper is that the analysis in Farewell and Herzberg5 tests the TE

interaction against a single error term. As noted in their paper (p.963), this may not be appropriate if there is

significant interaction between (Raters within T) and E or between T and (Patients within E). If either of these

terms is shown to be significant, this paper shows that the testing of the TE interaction needs to be adjusted. In

fact, adjustments need to be made for the testing of all fixed effects in this case. In addition, the paper provides an

appropriate approach for terms involving M which are linked to the additional level of nesting in this plaid design.
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3 Two-phase designs

The structure of many two-phase designs,2 of which this design is an example, is that an initial experiment (phase

1) is laid out in a field, but the material from that experiment is taken to a laboratory where that material is laid

out according to a second and independent design (phase 2). In the context of Table 1, the column headings

represent the experimental units associated with phase 1, while the row headings represent the experimental units

associated with phase 2. What is typical of all two-phase designs is that each of the phases could be analysed as a

relatively simple experimental design if there were only a single measurement for each experimental unit in that

phase. The complexity arises from the fact that measurements are only obtained by undertaking both phases.
Other examples of two-phase designs occur in plant breeding experiments,6 microarray experiments,7 and taste-

testing trials. Brien and Bailey8 give a large number of examples and Brien et al.9 deal with a specific example

involving human subjects which is also discussed in the review by Brien.3 In the context of Table 1, the traditional

two-phase experiment would focus on the treatment factors related to the phase 1 study, in this case the Patients

and the associated factors E for expressiveness and M for movement. The phase 2 study would represent the

experimental program necessary to get the measurements required to answer these questions. The difference in the

current example is that primary interest is on the factor T related to the training (or not) of the raters, while

the factors E and M, related to the Patients, and the various interactions are of secondary importance. Note,

however, that there is, formally, complete symmetry between T and E in the data structure given in Table 1 and

that any analysis will have a comparable symmetry in the analysis of factors related to T and E, although they are

linked to different phases of the experiment.

4 A simplified example

In order to understand the two-phase aspect of this design better and to explain its complexities, consider a

modification to the example above in which (i) the number of Raters in each Training group is reduced from 37 to

6 and (ii) the design is simplified by averaging over the two levels of movement. This averaging means that Table 1

becomes symmetrical and smaller, with the rows linked to 12 Raters, divided into two groups of 6, and columns

linked to 8 Patients divided into two groups of 4.
An initial model for this design can be represented as

yiðlÞjðmÞ ¼ lþ ai þ bj þ dij þ eiðlÞ þ ejðmÞ þ eiðlÞjðmÞ (1)

where the factors T and E are linked to fixed effects a and b, with subscripts i and j, and with numbers of levels a

and b, respectively. It is expected that the results of this experiment will be applied to future raters and patients

and that, therefore, rater and patient effects should therefore be regarded as random in the sense that the exper-

imental sample is a small part of the population of interest.10 A rater random effect, subscript i(l), represents the

Table 1. Study design used in Farewell and Herzberg.5

Patients

Expressive Unexpressive

P1 P2 . . .. P4 P5 . . .. P8

Raters a p a p a p a p a p

Trained R1
R2
#
R37

No training R38
R39
#
R74

a: active movement; p: passive movement.
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lth rater within the ith level of T and a patient random effect, subscript j(m), represents the mth patient within the

jth level of E. The effect TE is represented by the term dij. The parameter constraints are

X

i

ai ¼
X

j

bj ¼
X

i

dij ¼
X

j

dij ¼ 0

while the variance terms in this initial model are, respectively

eiðlÞ �Nð0; r2RÞ; ejðmÞ �Nð0; r2PÞ and eiðlÞjðmÞ �Nð0; r2RPÞ

This model provides an analysis of variance in which the residual term in the Rater:Patient stratum has 76

degrees of freedom. Testing of the treatment effects also follows naturally, with T being tested against Raters

within T (R), E being tested against Patients within E (P) and the TE interaction being tested against the other 76

degrees of freedom in the Rater:Patient interaction (RP). Table 2 shows this analysis of variance table for a

particular choice of 12 Raters, using the average over the two levels of movement. The decision to split the

residual in the Rater:Patient stratum into three components will be explained subsequently.
The tests shown in Table 2 mimic the permutation tests that would be considered appropriate here. For

example, the permutation test for T would consist of obtaining the rank of the observed T among the 924 possible

values of T obtained by all choices of two groups of 6 from the 12 Raters, while the test for E would consist of

obtaining the rank of the observed E among the 70 possible values of E obtained by all choices of two groups of 4

from the 8 Patients. Because the sum of squares for Raters is constant for all these permutations, the ordering of

the values for the sum of squares for T is the same as the ordering of the F-statistics. Figure 1 shows the

cumulative distribution function of the F-statistics for T for both the permutation distribution and the corre-

sponding normal-theory F-distribution applicable in this case. The p-value for this permutation test is 0.041.

Finally, the test for the TE interaction would consist of finding the rank of the observed TE among the

924� 70¼ 64680 possible permutations of both Raters and Patients. The ranking of these TE interactions is

the same as the ranking of the F-test for TE, where TE is tested against the other 76 degrees of freedom in this

bottom stratum.
While the overall effect of T is certainly measured by averaging over the Patients, there is the possibility that the

effect of T differs between Patients. If the T effect does differ between Patients, as would be demonstrated by a

large value for the term TP, then the variability in those alternative estimates of T would be expected to have some

impact on the test for T, particularly as conclusions about the impact of T will be applied to future populations of

Patients. Yet the test in Table 2 is unaffected by this value. And, in view of the symmetry in this design, it may also

be that the effect of E may differ among Raters. Table 2 shows that these two random effects are present in this

case – it is in fact even more obvious if these tests are done with the full data set.
The presence of these random effects requires an extension to the model in equation (1), namely

Table 2. ANOVA table for simplified example.

Source Df Mean square F p

T 1 33.18 4.78 0.054

R 10 6.94 5.93a <0.001 (d)

E 1 1263.30 6.59 0.043

P 6 191.70 163.85 <0.001 (e)

TE 1 24.36 12.73 <0.001

RE 10 5.29 4.52 <0.001 (a)

TP 6 3.75 3.21 0.009 (b)

RP 60 1.17 (c)

Total 95

aF-tests for variance components in italics.

P: patient; E: expressiveness; R: rater; T: training.

3698 Statistical Methods in Medical Research 29(12)



yiðlÞjðmÞ ¼ lþ ai þ bj þ dij þ eiðlÞ þ ejðmÞ þ eiðlÞj þ eijðmÞ þ eiðlÞjðmÞ

where the additional terms

eiðlÞj �Nð0; r2REÞ and eijðmÞ �Nð0; r2TPÞ
capture the way in which the E effect varies between Raters and the T effect varies between Patients, respectively.

The terms required are most easily identified by considering all terms in the expansion of

I þ TþRð Þ � I þ Eþ Pð Þ ¼ I þ TþR þ Eþ TEþREþ Pþ TPþRP

with degrees of freedom respectively given by the equivalent expansion

1 þ 1þ 10ð Þ � 1 þ 1þ 6ð Þ ¼ 1 þ 1þ 10 þ 1þ 1 þ 10 þ 6þ 6 þ 60

where I represents the grand mean, R represents “Raters within T” and P represents “Patients within E”.
In this representation, T, E and TE are considered to be fixed effects, while terms involving R and P are, for the

reasons given earlier, random effects. Following Snedecor and Cochran,11 each EMS contains r2 plus terms
according to the following rules

• each fixed effect term has a term for itself plus variance components for each random effect nested within it and
for its interactions with any other random effects,

• each random effect term has its own variance component, with a separate variance component for each term
nested within it,

• the coefficient of each variance component is the number of observations divided by the number of distinct
levels for the corresponding term in the model.

The properties of this model can be formally derived by expressing the model in matrix notation. If the data are

ordered sequentially by column, so that the results for the 12 raters are given for each of the 8 patients in turn, the
model can be written as

Figure 1. Permutation distribution for T.
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y ¼ l1þ Aaþ Bbþ Ddþ Rqþ Ccþ F/þ Ngþ 2

where A, B and D are the matrices for the three treatment parameters, and R, C, F and N represent, respectively,

the random effects for Raters, Patients, the RE interaction and the TP interaction. These matrices can be written

in Kronecker product form and it then follows that

VarðyÞ ¼ r2I þ r2RRR
0 þ r2PCC

0 þ r2REFF
0 þ r2TPNN

0

¼ r2I þ 8r2RðJ8 � I12Þ þ 12r2pðI8 � J12Þ
þ4r2REðI2 � J4 � I12Þ þ 6r2TPðI8 � I2 � J6Þ

where I is the identity matrix, J is the rank 1 idempotent matrix with all elements equal ðJn ¼ 110=nÞ and the

subscripts indicate the size of each matrix. The ordering of the matrices in the Kronecker products is determined

by the order in the data vector, moving from the subscript that changes most slowly (factor E) to the one that

changes most quickly (Raters within T). The idempotent matrices in the last expression can be reformulated into

orthogonal idempotents which constitute the terms in Table 3, where K5I � J. The EMS for a given term with

sum of squares of the form y0Py can then be determined as

Eðy0PyÞ¼ trfEðPyy0Þg¼m0PmþtrðPVÞ

where v ¼ E yð Þ ¼ l1þ Aaþ Bbþ Dd and V¼Var(y). Here, the treatment effects are taken as �a for the two

levels of T, �b for the two levels of E and �d for the two levels of TE. The coefficients for variance components in

the EMS obtained from this agree with the rules of Snedecor and Cochran11 cited earlier. For example, in this

case, there are 12 raters, so the coefficient of r2R is 96/12¼ 8.
In general, for ANOVA tables from complex designed experiments, expected mean squares should be used

to guide the construction of appropriate F-ratios and hypothesis tests. Green and Tukey10 discussed this and

other issues arising in the analysis of complex experiments. The first thing to note from Table 3 is that the term

T has an additional variance component compared with the term R and that, consequently, the test

performed earlier for T is no longer unbiased. The additional error term in the EMS for T involves the

variance component r2TP. This random effect captures how the T effect varies randomly between “blocks”

(patients). It is often assumed that such block by treatment interaction does not exist or that it is included

in the “residual” error. However, the evidence from the mean squares in Table 2 suggests otherwise, as can be

seen by comparing the third and fourth observed MS values [(b) and (c)] in the third section of Table 2. This

generates an F test on 6 and 60 degrees of freedom with a test statistic value of 3.21, generating a significance level

of 0.009.
Two different techniques, closely related, are available for obtaining unbiased tests in these circumstances. In

the first of these, the raw treatment estimates are used and Satterthwaite approximations12 provide unbiased

estimates of the variances for each of the treatment terms.
For the second method, if T is defined as the matrix T ¼ A Bj jD½ � and h as the vector h ¼ ½a b d�0, then the

weighted least squares estimates of h are given by

ĥ ¼ ðT 0V�1TÞ�1T 0V�1y

with variance VarðĥÞ ¼ ðT0V�1TÞ�1: This latter is the method adopted by ASReml,13 with estimates of the var-

iance components obtained using REML.
In this particular case, both methods provide the same estimate and the same variance formula. In the

case of the second method, the matrix V splits into the nine orthogonal idempotents shown in Table 3,

with coefficients given by the variance terms in the EMS of Table 3, and each of the three terms in T

aligns with exactly one of the idempotents. As a result, the weighted least squares estimates of the three 1

degree of freedom treatment terms, T, E and TE, are their raw means, with the variances ascribed to them as

in Table 3. To generate an appropriate error for testing the main effect of T, mean squares from Table 2 can be

combined, guided by the expected mean squares in Table 3. An unbiased estimate of the error variance for

T is given by
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dþ b� c ¼ 6:94þ 3:75� 1:17 ¼ 9:52

which provides a mean square against which T can be tested. Satterthwaite approximations12 can then provide an

approximate degrees of freedom. Assuming that each of these is a Chi-square with the appropriate degrees of

freedom, then, with an obvious notation

Eðdþ b� cÞ ¼ dþ b� c

and

Varðdþ b� cÞ ¼ 2ðd2=10þ b2=6þ c2=60Þ

and this will behave approximately like a Chi-square divided by its degrees of freedom (DF). In such a case

E2=Var ¼ ðDFÞ=2, implying that the estimate of DF is

2ðE2=VarÞ ¼ ðdþ b� cÞ2=ðd2=10þ b2=6þ c2=60Þ

where the Greek letters are replaced by their estimates. The resulting estimated error variance is 9.52 on 12.62

degrees of freedom. The F-test on (1,12.62) degrees of freedom takes the value 33.18/9.52¼ 3.48 (p¼ 0.085),

compared to the value of p¼ 0.054 given in Table 2. Similar tests can be determined for E and the TE interaction.
As advocated by Nelder and Lane,14 marginality should be invoked so that a significant result for TE implies

that both T and E should be included in any model regardless of whether they are significant or not.
This raises the question of whether there are any appropriate permutation tests that might replace those

described earlier. Anderson and Ter Braak15 provide a methodology for obtaining exact or approximate permu-

tation tests where an error mean square with the correct variance can be identified but this is not the case in the

current situation. One possibility for T, as an example, is to form the 924 permutations as described earlier,

calculate the ratio MSðTÞ=ðdþ b� cÞ for each and then determine the rank of the observed ratio within the

ordered list. In this case, the value 3.48 ranks 28 out of 924, implying a p-value of 28/924¼ 0.030. Similar

permutation tests can be conducted for the other effects, with all 64,680 permutations of T and E needed for

tests other than those for T and E. A simulation study, using variance components similar to those obtained here,

establishes that this test has good Type I error properties, whereas T/R does not.

5 Potential strategies

A number of different strategies can be used to help in developing models and appropriate analyses for studies

such as these. The following strategies have been used in examining the plaid design in Table 1 and together have

proved useful in providing greater understanding of the design and its analysis.

Table 3. ANOVA table showing mean squares and EMS.

Source Df Mean square EMS

T 1 y0fJ8 � K2 � J6gy r2þ8r2Rþ6r2TPþ4r2REþ96a2

R 10 y0J8 � ðI2 � K6Þy r2þ 8r2Rþ4r2RE

E 1 y0fK2 � J4 � J12gy r2þ12r2Pþ6r2TPþ4r2REþ96b2

P 6 y0ðI2 � K4Þ � J12y r2þ12r2Pþ6r2TP

TE 1 y0fK2 � J4g � fK2 � J6gy r2þ4r2REþ6r2TPþ96d2

RE 10 y0fK2 � J4g � ðI2 � K6Þy r2þ4r2RE
TP 6 y0ðI2 � K4Þ � fK2 � J6gy r2þ6r2TP
RP 60 y0ðI2 � K4Þ � ðI2 � K6Þy r2

Total 95
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1. Subsetting: Analyse subsets of the data and use this to build the analysis into a coherent whole. For a factor at

two levels, analyse averages and differences to add insight and help establish a final analysis. The previous

section is an example of this technique as it deals only with averages.
2. Permutation tests: Develop tests based on permutation theory to provide useful insight into appropriate models

and tests. However, as the previous section shows, the usual permutation tests may not be appropriate in the

presence of interactions of fixed-effects with random-effects terms.
3. One phase at a time: For each of the phases in turn, consider what the analysis would be if a number of

repeated, but unstructured, measurements were made for each experimental unit in that phase. These repeated

measurements represent a form of pseudo-replication which suggests limitations on the degrees of freedom

available for testing the effects at each phase.
4. Formal modelling: Formulate a comprehensive linear model with various fixed and random effects to describe

all the various aspects of the study. The previous section illustrates the way in which the analysis of variance

can be used to assess the appropriateness of a proposed model.

6 Analysis of the complete study

This section will provide an analysis of the complete study, informed by the analysis of the earlier sections. The

rater/patient pairs generate two measurements, one for each level of M. Thus, M is essentially a split-plot treat-

ment within the rater/patient pairs. For analyses not involving M, both measurements should contribute similarly

and it is therefore appropriate to focus on the average of the two measurements, as in the previous sections. This

produces an ANOVA as in Farewell and Herzberg.5 To make the results of this comparable with the approach

adopted subsequently based on formal modelling, it is necessary to multiply all sums of squares in this ANOVA

by 2 since if a measurement error is r2 then an average of two values will have variance r2=2. The resulting

ANOVA table corresponds to the upper part of Table 4.
For analyses involving M, it is the difference between the two observations from each rater/patient pair that

will be informative. These 592 differences, like the averages, can be viewed as arising from a single plaid design

involving raters and patients with factors T and E. The overall average of the differences, by analogy with the

grand mean term in a linear model, represents the main effect of M, while the T ‘effect’ for the differences

corresponds to the TM interaction. Similarly, the E ‘effect’ for the differences represents the EM interaction

and the TE ‘effect’ represents the TEM interaction. Unlike the analysis of the averages, an error term for testing

the hypothesis that M is zero is required. The lower half of Table 4 presents the relevant rows for an ANOVA for

the differences but, again, to be consistent with the formal modelling approach, the sums of squares are divided by

2 since a difference will have a variance 2r2 if the measurement error is r2.
The formal tests provided in Table 4 would be appropriate if the only random effects were associated with the

six terms identified as “Error” terms in the table.

7 Formal modelling

The model in the earlier section can now be extended to cover the additional layer relating to the levels of M

yiðlÞjðmÞk ¼ lþ ai þ bj þ ck þ ðabÞij þ ðacÞik þ ðbcÞjk þ ðabcÞijk
þ eiðlÞ þ ejðmÞ þ eiðlÞj þ eijðmÞ þ eiðlÞjðmÞ
þ eiðlÞk þ ejðmÞk þ eiðlÞjk þ eijðmÞk þ eiðlÞjðmÞk

In this model, the additional subscript k refers to the levels of M. The parameter constraints seen earlier are

extended to include

X

k

ck ¼
X

i

ðacÞik ¼
X

k

ðacÞik ¼
X

j

ðbcÞjk ¼
X

k

ðbcÞjk ¼ 0

X

i

ðabcÞijk ¼
X

j

ðabcÞijk ¼
X

k

ðabcÞijk ¼ 0

By analogy with the earlier model, there are now an additional five variance terms:
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eiðlÞk �Nð0; r2RMÞ; ejðmÞk �Nð0; r2PMÞ; eiðlÞjðmÞk �Nð0; r2RPMÞ
eiðlÞjk �Nð0; r2REMÞ and eijðmÞk�Nð0; r2TPMÞ

Table 5 presents expressions for expected means squares, together with the appropriate degrees of freedom

when the number of levels for T, E and M is a, b and c, respectively, the number of raters at each level of T is n

and the number of patients at each level of E is p. The expressions of the form UðÞ correspond to the sum

of squared fixed effects. Comparison of the mean squares in Table 4 with the EMSs given in Table 5

suggests that the variance components r2R; r
2
RE; r

2
TP and r2RP are all zero, and only r2P from this set of five has

a nonzero value.
The EMS expressions in Table 5 mimic very closely what was obtained earlier in Table 3. Each of the seven

treatment terms has a variance which can only be estimated by a linear combination of three of the error

variances, leading to quite different tests from those indicated in Table 4.
To generate an appropriate test for the main effect of T, mean squares from Table 4 are combined, guided by

the expected mean squares in Table 5. An unbiased estimate of the error variance for T is given by

dþ b� c ¼ 8:72þ 8:23� 3:18 ¼ 15:47

and this provides a mean square against which T can be tested. The Satterthwaite approximation,12 as described

earlier, provides an approximate degrees of freedom of 13.66. The F-test on (1,13.66) degrees of freedom takes the

value 99.28/15.47¼ 6.42 (p¼ 0.025), compared to the value of p¼ 0.001 given by Farewell and Herzberg.5

Each of the factorial terms is tested against a different combination of the error terms, as shown in Table 6. In

each of these calculations, three mean squares are used in the Satterthwaite approximation. As mentioned earlier,

the marginality ideas of Nelder and Lane14 should be applied so that, where higher order interactions are present,

terms marginal to those should be included in the model whether significant or not. It is notable that the degrees of

freedom for testing only vary from 6 to about 14 in this case. In broad terms, this arises from the fact that there

Table 4. ANOVA table, following Farewell and Herzberg.5

Source Df Mean square F p

(i) Averages

T 1 99.28 11.39 0.001

Error 1: R 72 8.72 2.74a <0.001 (d)

E 1 16606.21 7.35 0.035

Error 2: P 6 2257.96 710.05 <0.001 (e)

TE 1 20.39 6.41 0.012

RE 72 8.23 2.58 <0.001 (a)

TP 6 9.93 3.12 0.005 (b)

Error 3: RP 432 3.18 (c)

(ii) Differences

M 1 7565.23

TM 1 43.68 5.29 0.024

Error 4: RM 72 8.26 2.47 <0.001 (d1)

EM 1 4328.11 37.77 0.001

Error 5: PM 6 114.58 34.20 <0.001 (e1)

TM 1 36.09 10.77 0.001

REM 72 7.48 2.23 <0.001 (a1)

TPM 6 9.89 2.95 0.008 (b1)

Error 6: RPM 432 3.35 (c1)

Total 1183

aF-tests for variance components in italics.

P: patient; E: expressiveness; R: rater; T: training; M: movement.
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are only eight patients involved in the study, limiting the estimation of some variance components to only 6

degrees of freedom. The implication is that a more appropriate design would have an increased number of

patients, but possibly fewer raters would be needed.
The model developed here was also fitted using ASReml13 and the R platform,16 with very similar results.

Choosing to allow variance components to be negative leads to the same variance component estimates as are

obtained here. The formal Wald tests, using the Kenward–Rogers17 approximation, give F-values and denomi-

nator degrees of freedom almost identical to those shown in Table 6.

8 Estimation

While the role of formal testing through the ANOVA table remains important, estimation of effects and

their standard errors is vital in assessing outcomes. From Table 6, the square root of an F-value provides

a t-statistic. The ratio of the effect to its t-statistic provides a standard error of each effect. In the three-

way table of means, each mean is the overall mean plus half the sum of the seven effects, with appropriate

signs. The effects can be shown to be uncorrelated, and hence the variance matrix of the means can be

Table 5. Degrees of freedom and expected mean squares for the formal model.

EMS

Source Df r2RPM r2TPM r2REM r2PM r2RM r2RP r2TP r2RE r2P r2R

Grand mean 1 1 n p an bp c nc pc anc bpc

T a – 1 1 n p bp c nc pc bpc þbnpcUðaÞ
R aðn� 1Þ 1 p bp c pc bpc (d)

E b – 1 1 n p an c nc pc anc þanpcUðbÞ
P bðp� 1Þ 1 n an c nc anc (e)

TE ða� 1Þðb� 1 1 n p c nc pc þnpcUðabÞ
RE aðn� 1Þðb� 1Þ 1 p c pc (a)

TP ða� 1Þbðp� 1Þ 1 n c nc (b)

RP aðn� 1Þbðp� 1Þ 1 c (c)

M ðc� 1Þ 1 n p an bp þabnpUðcÞ
TM ða� 1Þðc� 1Þ 1 n p bp þbnpUðacÞ
RM aðn� 1Þðc� 1Þ 1 p bp ðd1Þ
EM ðb� 1Þðc� 1Þ 1 n p an þanpUðbcÞ
PM bðp� 1Þðc� 1Þ 1 n an (e1)

TEM ða� 1Þðb� 1Þðc� 1Þ 1 n p þnpUðabcÞ
REM aðn� 1Þðb� 1Þðc� 1Þ 1 p (a1)

TPM ða� 1Þbðp� 1Þðc� 1Þ 1 n (b1)

RPM aðn� 1Þbðp� 1Þðc� 1Þ 1 (c1)

Total anbpc

Table 6. Formal tests for each effect.

Term Effect Mean Sq Variance formula Variance F Df p

G 6.011

T 0.579 99.28 RþTP�RP 15.47 6.42 13.66 0.025

E �7.490 16606.21 REþ P�RP 2263.01 7.34 6.03 0.035

TE �0.263 20.39 REþTP�RP 14.98 1.36 12.90 0.266

M 5.056 7565.23 RMþ PM�RPM 119.49 63.31 6.52 <0.001

TM 0.384 43.68 RM þTPM�RPM 14.80 2.95 12.68 0.112

EM �3.824 4328.11 REMþ PM�RPM 118.71 36.46 6.44 0.001

TEM �0.349 36.09 REMþTPM�RPM 14.02 2.57 11.49 0.137
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determined. The means so obtained are shown in Table 7. The standard error of differences (SED) can be

summarised as follows:

• 0.45, for comparisons in the same row.
• 0.95, for other comparisons within the same square.
• 2.85, for comparisons between means in different squares.

Under the ASReml approach, treatment means and standard errors of differences agree closely with the results

here.

9 Discussion

ANOVA tables can be of great value in understanding the structure of an experimental design and confirming

potential sources of variation. This can be linked to the choice of a formal model for inference purposes and

inclusion of appropriate error terms. However, it may be the case that when EMS terms in an ANOVA are not

carefully examined, the ‘natural’ choice of error terms from an ANOVA may be based on assumptions that are

unwarranted.
For the plaid designs discussed in this paper, the ANOVA table illustrates clearly that treatments T and E

applied to the rows and columns, respectively, are, separately and symmetrically, linked to an upper level com-

ponent of the ANOVA table associated with row and column means, respectively, but that their interaction TE is

associated with the interaction of rows and columns. However, the interaction between rows and columns may

include additional variance components, identified here as the interactions of the row treatments with columns

and the column treatments with rows. If the variance components corresponding to these block-treatment inter-

actions are nonzero, they affect the testing not only of the TE interaction but also, perhaps less obviously, the

main effects T and E as well.
Careful investigation of the ANOVA structure is facilitated by examining the structure of the study from

different perspectives. For the Solomon et al.1 study, the recognition that this study falls into the category of two-

phase experiments provides fresh insight into the structure and potential analysis of the study. The two-phase

structure of this experiment also helps to provide heuristic arguments for the number of degrees of freedom

available for testing various effects.
Permutation theory can also provide insight into study design and analysis, although for plaid designs it does

not address the problem of block-treatment interactions. An adjustment to these permutation tests is proposed

here and warrants further investigation. For the Solomon et al.1study, there was an additional level of nesting

below the plaid design. The identification of the appropriate model and analysis for effects linked to this addi-

tional level of nesting is facilitated by subsetting of the data. For this study, this corresponded to looking at

averages and differences of the two measurements taken for each rater–patient pair.
The role of ANOVA here has been to identify the various terms that are needed for an appropriate error

structure. While techniques such as Satterthwaite approximations12 can be used to provide non-standard infer-

ences from the ANOVA table, the availability of modern computing packages such as ASReml13 provides an

alternative and preferred approach to the analysis and testing for treatment effects. However, the use of ASReml

relies critically on the identification of an appropriate set of variance components and, in this case at least, that is

facilitated by a careful examination of the ANOVA table, as also suggested by Brien et al.9 As well, there is an

advantage to considering multiple approaches to inference to add certainty to any inference strategy.
In general, the use of a variety of techniques is proposed and encouraged in order to better understand the

important features of any study. This approach, applied to the Solomon et al.1 study, allowed the elucidation of

appropriate formal tests for each of the factors and interactions in the study. Some of these results differ from the

Table 7. Treatment means.

Trained Untrained

Expressive Active 5.26 5.37

Passive 13.41 14.98

Unexpressive Active 1.51 1.79

Passive 2.71 3.06
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suggestions given in Farewell and Herzberg.5 In particular, the methods outlined here can be applied to the design

and analysis of other studies in which the participants in a study supply multiple measurements under a variety of

conditions.

Acknowledgements

We thank two referees for very helpful comments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this

article: The financial support from Grains Research and Development Corporation to Richard Jarrett through the Statistics

for Australian Grains Industry in Southern Region project (SAGI-STH) and from the Natural Sciences and Engineering

Research Council of Canada to Agnes M. Herzberg is gratefully acknowledged.

ORCID iD

VT Farewell https://orcid.org/0000-0001-6704-5295

Supplemental Material

Data files and selected computer code can be found at https://doi.org/10.17863/CAM.54494.

References

1. Solomon PE, Prkachin KM and Farewell VT. Enhancing sensitivity to facial expression of pain. Pain 1997; 71: 279–284.
2. McIntyre GA. Design and analysis of two-phase experiments. Biometrics 1955; 11: 324–334.
3. Brien CJ. Multiphase experiments in practice: a look back. Aust New Zealand J Stat 2017; 59: 327–352.
4. Yates F. Design and analysis of factorial experiments (technical communication no. 35). Harpenden, UK: Commonwealth

Bureau of Soils, 1937.
5. Farewell VT and Herzberg AM. Plaid designs for the evaluation of training for medical practitioners. J Appl Stat 2003; 30:

957–965.
6. Smith AB, Lim P and Cullis BR. The design and analysis of multi-phase plant breeding experiments. J Agricult Sci 2006;

144: 393–409.
7. Jarrett RG and Ruggiero K. Design and analysis of two-phase experiments for gene expression studies – part 1. Biometrics

2008; 64: 208–216.
8. Brien CJ and Bailey RA. Multiple randomisations. J R Stat Soc Ser B 2006; 68: 571–609.
9. Brien CJ, Harch BD, Correll RL et al. Multiphase experiments with a least one later laboratory phase.I. Orthogonal

designs. J Agricult Biol Environ Stat 2011; 16: 422–450.

10. Green BF and Tukey JW. Complex analysis of variance: general problems. Psychometrika 1960; 25: 127–152.
11. Snedecor GW and Cochran WG. Statistical methods. 6th ed. Ames: The Iowa State University Press, 1967.
12. Satterthwaite FE. An approximate distribution of estimates of variance components. Biometrics Bull 1946; 2: 110–114.
13. Butler DG, Cullis BR, Gilmour AR et al. Mixed models for S language environments, ASReml-R reference manual.

[Training and development series, No QE02001]. Brisbane, QLD: QLD Department of Primary Industries and

Fisheries, 2009.
14. Nelder JA and Lane PW. The computer analysis of factorial experiments: in memoriam – Frank Yates. Am Stat 1995; 49:

382–385.
15. Anderson MJ and Ter Braak CJF. Permutation test for multi-factorial analysis of variance. J Stat Comput Simul 2003; 73:

85–113.
16. R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for

Statistical Computing, 2005.
17. Kenward MG and Rogers JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics

1997; 53: 983–997.

3706 Statistical Methods in Medical Research 29(12)

https://orcid.org/0000-0001-6704-5295
https://orcid.org/0000-0001-6704-5295

	table-fn1-0962280220938418
	table-fn2-0962280220938418
	table-fn3-0962280220938418
	table-fn4-0962280220938418
	table-fn5-0962280220938418

